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Abstract Sirtuins are evolutionarily conserved nicotin-
amide adenine dinucleotide (NAD+)-dependent lysine
deacylases or ADP-ribosyltransferases. These cellular
enzymes are metabolic sensors sensitive to NAD+ levels
that maintain physiological homeostasis in the animal
and plant cells.
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Introduction

Acetylation, catalyzed by acetyltransferases that transfer
an acetyl residue from acetyl-CoA to the ε-amino group
of specific lysine residues in histones and other proteins,
is responsible for chromatin activation and regulation of
metabolic pathways. A reverse process, the removal of
acetyl group from the lysine of acetylated proteins,
requires the participation of enzymes known as lysine
deacetylases (KDACs). In general, the lysine
deacetylases were divided into four classes: class I, II,

III, and IV [49]. Since a yeast transcriptional repressor
Sir2 (silent information regulator 2) is a founding mem-
ber in the class III deacetylases, the homologue proteins
in other organisms have been named sirtuins.

Sirtuins constitute a highly conserved family of
deacetylases that depend on the oxidized form of nicotin-
amide adenine dinucleotide (NAD+) [6]. Seven homologs
of yeast Sir2 (SIRT1–7) which share a conserved catalytic
domain have been identified in mammals [23]. Sirtuins
differ in subcellular localization, enzymatic activity, and
targets (Table 1). SIRT1, SIRT6, and SIRT7 are nuclear
proteins while SIRT2 is mainly a cytoplasmic protein but
it can translocate into nucleus as well [59]. SIRT3, SIRT4,
and SIRT5 are mitochondrial sirtuins [50].

Sirtuins play an important role in the regulation of
cellular homeostasis, in particular metabolism [30], in-
flammation [27], oxidative stress [55], and senescence
[53]. It is believed that activation of sirtuins may be
advantageous not only in metabolic diseases such as type
2 diabetes and obesity, but also in neurodegenerative
diseases [17]. This is in part because the sirtuins stimulate
the activity ofmitochondria, the energy centers of the cells,
and mitochondrial proteins, preventing physiological
changes underlying many pathological conditions [30].

Structure of sirtuins

All sirtuins possess a conserved catalytic NAD+-binding
domain, consisting of about 275 amino acids, which is
flanked by the N- and C-terminal sequences of variable
length [54]. The N- and C-terminal extensions are the
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targets for posttranslational modifications that can affect
the functions of sirtuins [22]. A larger sirtuin domain
consists of α/β Rossmann-fold structure that is a charac-
teristic for NAD+-binding proteins while a smaller do-
main includes a zinc-binding module containing three-
stranded antiparallel β-sheet and a variable α-helical
region [21]. Cofactor (NAD+)-binding loop region,
connecting the small domain to the Rossmann-fold struc-
ture, consists of four loops forming an extended cleft that
acts as the enzyme active site. Both NAD+ and acetylated
lysine-containing substrates bind to this pocket [54]. The
NAD+-binding site can be divided into three regions: site
A, binding site for adenine-ribose moiety; site B,
nicotinamide-ribose binding region; and site C, nicotin-
amide moiety binding site [54]. In the presence of

acetylated lysine, NAD+ can undergo a conformational
change bringing the nicotinamide group in the proximity
to the C site where it can be cleaved. After nicotinamide
cleavage, the acetyl carbonyl oxygen of the acetyl-lysine
nucleophilically attacks the carbon C1′ of the ribose to
form a first intermediate between the two substrates
which is the 1′-O-alkylamidate. Then, the intermediate
is hydrolyzed to produce a deacetylated polypeptide and
2′-O-acetyl-ADP-ribose [54, 56] (Fig. 1).

Enzymatic reactions of sirtuins

Nicotinamide adenine dinucleotide is an essential cofac-
tor for electron transfer in an intermediate metabolism

Table 1 Subcellular location, enzymatic activity, function, and selected non-histone target substrates for mammalian sirtuins

Sirtuin Subcellular
localization

Enzymatic
activity

Function Target substrates References

SIRT1 Nucleus
Cytoplasm

Deacetylase Formation of facultative and
constitutive chromatin

Mitochondrial biogenesis
Fatty acid oxidation
Regulation of cholesterol and
bile acid homeostasis

p53, FOXO1/3, NF-κB, CRTC2,
PGAM-1, PGC1α, SREBP,
LXR,
FXR, LKB1

[8, 39]

SIRT2 Cytoplasm
Nucleus
(transiently)

Deacetylase
Demyristoylase

Cell cycle regulation
Promotion of lipolysis in
adipocytes

Tumor suppression/promotion
Neurodegeneration

α-Tubulin, FOXO1, FOXO3,
p300

[17, 57]

SIRT3 Mitochondria Deacetylase
Decrotonylase

Regulation of mitochondrial
activity

Protection against oxidative
stress

Tumor suppression

LCAD, ACS2, SOD2, IDH2,
HMGCS, OTC, SOD2, subunits
of the electron transport chain
and ATP synthase

[3, 8, 50, 53,
66]

SIRT4 Mitochondria ADP-ribosylase
Deacetylase
Lipoamidase

Glucose metabolism
Amino acid catabolism
Tumor suppression

IDE, ANT2, ANT3, GDH,
MCD, PDH

[44, 50, 66]

SIRT5 Mitochondria
Cytoplasm
Nucleus

Deacetylase
Demalonylase
Desuccinylase
Deglutarylase

Urea cycle
Fatty acid metabolism
Amino acid metabolism

CPS1, UOX [18, 28, 46, 50]

SIRT6 Nucleus ADP-ribosylase
Deacetylase
Deacylase

Genomic stability/DNA repair
Glucose and lipid metabolism
Inflammation

HIF1α, PARP1, TNFα, GCN5 [32, 37, 40]

SIRT7 Nucleus (nucleolus) Deacetylase Ribosome biogenesis
Tumor promotion

RNA polymerase 1 [4, 58]

ACS2 acyl-CoA synthetase 2, ANT adenine translocator, CPS1 carbamoyl-phosphate synthase 1, CRTC2 CREB-regulated transcription
coactivator 2, FXR farnesoid X receptor, GCN5 general control non-repressed protein 5 (an acetyltransferase), GDH glutamate dehydro-
genase, HIF-1 hypoxia-induced factor 1, HMGCS 3-hydroxy3-methylglutaryl CoA synthase 2, IDE insulin-degrading enzyme, IDH2
isocitrate dehydrogenase 2, LCAD long-chain-specific acyl coenzyme A dehydrogenase, LKB1 liver kinase B1, LXR oxysterol receptor,
MCDmalonyl CoA decarboxylase,OTC ornithine transcarbamoylase, PDH pyruvate dehydrogenase,PGAM-1 phosphoglycerate mutase-1,
PGC-1α peroxisome proliferator-activated receptor (PPAR) γ coactivator 1α, SOD2 (MnSOD) mitochondrial manganese superoxide
dismutase, SREBP sterol regulatory element-binding protein
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that is converted into a reduced form NADH [6]. The
sirtuins can act as the sensors of cell metabolic state
because they are sensitive to the intracellular ratio of
NAD+/NAM [6] and the changes in NAD+ levels will
directly affect sirtuin activity and substrate preference
[20]. One may envision that the sirtuins may transmit
the signal of changes in the metabolism to chromatin
through deacetylation of histones and other chromosom-
al proteins [59], ultimately leading to alterations in gene
expression.

In addition to the deacetylation of nucleosomal his-
tones and metabolic enzymes, the sirtuins may also
exhibit other activities. Although SIRT1 and SIRT2
could decrotonylate histone peptides in vitro [19],

SIRT3 is the major in vivo decrotonylase, specifically
involved in the regulation of H3K4cr [3, 51]. SIRT2
exhibits activity for the removal of long-chain fatty acyl
groups [41] with a higher catalytic efficiency for a
myristoyl group than that for the acetyl group [57]. It
turned out that SIRT4 does not show histone deacetylase
activity and acts primarily as a mitochondrial ADP-
ribosyltransferase [26]. SIRT4 is also a cellular
lipoamidase that regulates the pyruvate dehydrogenase
complex activi ty [44]. SIRT5 may act as a
demalonylase, desuccinylase, and deglutarylase [18,
28] leading to the removal of acid acyl moieties linked
to the lysine residues in the protein (Fig. 2). SIRT6,
which exhibits deacetylase and fatty deacylase activities
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[19, 32], also functions as a nuclear mono-ADP-
ribosyltransferase [40]. The latter reaction involves the
transfer of a single ADP-ribosemoiety fromNAD+ to an
acceptor amino acid residue (arginine, asparagine, as-
partate, glutamate) in various proteins to form N- or O-
glycosidic bonds, depending on a nucleophilic group in
the amino acid side chain [10] (Fig. 3). In general,
sirtuins can act as ADP-ribosyltransferases or protein
deacylases that use either unmodified proteins as a sub-
strate (ADP-ribosylation by SIRT4 and SIRT6) or pro-
teins modified with acetyl, malonyl, succinyl, and

glutaryl [28, 30] or other acyl residues such as crotonyl
[3, 51] and fatty acid residues [32, 41].

Sirtuin subcellular localization and function

This section only briefly discusses the broad functional
diversity of sirtuins, and much more information on the
topic can be found in the following reviews [5, 6, 8, 12,
15, 17, 27, 30, 37, 39, 50, 55]. Mammalian sirtuins
occupy different cellular locations, act on several
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substrates, and may perform various functions (Table 1).
SIRT1 is the best characterized protein of the sirtuin
family. It participates in the formation of both constitu-
tive and facultative chromatin and appears to play a dual
role as a suppressor or promoter during carcinogenesis
[5]. It regulates a number of pathways associated with
normalmetabolism and functioning of individual organs
in mammals [30, 39]. In liver, SIRT1 promotes gluco-
neogenesis by deacetylation and activation of PGC1α
(peroxisome proliferator-activated receptor γ (PPARγ)
coactivator 1α) and FOXO1 (forkhead box A1) and
inhibits glycolysis by deacetylating and suppression of
the glycolytic enzyme phosphoglycerate mutase 1
(PGAM-1) [8]. Similarly, in the skeletal muscle, SIRT1
deacetylates PGC1α and interacts with AMP-activated
protein kinase (AMPK) to form a reciprocal positive
regulating loop in which AMPK activates SIRT1 by
increasing the level of NAD+ due to the upregulation
of the gene encoding an NAD+ synthetic enzyme nico-
tinamide phosphoribosyltransferase (NAMPT) while
SIRT1 activates AMPK by deacetylation of its activator,
liver kinase B1 (LBK1).

SIRT2which is present predominantly in the cytoplasm
colocalizes with microtubules and deacetylates the main
component of microtubules, α-tubulin, at lysine 40 [15].

During cell cycle progression from G2 to M, SIRT2 trans-
locates to the nucleus to deacetylate histone H4 at lysine
16 leading to chromatin condensation during metaphase.
SIRT2 also deacetylates the transcription factors FOXO1
and FOXO3 and lysine residues in the catalytic domain of
histone acetyltransferase p300 [17].

SIRT3 positively regulates the activity of mitochon-
dria by deacetylation and activation of several compo-
nents of the electron transport chain complexes I and II
and acetyl-CoA synthetase (ACS) [53]. SIRT3 also affects
a defense against oxidative stress protecting cells from
reactive oxygen species (ROS). Indeed, during calorie
restriction, SIRT3 activates superoxide dismutase 2
(SOD2), a key mitochondrial antioxidant enzyme [11].

SIRT4, located in the mitochondrial matrix, is ubiq-
uitously expressed in kidney, heart, brain, liver, and
pancreatic β cells. SIRT4 suppresses the secretion of
insulin in response to glucose and interacts with insulin-
degrading enzyme (IDE) [50]. By transferring the ADP-
ribose residue, the enzyme inactivates glutamate dehy-
drogenase (GDH) that converts glutamate to α-
ketoglutarate in the mitochondria, thus leading to re-
duced ATP synthesis [66].

SIRT5 is localized in the mitochondrial matrix, main-
ly in brain, heart, liver, and kidney. SIRT5 deacetylates
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carbamoyl synthetase 1 (CPS1) which catalyzes the first
rate-limiting step of the urea cycle. The CPS1
deacetylation by SIRT5 increases the activity of the
enzyme. It has been shown [18, 50] that CPS1 is
deacetylated during calorie restriction, and its activity
increases on low-calorie diet. An increase in urate oxi-
dase (UOX) deacetylation and activity was detected in
mice overexpressing SIRT5 in the liver [46, 50].

Poly-(ADP-ribose) polymerase 1 (PARP1) that stim-
ulates the repair of DNA damage in response to oxida-
tive stress is ADP-ribosylated by SIRT6 to promote its
poly-ADP-ribosylation activity [37]. SIRT6 is capable
of removing fatty acyl residues from the lysines 19 and
20 of tumor necrosis factor α (TNFα) to regulate its
release [32]. Overexpression of SIRT6 in male mice
significantly extended their life, and these individuals,
as compared to the wild type ones, had the elevated
levels of insulin-like growth factor 1 (IGF1) [34].

SIRT7 participates in the transcriptional activation
catalyzed by RNA polymerase I and III [35, 58] and
may interact with hypoxia-induced factors HIF-1α and
HIF-2α to lower their expression [31]. The enzyme has
been shown [4] to maintain malignant transformation of
the cells through H3K18 deacetylation. SIRT7 is also a
dynamic nuclear regulator of mitochondrial homeostasis
acting on GABPβ1 (GA binding protein β1), a master
regulator of mitochondrial biogenesis and function [52].

Modulators of sirtuin activity

Investigations conducted in mice have shown [50] that
activation or inhibition of sirtuins can alleviate pathological
conditions. Therefore, measures have been taken to iden-
tify compounds that can inhibit or activate specific sirtuins.
Most of these studies concern modulators of SIRT1, the
main nuclear sirtuin. However, since the importance of the
other sirtuins continues to grow, therefore, they may prove
to be equally attractive targets for the modulators [43].

Sirtuin activators

Polyphenols are plant secondary metabolites and repre-
sent a large group of compounds of variable structural
complexity with aromatic rings containing one or more
hydroxyl groups. A growing number of reports suggests
[2] that polyphenols from food (for example, resvera-
trol, quercetin, and catechins) are capable of changing
epigenetic state of the cell. These compounds alter

among others KDAC activity thus leading to the activa-
tion or silencing of specific genes [2].

It has been shown [16] that resveratrol (3,5,4′-
trihydroxystilbene), found inter alia in red wine and
grape skins, increases the affinity of SIRT1 for acetylat-
ed peptide substrates. This sirtuin activator binds to the
enzyme-substrate complex and lower Km for the acety-
lated substrate without affecting the Km for NAD+ or
Vmax [16]. Resveratrol promoted deacetylation of PGC-
1α by SIRT1, leading to a reduction in body weight and
insulin resistance, and an increase in motor function and
survival in mice with high fat diet-induced obesity.

In addition to resveratrol, several other small molecules
(SRT1460, SRT1720, SRT2183) that activate SIRT1 were
described [16]. These compounds were found to be ap-
proximately 1000-fold more potent than resveratrol.
Among them, SRT1720 appeared to be the most promis-
ing SIRT1 activator, the administration of which improved
glucose homeostasis, increased sensitivity to insulin, and
improvedmitochondrial function in type 2 diabetes mouse
models [16]. The neuroprotective properties of SRT2104,
an activator of SIRT1, were reported in mouse models of
Huntington disease [33]. Finally, NAD+-dependent sirtuin
activity has also been shown to increase when cells or
animals are treated with NAD+ precursors such as niacin,
nicotinamide, nicotinamide riboside or nicotinamide
mononucleotide [6].

Sirtuin inhibitors

It has been shown [47] that sirtinol inhibits the activity
of sirtuins and reduces inflammation in capillary endo-
thelial cells of the skin and is therefore a likely target in
the treatment of skin disorders. Cambinol is an example
of a competitive inhibitor that competes with acetylated
polypeptides, suggesting that it binds close to the sub-
strate binding site (as does splitomycin, another β-
naphthol-containing sirtuin inhibitor). The fact that β-
naphthol compounds bind to other site than NAD+

causes that they are less toxic [43]. Suramin, a urea
derivative, shows similar characteristics and competes
for binding with both NAD+ and the acetylated lysine of
the substrate [62]. However, it has a neurotoxic activity
which greatly limits its therapeutic use [7].

Indole derivative EX-527, a selective SIRT1 inhibitor,
easily penetrates into cells. Administration of this com-
pound strongly increased the acetylation of p53 protein at
K382 following the induction of DNA damage in human
mammary epithelial cells and some tumor cell lines [7]. In
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contrast to the β-naphthol derivatives, it binds to the
NAD+ binding site of sirtuins. Other example of inhibitory
indole derivative is oxyindole (selective for SIRT2 in
vitro) that inhibits α-tubulin deacetylation in MCF-7
mammary cells [43]. A SIRT2 inhibitor AK7 exhibits
neuroprotective effects inmodels of Parkinson disease [9].

Thiourea-based compounds called tenovins can also
attenuate the activity of sirtuins. Tenovins are highly
hydrophobic, and this property hampers or even pre-
cludes their use in vivo. However, a promising prospect
involves synthesis of tenovin-6, a more water-soluble
analogue [45], which effectively restricts the develop-
ment of tumor in a mouse model of melanoma [43]. A
new class of SIRT1 inhibitors with the scaffold of
benzofuran-3-yl-methanone has been identified [61].
The inhibitors bind to the C-pocket of SIRT1, forming
hydrophobic interactions with the enzyme. Since C-
pocket is the site where the nicotinamide moiety of
NAD+ binds and the hydrolysis takes place, binding the
inhibitor to the C-pocket would block the transformation
of NAD+ to productive conformation and thus inhibit the
deacetylase activity. An analogue with hydroxyls at ortho
and meta positions, (2,5-dihydroxyphenyl)(5-hydroxy-1-
benzofuran-3-yl)methanone, which is a non-competitive
inhibitor for acetylated peptides and a mixed competitive
inhibitor for NAD+, is a more potent SIRT1 inhibitor than
nicotinamide [61]. A different compound, inauhzin, in-
hibits the activity of SIRT1 and efficiently reactivates p53
to promote a p53-dependent apoptosis of human cancer
cells without causing visible genotoxic stress [63].

Plant sirtuins

Despite many reports on sirtuins in many species in-
cluding fungi and mammals [24], the function of these
enzymes in plants is still poorly understood. In general,

plant histone deacetylases were classified on the basis of
their homology to the yeast HDACs into three families:
(1) RPD3/HDA1, (2) SIR2, and (3) HD2 [48]. In com-
parison with the fungi (five genes) and animals (seven
genes), the number of SIR2 genes in plants is strongly
reduced and, in most cases, two genes were detected
[42]. In Arabidopsis, 18 KDACs, including two
sirtuins—SRT1 and SRT2 (Table 2)—have been re-
vealed [29]. Initial studies indicated inhibitory role for
sirtinol (sirtuin inhibitor) in the development of the
hypocotyl and root vascular tissue in Arabidopsis seed-
lings [25] thereby suggesting that SRT1 and SRT2
might have a role in auxin signaling [25, 29]. Subse-
quent work has shown [14] that SIR genes were a part of
the pathway for sirtinol metabolism to the active auxin,
2-hydroxy-1-naphthoic acid. While in mammalian mi-
tochondria three types of sirtuins were identified with
different physiological functions [38, 50], the
Arabidopsis genome encodes only one mitochondrial
sirtuin, SRT2, with seven splice variants identified
[36]. Western blot analysis showed the presence of two
mature SRT2 proteins—a shorter SRT2Awith a mass of
31 kDa and longer SRT2B (35 kDa), which differ main-
ly in the C-terminal domain sequence. SRT2 protein is
located in the inner mitochondrial membrane and acts
on specific proteins associated with the membrane (in-
cluding ATP synthase and ATP/ADP transporters) [36].

The members of SIR2 deacetylase family have been
also identified in other plant species, for example, in rice
Oryza sativa [65], tomato Solanum lycopersicum [64],
and grapevine Vitis vinifera [1, 13] (Table 2).

The rice genome comprises at least 19 genes
encoding KDACs which, as in the case of Arabidopsis
thaliana, belong to three families [65]. OsSRT1 (also
called SRT701), homologous to mammalian SIRT6, is
expressed in the nucleus, while OsSRT2, a homologue
of mammalian SIRT4, is located in mitochondria. The

Table 2 Members of the sirtuin family in plants

Species Sirtuin Function References

Arabidopsis thaliana AtSRT1
AtSRT2

Plant tissue development
Stress response regulation
Mitochondrial energy metabolism

[25, 29, 36, 60]

Oryza sativa OsSRT1
OsSRT2

Transposon silencing
Metabolism and stress response regulation

[65]

Solanum lycopersicum SlSRT1
SlSRT2

Regulation of gene expression [64]

Vitis vinifera VvSRT1
VvSRT2

Leaf senescence
Stabilization of chromatin structure and regulation of gene expression

[1, 13]
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OsSRT1 is involved in the deacetylation of histone
H3 at lysine 9 that is present mainly at the 5′ ends of
the genes, suggesting that the initiation sites for gene
transcription can be targeted by the enzyme. The
action of OsSRT1 has also been linked to transposon
silencing [65].

Two proteins in the SIR2 family (SlSRT1 and
SlSRT2) were identified in tomato flowers and cot-
yledons [64]. While the SlSRT1 was expressed in the
cell nucleus, the product of the gene SlSRT2, which
is homologous to the mitochondrial AtSRT2, was
identified both in the nucleus and cytoplasm. A
distinct intracellular localization may suggest that
different members of the tomato SRT family may
play different roles [64].

VvSRT1 and VvSRT2 are members of the SIR2
family in the grape vine genome (V. vinifera). The
VvSRT1 transcripts in roots, leaves, flowers, and
fruit and VvSRT2 transcripts in leaves, flowers, and
fruits were revealed [1]. It has been suggested [13]
that VvSRT2 may be indirectly linked to chloro-
plasts activity and the regulation of chloroplast gene
expression. Moreover, VvSRT2 reached its highest
expression levels in the senescent red leaves of the
grapevine, whereas the expression of VvSRT1 was
not altered [13].

Conclusions

Over the last several years, a lot of efforts have been
made to better understand the mechanisms of sirtuin
actions. Disturbances in energy metabolism, genome
stability, response to cellular stresses, and lifespan
shortening in mice lacking specific sirtuins demon-
strate that these enzymes could contribute to the
maintenance of cellular homeostasis in mammals.
A modification of the sirtuin activity by small mol-
ecule activators or suppressors may provide new
opportunities for the treatment of type II diabetes,
obesity, and neurodegenerative diseases associated
with aging or to clarify the role of sirtuins in the
carcinogenesis. To achieve these goals, a progress
should be made in understanding the cellular effects
of sirtuins as well as in identifying additional targets
and modulators for these enzymes. Similarly, the
exact function of plant SIR2 lysine deacetylases is
not fully understood and further research is needed
to explain their role.
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