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THE BIGGER PICTURE Gene knockout (KO) experiments, using genetically altered animals, are a proven
powerful approach to elucidate the role of a gene in a biological process. However, systematic KO exper-
iments targetingmany genes are usually prohibitive due to limited experimental and animal resources. Here,
we present scTenifoldKnk, an efficient virtual KO tool that allows the systematic deletion of many genes
individually. scTenifoldKnk uses single-cell RNA sequencing (scRNA-seq) data from wild-type (WT) sam-
ples to predict gene function in a cell-type-specific manner. We show that predictions made by scTeni-
foldKnk recapitulate findings from real-animal KO experiments. scTenifoldKnk has proven to be a powerful
and effective approach for elucidating gene function, prioritizing KO targets, predicting experimental out-
comes before real-animal KO experiments are conducted.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Gene knockout (KO) experiments are a proven, powerful approach for studying gene function. However, sys-
tematicKOexperiments targetinga largenumberofgenesareusuallyprohibitivedue to the limit ofexperimental
and animal resources. Here, we present scTenifoldKnk, an efficient virtual KO tool that enables systematic KO
investigation of gene function using data from single-cell RNA sequencing (scRNA-seq). In scTenifoldKnk anal-
ysis, a gene regulatory network (GRN) is first constructed from scRNA-seq data of wild-type samples, and a
target gene is then virtually deleted from the constructedGRN.Manifold alignment is used to align the resulting
reduced GRN to the original GRN to identify differentially regulated genes, which are used to infer target gene
functions in analyzed cells.Wedemonstrate that the scTenifoldKnk-based virtual KO analysis recapitulates the
mainfindingsof real-animalKOexperimentsand recovers theexpected functionsofgenes in relevant cell types.
INTRODUCTION

Gene knockout (KO) experiments are a proven approach for

studying gene function. A typical KO experiment involves the
This is an open access article under the CC BY-N
phenotypic characterization of organisms following the deletion

of a target gene. For example, in KOmice, a gene is knocked out,

i.e., made inoperative by deleting one or more alleles using ge-

netic techniques. Phenotypic characterization of KO animals
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provides insight into how the target gene functions within the

biological context that KO animals present. Notably, gene func-

tions can be inferred by contrasting phenotypes between KO

and wild-type (WT) animals and identifying differences. At the

molecular level, gene expression may serve as a quantitative

phenotype. The state of gene expression is regulated in a coor-

dinated manner in all living organisms, exhibiting synchronized

patterns of transcription that can be depicted using a gene reg-

ulatory network (GRN). Co-regulations are often seen among

genes associated with the same biological processes and path-

ways or regulated by the same master transcription factors

(TFs).1 If one gene is knocked out, functionally related genes

canmediate a homeostatic response. Thus, in unraveling regula-

tory mechanisms and synchronized patterns of cellular tran-

scriptional activities, network analysis of gene expression

provides mechanistic insights.

The advent of single-cell technology has greatly improved

cellular phenotyping resolution. For example, high-throughput

droplet-based single-cell RNA sequencing (scRNA-seq) makes

it possible to profile transcriptomes of thousands of individual

cells in a single experiment. The application of single-cell tech-

nology in KO experiments allows investigators to probe gene

function in a cell-type-specific manner. To fully understand

the regulatory mechanisms and gene function, it would be ideal

for applying scRNA-seq in the context of systematic KO exper-

iments that involve the deletion of many genes individually. This

unique coupling of scRNA-seq with large-scale gene KO in an

organism would allow the function of many genes in various

cell types to be studied at a single-cell level of resolution.

However, limited resources tend to prohibit this kind of experi-

ment, especially when multiple genes are targeted and multiple

tissues and cell types are involved. To this end, Perturb-seq,

and other conceptually similar protocols,2,3 have been devel-

oped to achieve the aforementioned goal. Although these

protocols may allow the study of gene functions in many

cells in a massively parallel fashion, they require the creation

of large-scale CRISPR libraries,4 which presents a major

technical challenge. For these reasons, computational methods

serve as a possible solution for prohibitive, systematic KO

experiments.5–7 We propose that new computational methods

may take advantage of the synchronized expression of genes

in given samples to construct GRNs and predict gene functions.

The topology of those GRNs is known to serve as a basis to

accurately predict perturbations caused by gene KO.8

Here we present a machine learning workflow, scTenifoldKnk,

that can be used to perform virtual KO experiments to predict

gene functions. scTenifoldKnk utilizes expression data from

scRNA-seq of the WT samples as input and constructs a

denoised single-cell GRN (scGRN). The WT scGRN is copied

and then converted to a pseudo-KO scGRN by artificially zeroing

out the weight of outward edges of the target gene in the adja-

cency matrix. Next, by comparing the two scGRNs (WT versus

pseudo-KO), scTenifoldKnk reveals changes in transcriptional

regulatory programs and assesses the impact of KO on the WT

scGRN. This information is then used to elucidate the functions

of the KO gene in analyzed cells through enrichment analysis.

ScTenifoldKnk is computationally efficient enough to allow the

method to be applied to systematic KO experiments. In such a

systematic study, we assume that thousands of genes in
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analyzed cells will be knocked out one by one. As mentioned,

due to the experimental and biological limitations, such system-

atic KO experiments would be extremely difficult, if not impos-

sible, to conduct in a real-animal experimental setting. The other

application features of scTenifoldKnk include the following:

scTenifoldKnk requires no data from KO samples, as it only uti-

lizes scRNA-seq data from WT samples, and scTenifoldKnk can

performmulti-gene KO analysis, i.e., knocking outmore than one

gene at a time.

The remainder of this paper is organized as follows. We first

present an overview of the workflow of scTenifoldKnk. We then

use simulated data to demonstrate its basic functions, followed

by using existing data generated from authentic-animal KO ex-

periments to highlight the use of scTenifoldKnk. These existing

datasets contain scRNA-seq expression matrices from both

WT and KO samples. Although KO datasets were available,

they were not used by scTenifoldKnk as input. Instead, the KO

datasets were specifically used as positive controls to show

that scTenifoldKnk can produce expected results. We also

show the use of scTenifoldKnk to reveal the functions of genes

underlying three different Mendelian diseases. Finally, we show

two cases of systematic KO using scTenifoldKnk.

RESULTS

Result 1: The scTenifoldKnk workflow
ScTenifoldKnk takes a single gene-by-cell count matrix from the

WT sample as input. The workflow constructs a WT scGRN from

the input count matrix and then generates a pseudo-KO scGRN

by knocking out a gene from the WT scGRN. Eventually, it em-

ploys a network comparison method to compare the pseudo-

KO and WT scGRNs to identify differentially regulated (DR)

genes. These DR genes are virtual KO perturbed genes—the

two terms will be used interchangeably throughout this paper.

From the enriched function of these virtual KO perturbed genes,

the function of the KOgene (i.e., the gene that is virtually knocked

out) can be inferred. scTenifoldKnk is implemented with a

modular structure containing three core modules illustrated in

Figure 1. The three steps are summarized as follows.

Step 1: Constructing scGRN with scRNA-seq data from

WT samples

With the scRNA-seq data from a WT sample, scTenifoldKnk first

constructs an scGRN using a pipeline we proposed previously,

namely, scTenifoldNet.9 This network construction step contains

three sub-steps (Figure 1A):

Substep 1.1. Subsampling cells randomly. Denote X as the

scRNA-seq expression data matrix, which contains the expres-

sion levels for p genes and n cells. Then, m (< n) cells in X are

randomly sampled to form X0 using anm-out-of-n bootstrap pro-

cedure. This subsampling process repeats t times to create t

subsets of cells X 0
1; .; X 0

t.

Substep 1.2. Constructing a GRN for each subsampled set of

cells. For each X 0
i , principal component (PC) regression is run

p times to construct a GRN. Each time the expression level of

one gene is used as the response variable and the expression

levels for the remaining genes as dependent variables. The con-

structed GRN from X 0
i is stored as a signed, weighted, and direc-

tional graph, represented with a p3p adjacency matrixW i, each

of whose columns stores the regression coefficients for the PC
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Figure 1. Overview of scTenifoldKnk workflow

ScTenifoldKnk is designed to perform virtual KO experiments with data from scRNAseq. The workflow of scTenifoldKnk consists of three main modules, namely,

network construction, virtual KO, and manifold alignment.

(A) Network construction. This module consists of three steps: cell subsampling, principal component regression, and tensor decomposition/denoising.

(B) Virtual KO. This module starts by duplicating theWT adjacencymatrix,Wd, to make ~Wd = Wd . Then, the entire row of ~Wd corresponding to the KO gene is set

to zero. The modified ~Wd is pseudo-KO scGRN.

(C) Manifold alignment. This method is used to learn latent representations of two networks, Wd and ~Wd , and align them based on their underlying manifold

structures. The distance between a gene’s projections with respect to the two scGRNs on the low-dimensional latent representation is used to measure the level

of differential regulation of the specific gene. A ranked gene list, in which genes are sorted according to the value of the distance, can be used as input to perform

GSEA analysis. The significantly DR genes are identified as virtual KO perturbed genes.
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regression of a gene. W i is then normalized via dividing by the

maximal absolute value.

Substep 1.3. Denoising adjacency matrices to obtain the final

GRN. Tensor decomposition is used to denoise the adjacency

matrices fW ig obtained from the PC regression step. First, the

collection of fW ig for tGRNs is processed as a third-order tensor

X, containing p3p3t elements. Next, the CANDECOMP/

PARAFAC (CP) decomposition is applied to decompose X into

components. Then, X is reconstructed using top d components

to obtain denoised tensors Xd. Denoised fW ig in Xd are

collapsed by taking the average of edge weights to obtain the

final averaged matrix, Wd.

Step 2: Generating pseudo-KO scGRN by virtually

knocking out a gene

In the last step, the scRNA-seq expression data matrix from the

WT sample, X, is first used to construct the WT scGRN. In this

step named virtual KO, the adjacency matrix of the WT scGRN,

Wd, is copied, and then the entire row of Wd corresponding to

the target gene is set to 0 (Figure 1B). In this way, the virtual
KO operation is performed on Wd directly. The modified Wd is

denoted as ~Wd, that is, the adjacency matrix of pseudo-

KO scGRN.

Step 3: Comparing scGRNs to identify virtual KO

perturbed genes

In this step, we assume that WT and pseudo-KO scGRNs, Wd

and ~Wd, have been obtained. A quasi-manifold alignment

method is then used to align Wd and ~Wd (Figure 1C; see exper-

imental procedures for details). All genes included in the two

scGRNs are projected in k-dimensional space, where k << p.

After the projection, each gene has two low-dimensional repre-

sentations: one is in respect to Wd and the other ~Wd. For each

gene j, dj is the Euclidean distance between the gene’s two pro-

jections. The greater dj, the more significant the differential

regulation. Genes were sorted according to the value of the dis-

tance to produce a ranked gene list, which was used as input of

the gene set enrichment analysis (GSEA).10 Finally, a c2 test is

applied to detect significant DR genes, i.e., virtual KO perturbed

genes.
Patterns 3, 100434, March 11, 2022 3



Figure 2. Simulations show that scTenifoldKnk specifically detects regulatory modules that include the KO gene

(A) Heatmap of a 1003 100 adjacencymatrix of scGRNconstructed from simulated scRNAseq data of 100 genes and 3,000 cells. The color is scaled according to

the normalized PC regression coefficient values between gene pairs. The network contains five predefined co-regulated modules of different sizes, indicated by

the blocks of gene pairs with a high correlation. The number of genes of each module is 5, 10, 25, 40, and 20, respectively.

(B) Normalized (Box-Cox) and standardized (Z score) distancewasmeasured for each gene aftermanifold alignment and their associated –log10(p value) after DR

testing in the simulated network. Red and black dots indicate whether genes are significant or not after false discovery correction. Assuming genes in the same

module should be detected as significant genes, sensitivity is defined as = TP/(TP + FN), and specificity as = (TN)/(TN + FP), where T, P, F, and N stands for true,

positive, false, and negative, respectively. Balanced accuracy is defined as the average sensitivity and specificity values.

(C) QQ-plots of expected (under the uniform distribution) versus observed p values of genes given by the DR tests.
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A more detailed description of scTenifoldKnk modules is pro-

vided in the experimental procedures section.

Result 2: Virtual KO analysis using simulated scRNA-
seq data
We first used the simulated data to validate the relevance of our

method. For this purpose, we generated a synthetic scRNA-seq

dataset using the simulator SERGIO—a single-cell expression

simulator guided by GRNs.11 To simulate the data, we supplied

SERGIO with five predefined GRNs of different sizes, containing

5, 10, 25, 40, and 20 genes, respectively. The simulated scRNA-

seq dataset was a sparse matrix (70% zeros) of 3,000 cells and

100 genes. We applied the PC regression method to the simu-

lated data and constructed an scGRN. As expected, in the

scGRN, genes were clearly clustered into five distinct modules

(see Figure 2A for the adjacencymatrix), mirroring the predefined

modules given by the generative model of SERGIO. Genes in the

same module were supposed to be functionally related or under

the same regulation. Because SERGIO simulates gene expres-

sion in steady-state cells, we only used it to simulate co-expres-

sion modules rather than the regulatory processes of some up-

stream regulators acting on these modules. We regarded the

constructed network as the WT scGRN. Next, we set the weight

of the 20th gene (gene #20) in the WT scGRN to zero to produce

the pseudo-KO scGRN. Gene #20 belongs to the third module,
4 Patterns 3, 100434, March 11, 2022
which includes a total of 25 genes. We then used scTenifoldKnk

to compare the pseudo-KO scGRN with the WT scGRN to iden-

tify genes significantly differentially regulated due to the KO.

These genes were predicted likely to be perturbed along with

gene #20. Because we knew the KO effect was due to the dele-

tion of gene #20, we expected that the identified genes to be

those closely correlated with gene #20. Indeed, as expected,

scTenifoldKnk showed all significant genes were from the third

module (Figures 2B and 2C, top), in which gene #20 is located.

We repeated the analysis using genes #50 and #100 as two addi-

tional examples. Again, the results were as expected (Figures 2B

and 2C, middle and bottom). Thus, we concluded that when a

member gene is knocked out from a tightly regulated module,

other member genes in the same module should be detected

by scTenifoldKnk. Algorithmically, genes in the same module

with the KO gene were detected because their projected

positions in low-dimensional latent representations of WT and

pseudo-KO networks changed more than other genes not in

the same module (see experimental procedures for details).

Result 3: scTenifoldKnk virtual KO analysis
recapitulates results of real KO experiments
As a virtual KO tool, scTenifoldKnk is expected to recapitulate re-

sults obtained from real KO experiments. To prove this, we

applied scTenifoldKnk to scRNA-seq data from three in vivo



Figure 3. scTenifoldKnk virtual KO analysis recapitulates the findings of real KO experiments

(A) The schematic diagram (left top) shows the original KO experimental procedure and the virtual KO of Nkx2-1. GSEA plots (left bottom) show three enriched

functions associated with virtual KO perturbed genes upon the deletion ofNkx2-1. Gene rank indicates the position of each gene in the ranked gene list produced

by scTenifoldKnk. The egocentric plot (right) shows the connections between the KO gene (Nkx2-1) and significant virtual KO perturbed genes (FDR <0.05).

(legend continued on next page)
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KO experiments. In all three cases, the scRNA-seq datasets of

the original studies contained expression matrices from both

WT and KO samples.

It is noteworthy that comparisons between predictions made

by scTenifoldKnk and the main findings of original papers were

by no means ‘‘fair’’ comparisons. This is because scTenifoldKnk

was blinded to all information except the scRNA-seq data from

the WT samples. In contrast, to characterize functions of target

genes, original in vivo KO studies used scRNA-seq data from

both WT and KO samples, as well as other empirical data from

bulk RNA-seq, flow cytometry, and immunostaining assays.

Nevertheless, we obtained an overall consistency in the KO

gene functions between those predicted using scTenifoldKnk

and those reported in the original papers. Table S1 gives a sum-

mary of comparisons.

Virtual versus real KO experiment 1: Nkx2-1 is required

for the transcriptional control, development, and

maintenance of alveolar type 1 and type 2 cells

NK homeobox 2-1 (Nkx2-1) is highly expressed in lung epithelial

cells of alveolar type I (AT1) and type II (AT2). AT1 cells cover

95% of the gas exchange surface and are 0.1 mm thick to allow

passive oxygen diffusion into the bloodstream. Nkx2-1 is essen-

tial at all developmental stages of AT1 cells. Loss of Nkx2-1 re-

sults in the impairment of three main defining features of AT1

cells, molecular markers, expansive morphology, and cellular

quiescence.12 AT2 cells are cuboidal and secrete surfactants

to reduce surface tension. Mutations in Nkx2-1 interrupt the

expression of Sftpb and Sftpc, two genes related to AT2 cell

function and molecular identity.12,13

To examine the molecular and cellular changes caused by the

Nkx2-1–/– KO, Little et al.12 generated a comprehensive set of

data (GEO: GSM3716703) using the lung samples from WT

and Nkx2-1�/� KOmice. Using bulk RNA-seq and immunostain-

ing assays, they observed that the expression ofmarker genes of

AT1 and AT2 cells was downregulated in the Nkx2-1 mutant

cells. They also found that the expression of marker genes for

gastrointestinal cells was upregulated in Nkx2-1�/� mutant AT1

cells, which form dense microvilli-like structures apically. Using

ChIP-seq, they found that Nkx2-1 binds to a set of genes impli-

cated in regulating the cytoskeleton, membrane composition,

and extracellular matrix. Little et al. also generated scRNA-seq

data for 2,312 and 2,558 epithelial cells from lung samples of

the WT and Nkx2-1�/� KO mice, respectively.12

We obtained the scRNA-seq data, generated by Little et al.12

and used the expression matrix of 8,647 genes 3 2,312 cells

from WT mice as the input for scTenifoldKnk. We constructed

the WT scGRN and then knocked out Nkx2-1. The final report

of scTenifoldKnk analysis contained 171 significant genes [false

discovery rate (FDR) < 0.05; Table S2]. These virtual KO per-

turbed genes included seven out of 32 marker genes of AT1

cells (Egfl6, Ager, Cldn18, Icam1, Crlf1, Gprc5a, and Aqp5)

and 25 out of 38 marker genes of AT2 cells (highlighted in Table

S2). The functional enrichment test, Enrichr,14 indicated that
Nodes are color-coded by each gene’s membership association with enriched f

were subsequently selected—i.e., only those with functions related to phenotypes

in the functional groups is given in the parentheses of the egocentric plot legend

(B) Same as (A) but for Trem2.

(C) Same as (A) but for Hnf4a and Hnf4g.
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these genes were enriched for functional categories: epithelial

to mesenchymal transition led by the WNT signaling pathway

members, surfactant homeostasis, lamellar body, and cell adhe-

sion molecules. These enriched functions were consistent with

and related to the functions of AT2 cells. Next, we applied the

interaction enrichment analysis to the 171 significant genes.

The interaction enrichment analysis was provided and based

on the STRING protein-protein interaction database.15 We

found that these genes appear in a fully connected component

in the STRING interaction network (p value < 0.01, STRING

interaction enrichment test), indicating a closely related func-

tional relationship between those genes. We subsequently per-

formed GSEA analysis,10 to evaluate the extent of perturbation

caused by the Nkx2-1 KO at the transcriptome-wide level.

GSEA analysis identified gene sets containing marker genes

of AT1 and AT2 cells (FDR <0.01 in both cases). Specifically,

AT1 and AT2 marker genes were among the topmost perturbed

genes caused by the deletion of Nkx2-1. GSEA analysis also

showed that the Nkx2-1�/� KO impacted genes with functions

related to intestinal microvilli (Figure 3A), cell cycle, and the

cytoskeleton. These results are consistent with those reported

in the original study.12

Virtual versus real KO experiment 2: Trem2 regulates

microglial cholesterol metabolism

The triggering receptor expressed onmyeloid cells 2 (Trem2) is a

single-pass transmembrane immune receptor selectively ex-

pressed in microglia within the central nervous system. Trem2

is known to be involved in late-onset Alzheimer disease and

plays a role in modulating proliferation, survival, immune

response, calcium mobilization, cytoskeletal dynamics, mTOR

signaling, autophagy, and energy metabolism.16 The function

of Trem2 is known to be mediated via signaling transducer

Hcst and adaptor Tyrobp.17 Trem2 is also known to play a role

in regulating lipid metabolism, with most studies focusing on

lipids in the form of either lipoprotein particles or cell surface-

exposed signals, such as candidate Trem2 ligands.18 By

comparing WT and Trem2�/� KO mice, Poliani et al.19 showed

that Trem2 regulates many genes, such as Apoe and Lpl, which

control lipid transport and catabolism in microglia. Trem2 was

also found to modulate gene expression of macrophages in ad-

ipose and control blood cholesterol metabolism in obesemice,20

further linking the function of Trem2 to lipid metabolism. To

examine whether Trem2 mediates myelin lipid processing in mi-

croglia, Nugent et al.21 isolated and characterized Cd11b+/

Cd45low microglial cells from Trem2+/+, Trem2+/�, and Trem2�/�

mice, fedwith a 0.2%demyelinating cuprizone diet for 12weeks.

They analyzed a comprehensive set of analytical data using

FACS, bulk RNA-seq, scRNA-seq, and lipidomics. They re-

ported that Trem2 upregulates Apoe and other genes involved

in cholesterol transport andmetabolism, causing robust intracel-

lular accumulation of a storage form of cholesterol upon chronic

phagocytic challenge. Trem2 was also shown to regulate the

expression of genes associated with cell damage response,
unctional groups, as reported in the Enrichr analysis. The displayed gene sets

reported in the corresponding original study are shown. The number of genes

.
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lysosome and phagosome function, Alzheimer disease, and

oxidative phosphorylation.21

To perform the virtual KO analysis, we obtained scRNA-seq

data from WT (Trem2+/+) mice.21 The expression matrix con-

tained data of 7,715 genes and 765 Cd11b+/Cd45low microglial

cells. We used this WT expression matrix as the input and

used scTenifoldKnk to knock out Trem2. The final results of

scTenifoldKnk analysis contained 128 virtual KO perturbed

genes (FDR <0.05, Table S3). The Enrichr analysis showed that

the identified gene list was enriched with genes associated

with Alzheimer disease, oxidative phosphorylation, lysosome,

TYROBP causal network, metabolic pathway of LDL, HDL, and

TG, and microglia pathogen phagocytosis pathway. Such an

enrichment indicates that the proteins attend to be functionally

connected. These virtual KO perturbed genes were highly inter-

active with each other, as shown by their positions on the

STRING interaction network. The network of virtual KO per-

turbed genes had significantly more interactions than expected

(p value < 0.01, STRING interaction enrichment test), which indi-

cates that gene products exhibited more interactions among

themselves than what would be expected for a random set of

proteins of similar size, drawn from the genome. This result sug-

gests that the identified virtual KO perturbed genes are closely

related to shared functions. Collectively, these scTenifoldKnk

findings provide insight into understanding Trem2 functions by

revealing the list of genes perturbed following Trem2 deletion

(Figure 3B). These inferred functions are consistent with those

reported in the original study.21

Virtual versus real KO experiment 3: Hnf4a and Hnf4g

stabilize enterocyte identity

Hepatocyte nuclear factor 4 alpha and gamma, Hnf4a and

Hnf4g, are TFs that regulate gene expression in the gut epithe-

lium. Hnf4a and Hnf4g function redundantly, and thus, an inde-

pendent deletion of one paralog causes no gross abnormal-

ities.22,23 Hnf4a and Hnf4g double-KO Hnf4agDKO mice exhibit

fluid-filled intestines indicative of an intestinal malfunction.22

Epithelial cells in the Hnf4agDKO mutants fail to differentiate. Us-

ing bulk RNA-seq data, Chen et al.22 compared gene expression

in duodenal epithelial cells isolated from WT mice and Hnf4aKO,

Hnf4gKO, andHnf4agDKOmutants. They identified 2,892 differen-

tially expressed (DE) genes in theHnf4agDKOmutant but only 560

and 77 in the Hnf4aKO and Hnf4gKO mutants, respectively

[FDR <0.05, absolute log2(fold change) > 1]. The DE genes iden-

tified in theHnf4agDKO enterocytes were enriched for functions in

digestivemetabolisms such as lipidmetabolism,microvillus, and

absorption, as well as enterocyte morphology, cytoplasm, Golgi

apparatus, and immune signaling. Hnf4agDKO epithelium ex-

hibited a robust shift in the transcriptome away from differenti-

ated cells toward proliferating and Goblet cells, suggesting

that Hnf4agDKO impairs enterocyte differentiation and destabi-

lizes enterocyte identity. To validate their findings, Chen et al.22

used scRNA-seq to measure gene expression in intestinal villus

epithelial cells. They obtained scRNA-seq data for 4,100 and

4,200 cells from Hnf4agWT and Hnf4agDKO respectively and

confirmed that compared with the WT, mutant epithelial cells

show increased Goblet cell-enriched genes, such as Agr2,

Spink4, Gcnt3, and S100a6, and decreased expressions of en-

terocyte-enriched genes, such as Npc1l1, Apoc3, Slc6a19,

and Lct (Figure 3C left panel). The Hnf4agDKO mutant cells also
showed increased expression for genes in the BMP/SMAD

signaling pathway and decreased expression of genes involved

in lipid metabolism, microvillus and absorption, and genes

related to the cytoplasm.22

We obtained the scRNA-seq expression matrix of 4,100 cells

from the Hnf4agWT samples used as input for scTenifoldKnk.

We constructed the WT scGRN of 2,591 genes and then virtually

knocked out both Hnf4a and Hnf4g genes at the same time. The

final result of scTenifoldKnk analysis contained 65 virtual KO per-

turbed genes (FDR <0.05; Table S4). These genes were enriched

with electron transport chain, fat digestion and absorption,

cholesterol metabolism, chylomicron assembly, and cytoplasmic

vesicle lumen. A search of the STRING database indicated that

all virtual KO perturbed genes form a fully connected network

module. The interaction enrichment test showed that such a

complete interconnection of 65 genes is less likely to be ex-

pected by chance (p value < 0.01). Furthermore, GSEA analysis

revealed that these virtual KO perturbed genes were enriched

with canonical marker genes of enterocytes (12 out of 132; Fig-

ure 3C), which is consistent with the finding of the original

study.22

Interestingly, the number of significantly perturbed genes

following the double-KO of Hnf4a and Hnf4g (65) was less than

the single-KO of Nkx2-1 (171) or Trem2 (128). To examine the

cause of this difference, we analyzed the relationship between

the number of significantly perturbed genes and the degree

(i.e., the number of connections) of the KO gene in the network

(Figure S1). We found a positive correlation between the two

metrics (Pearson’s r = 0.75, P = 0.03).Hnf4a andHnf4g exhibited

a lower degree (i.e., fewer connections) than Nkx2-1 and Trem2,

which may explain why KO of Hnf4a and Hnf4g produced fewer

perturbed genes.

Result 4: scTenifoldKnk virtual KO analysis detects
functions of genes causative of Mendelian disorders
Mendelian diseases are a family of diseases caused by the loss

or malfunctioning of a single gene. For many Mendelian

diseases, we know a great deal about their genetic basis and

pathophysiological phenotypes.24 We decided to use three

Mendelian diseases, namely cystic fibrosis, Duchenne muscular

dystrophy, and Rett syndrome, as ‘‘positive controls.’’ We tested

the performance of scTenifoldKnk by determining whether it

accurately predicted gene functions and hence inferred the mo-

lecular phenotypic consequences when the causative gene of

each of these Mendelian diseases was virtually knocked out.

As described in more detail below, in each case, we performed

scTenifoldKnk analysis using existing scRNA-seq data gener-

ated from cell types that are most relevant to the disease condi-

tions (Table S1).

Cystic fibrosis

Cystic fibrosis (CF) is one of the most common autosomal reces-

sive diseases.25 It is caused bymutations inCFTR, a gene encod-

ing for a transmembrane conductance regulator,26,27 which

functions as a channel across themembrane of cells that produce

mucus, sweat, saliva, tears, and digestive enzymes. The CFTR

protein also regulates the function of other channels.CFTR is ex-

pressed in epithelial cells ofmanyorgans, including the lung, liver,

pancreas, and digestive tract.28 The most common CFTR muta-

tion that causes CF is the deletion of phenylalanine 508 (DF508),
Patterns 3, 100434, March 11, 2022 7



Figure 4. scTenifoldKnk virtual KO reveals functions of Mendelian disease genes in relevant cell types

(A) Virtual KO of Cftr in pulmonary alveolar type II cells identifies gene expression program changes associated with CF. GSEA analysis identifies significant gene

sets, including regulation of ion transmembrane transporter, abnormal alveolus morphology, and abnormal surfactant secretion. Gene rank indicates the position

of each gene in the ranked gene list produced by scTenifoldKnk. QQ-plot of genes and interconnection of virtual KO perturbed genes in STRING are given. The

egocentric plot (right) shows the connections between the KO gene (Nkx2-1) and significant virtual KO perturbed genes (FDR <0.05). Nodes are color-coded

by each gene’s membership association with enriched functional groups, as reported in the Enrichr analysis. The displaying gene sets were subsequently

selected—i.e., only those with functions related to the Mendelian disease phenotype are shown.

(legend continued on next page)
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which disrupts the function of the chloride channels, preventing

patients from regulating the flowof chloride ions andwater across

cell membranes.26 The truncated CFTR protein leads to a reduc-

tion of surfactants. It causes the build-up of sticky, thick mucus

that clogs the airways, increasing the risk of bacterial infections

and permanent lung damage.29

To test scTenifoldKnk,weobtained scRNA-seqdata from7,326

pulmonary AT2 cells in the GEO database (GEO: GSM3560282).

The original datasets were generated by Frank et al.30 to study

the lineage-specific development of alveolar epithelial cells in

mice. The original studywas not directly focused onCF.Neverthe-

less, with the downloaded data, we constructed aWT scGRN that

contained 7,107 genes.We then used scTenifoldKnk to knock out

Cftr. The final results of scTenifoldKnk contained17virtual KOper-

turbed genes: Cftr, Birc5, Cldn10, Cxcl15, Dcxr, Hmgb2, Lamp3,

Mgst1, Npc2, Pclaf, Pglyrp1, Sftpa1, Sftpb, Sftpc, Smc2, Tspan1,

andTubb5 (FDR<0.05; Figure4A;TableS5).Among them,Sftpa1,

Sftpb, and Sftpc have functions associated with ABC transporter

disorders and surfactant metabolism. Sftpb and Sftpd encode for

surfactantproteins implicated inCFand innate immunity.31,32Ctsh

encodes for cathepsinH,a cysteinepeptidase,which is involved in

the processing and secretion of the pulmonary surfactant protein

B.33 GSEA analysis of the ranked gene list was conducted using

gene sets of theMGImammalian phenotypes database as a refer-

ence. The result showed that thegene list scTenifoldKnkproduced

was significant in terms of ion transmembrane transporter activity,

abnormal surfactant secretion, and alveolus morphology (FDR <

0.01 in all cases; Figure 4A). These results are consistent with the

known pathophysiological changes resulting from the loss of Cftr

function in the lungs.

To test the specificity of scTenifoldKnk, we decided to use

genes that show highly similar expression profiles to that of

Cftr to repeat the analysis. The selection of these genes was

made by computing for each gene both the mean and variance

of their expression levels across cells. Five closest genes to

Cftr—Akap7, Zranb1, Krcc1, Mta1, and Rps8—were selected.

These selected genes may not necessarily have any functions

related to that of Cftr in AT2 cells. When scTenifoldKnk was

applied to predict perturbation profiles caused by their deletion,

we found none of the sets of predicted functions similar to those

specific functions (i.e., ion transmembrane transporter function,

abnormal surfactant secretion, and alveolusmorphology) associ-

ated with Cftr. Principal component analysis (PCA) confirmed

that perturbation profiles of Mta1, Akap7, and Zranb1 differ

most from that of Cftr, while the perturbation profiles of Krcc1

and Rps8 are relatively similar to that of Cftr (Figure S2). Both

Krcc1 and Rps8 have been reported to play a role in regulating

cellular plasticity and fibrotic process.34,35

Duchenne muscular dystrophy

Duchenne muscular dystrophy (DMD) arises as a result of muta-

tions in the open reading frame of DMD.36,37 The DMD gene en-

codes dystrophin, a large cytoskeletal structural protein, mostly
(B) Virtual KO of Dmd in muscular cells identifies gene expression program ch

including abnormal skeletal muscle morphology and abnormal collagen fibril mor

produced by scTenifoldKnk. QQ-plot of genes and interconnection of virtual KO

connections between the KO gene (Dmd) and significant virtual KO perturbed g

ciation with enriched functional groups, as reported in the Enrichr analysis. The

Mendelian disease phenotype are shown.
absent in DMD patients.38 The absence of dystrophin results in a

disturbance of the linkage between the cytoskeleton and the gly-

coproteins of the extracellular matrix, generating an impairment

of muscle contraction, eventually leading to muscle cell necrosis

(Figure 4B, left).38,39

We obtained the scRNAseq data of 5,159 muscle cells from

the mouse limb (quadriceps) in the GEO database (GEO:

GSM4116571). The original data was generated to study gene

expression patterns in skeletal muscle cells.40 The original study

was not focused on DMD. We used scRNAseq data from normal

tissue to construct the WT scGRN of 9,783 genes. We subse-

quently performed the scTenifoldKnk virtual KO analysis to pre-

dict the molecular phenotype due to the impact of the Dmd-

KO. The final results of scTenifoldKnk included 190 virtual KO

perturbed genes (FDR < 0.05; Table S6). These genes were en-

riched with functions related to beta-1 integrin cell surface inter-

action, contractile actin filament bundle, actomyosin, extracellular

matrix receptor interaction, and extracellular matrix organization

(Figure 4B, middle). GSEA analysis against the MGI mammalian

phenotype database generated the following top hits (FDR <

0.01): abnormal collagen fibril morphology, abnormal skeletal

muscle morphology, and abnormal skeletal muscle fiber

morphology (Figure 4B, right). These phenotype terms are

consistent with known effects of the loss of DMD function inmus-

cle cells, verifying that scTenifoldKnk can predict phenotypic ef-

fects caused by gene KO pertinent to the biological context.

Rett syndrome

The third Mendelian disease we considered was the Rett syn-

drome (RTT;MIM: 312750), which is a severe neurodevelopmen-

tal disease.41,42 RTT is known to be caused by mutations in

Mecp2, a transcriptional repressor required to maintain normal

neuronal functions.43,44Mecp2 deficiency in the brain decreases

the expression level of genes involved in the Bdnf signaling

pathway, mediated by repressing Rest.45

We obtained scRNA-seq data generated from mouse neurons

(SRA: SRX3809326 and SRX3809327) for the mouse brain atlas

project.46 The two datasets contain 2,054 and 2,156 neurons,

respectively, derived from two CD1 P19 female mice that served

as biological replicates. We analyzed the two datasets indepen-

dently to seewhether scTenifoldKnk could, as expected, produce

similar results with data gathered from biological replicates. Two

scGRNscontaining8,652and8,555geneswereconstructedfirst.

The scTenifoldKnk analysis of virtual KO ofMecp2 produced 377

and322 virtual KOperturbed genes, respectively (FDR<0.05; Ta-

bles S7 and S8), including 211 shared genes. The number of

shared genes was significantly greater than random expectation

(p value < 10�5, hypergeometric test), indicating a high overlap

rate between results of scTenifoldKnk analyses when applied to

the two datasets from biological replicates. We also compared

two ranked gene lists generated from the analysis of two replicate

datasets. If scTenifoldKnk results are robust, we expected that

the relative positions of the same genes in the two ranked lists
anges associated with DMD. GSEA analysis identifies significant gene sets,

phology. Gene rank indicates the position of each gene in the ranked gene list

perturbed genes in STRING are given. The egocentric plot (right) shows the

enes (FDR <0.05). Nodes are color-coded by each gene’s membership asso-

displaying gene sets are selected—only those with functions related to the
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A B Figure 5. Correlation between genes’ DR dis-

tance and the edge weight of links between

genes and the KO in scGRN

(A) Results from the microglial Trem2-KO analysis.

Each dot represents a gene. The number of genes

per unit area is shown with colors according to the

density. The X axis shows the Z score-normalized

DR distance. For a given gene, the greater the dis-

tance is, the more significant the gene is perturbed

upon virtual KO. Significantly perturbed genes (FDR

<0.05) are shown in red asterisks.

(B) Same as (A) but for Dmd in skeletal muscle cells.
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should be more similar to each other than with a list of randomly

rankedgenes. Indeed,we found the correlationbetween rankings

of two reported lists was positive (Spearman’s correlation coeffi-

cient r = 0.68) and highly significant (p value < 10�12).

Many of these 211 genes were found to be targets of Rest. The

enriched functions include axon, synaptic vesicle cycle, GABA

synthesis, release, reuptake and degradation, syntaxin binding,

and transmission across chemical synapses. GSEA analyses us-

ing ranked gene list as input showed BDNF signaling pathway

was highly significant (FDR <0.01, for both replicates; Figure S3).

These results are consistent with previous experimental results.

For example, it is known that the most prominent alterations in

gene products due to Mecp2 KO are related to synapses and

synaptic vesicle proteins.47 At the phenotypic level, the Mecp2

KO causes early defects in GABAergic synapses and mediates

autism-like stereotypies and RTT phenotypes.48,49 Mutations in

syntaxin-1 are known to elicit phenotypes similar to those found

in RTT.50

Result 5: Additional evaluations of scTenifoldKnk-based
virtual KO analysis
scTenifoldKnk attempts to infer the impact of knocking out a

gene, given an input gene-by-cell expression matrix. This is

done by first building a GRN and then ‘‘deleting’’ the gene from

the GRN and aligning the resulting reduced GRN to the original

GRN using manifold alignment. Manifold alignment is an essen-

tial step that cannot be replaced by simply picking up genes

strongly linked with the KO gene. To confirm this, we revisited

the outputs of Trem2-KO and Dmd-KO analyses to check

whether DR genes are strongly linked with Trem2 and Dmd,

respectively. For Trem2, for example, we examined the correla-

tion between each gene’s DR distance (estimated via manifold

alignment after virtual KO of Trem2) and the edge weight of the

link between the gene and Trem2. We found that the correlation

was positive and significant (Spearman’s r = 0.69, p value <

0.001), which was not unexpected as genes strongly linked

with Trem2 are supposed to be strongly impacted. However,

the relationship is not linear—absolute values of the edge

weights of most significant DR genes (i.e., genes with the largest

DR distances) are variable, ranging from 0.075 to 0.40

(Figure 5A). The same trend was found with the Dmd-KO results

(Spearman’s r = 0.53, p value < 0.001; Figure 5B), with absolute
10 Patterns 3, 100434, March 11, 2022
values of the edge weights of most signifi-

cant DR genes ranging from 0.025 to 0.37.

These results indicate that significant DR
genes identified using scTenifoldKnk are not necessarily always

those strongly linked with the KO gene. Thus, scTenifoldKnk is

not simply analyzing the adjacency matrix of the original GRN

for the given KO gene to seewhich genes it is strongly connected

to. Instead, many genes weakly linked with the KO were also

identified as significant DR genes. We attributed this effect to

the adoption of manifold alignment in scTenifoldKnk.

Next, we note that scTenifoldKnk is designed to predict DR

genes rather than DE genes. DR genes might be differentially ex-

pressed upon the gene KO. To examine the expression-level

changes of virtual KO perturbed genes, we performed a system-

atic comparison between the scTenifoldKnk results and the re-

sults of DE analysis across the three analyzed datasets:

Trem2, Nkx2-1, and Hnf4ag. For each dataset, we started by

computing the DE statistics for all genes. Specifically, we ob-

tained the fold change (FC) of each gene’s expression in WT

samples related to KO samples (WT/KO) using the DE analysis

package MAST.51 Then, we compared FC between significant

DR genes and non-significant DR genes. We found that signifi-

cant DR genes, or perturbed genes predicted by scTenifoldKnk,

tend to have a larger FC value (p value < 0.05 for all three cases

[Trem2, Nkx2-1, and Hnf4ag], one-sided t-tests with log2-trans-

formed FC values) than non-significant DR genes or non-per-

turbed genes (Figure S4). Thus, the expression of DR genes

predicted by scTenifoldKnk is more likely to be downregulated

in samples of the real KO experiments.

Finally, we performed the analysis to evaluate the robustness

of virtual KO analysis against cell sampling, using the microglial

Trem2 KO as an example. We randomly selected 500 cells each

time and repeated the process ten times. For each subsampled

data, we applied scTenifoldKnk to knock out Trem2 and obtain a

perturbation profile, i.e., a ranked list of genes sorted according

to the DR distance. We found that the perturbation profiles of 10

subsamples are significantly positively correlated (average

Spearman’s r = 0.55; Figure S5). GSEA analyses with these

perturbation profiles produced similar enriched gene sets.

Result 6: Systematic KO of all genes individually in a
given sample to obtain the KO perturbation profile
landscape
As mentioned, scTenifoldKnk is designed and implemented to

be computationally efficient. Indeed, we benchmarked the
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Figure 6. scTenifoldKnk enables a systematic KO experiment in microglia and the establishment of a KO perturbation profile landscape

(A) An illustration of systematic virtual KO analysis using scTenifoldKnk. Two KO genes are shown as an example. Due to the difference in their profiles, two genes

are embedded in two different locations, indicated by the red arrows, in the dimensionality reduction visualization.

(B) t-SNE embedding of 6,853 genes expressed in microglia based on these genes’ perturbation profiles. Genes in three clusters in the embedding are high-

lighted. In the zoom-in view of each cluster, the connections between genes are retrieved from the STRING database.

(C) STRING sub-network of 12 genes (Apoc1, Apoe, Clec12a, Clec4n, Cp, Fth1, Lilrb4, Mrc1, Ms4a6c, Ms4a7, Pilra, and Pla2g7) in Cluster 1 highlighted in (B).

References of three studies,52–54 in which the associations between genes were established, are given.

(D) Same as (B) except the t-SNE embedding is based on genes’ expression profiles. The locations of genes in Cluster 1 are highlighted in red. (E) same as (B)

except the t-SNE embedding is based on genes’ edge weight profile in the scGRN.
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performance of scTenifoldKnk. After the WT scGRN is gener-

ated, scTenifoldKnk can complete virtual KO analysis at a rate

of 1 min per gene, as benchmarked on a computer with Intel

Core i7-10700 CPU and 16.0 GB RAM. That is to say, for a given

dataset of 6,000 genes, scTenifoldKnk can knock out all of these

genes individually in 4–5 days. The process can also be split and

run in parallel to increase the speed of computing. The outcome

of such a systematic KO experiment is a collection of perturba-

tion profiles of all genes. For each gene (e.g., gene d), the pertur-

bation profile of the gene (i.e., gene d) is a vector of distances of

all other genes ðfd�gÞ produced by scTenifoldKnk. The distance

value quantifies the level of a gene (i.e., a gene in fd�g) being per-

turbed by the deletion of the KO gene (i.e., gene d). Figure 6A

illustrates an analytic flowchart when scTenifoldKnk is used in

a systematic KO experiment. For a given WT scGRN with n

genes, scTenifoldKnk can be used to delete individual genes

from 1 to n. For the i-th gene deletion, GKO
i , scTenifoldKnk

produces a KO perturbation profile for the i-th gene. The KO

perturbation profile is a vector of distances: ½di;1;di;2; :::di;n�T ,
where i = 1, 2, ., n. Combining all genes’ KO perturbation pro-

files into an n3 nmatrix, called KO perturbation profile matrix, is

followed by t-SNE embedding and clustering of genes.

To demonstrate the use of the systematic KO functionality, we

downloaded scRNA-seq data from the brain immune atlas and

obtained the expression matrix of 6,853 genes and 5,271 micro-

glial cells (see experimental procedures). These microglial cells

were derived from WT homeostatic mice.55 After knocking out

all genes, we obtained the KO perturbation landscape of all

6,853 genes, as shown in the t-SNE embedding (Figure 6B).

Each point represents a perturbation profile caused by the KO

of a gene. Genes with similar perturbation profiles will be closely

located in the low-dimensional embedding. Therefore, exam-

ining genes situated closely will allow us to discover potential

functional associations between them.56We selected three clus-

ters of different sizes to explore the member of genes in each

cluster and the functional relationships between these genes

(Figure 6B). We found that all three clusters contain genes that

show a significantly higher level of functional associations than
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expected by chance (p value < 0.01, STRING interaction enrich-

ment tests). Cluster 1 contains 16 genes (Figure 6C). According

to the STRING database, 12 of these genes (Apoc1, Apoe,

Clec12a, Clec4n, Cp, Fth1, Lilrb4, Mrc1, Ms4a6c, Ms4a7, Pilra,

and Pla2g7) are functionally associated with each other, as

supported by evidence from published literature.52–54 All these

supporting references are related to the microglia study. The re-

maining four genes (Htra3, Tgfbi, Pf4, and Ifitm2) are not con-

nected to this 12-gene sub-network.

Nevertheless, a new study showed that Htra3 is overex-

pressed in repopulating microglia.57 Therefore, these ‘‘isolated’’

genes may be worthy of further scrutiny for their functions in mi-

croglia with the potential links to the other genes in the 12-gene

sub-network. Cluster 2 contained 123 genes associated with the

‘‘Immune System Pathway’’ (FDR = 0.019, Reactome database),

and Cluster 3 had 149 genes related to ‘‘Metabolism of RNA

pathway’’ (FDR = 2e-4, Reactome database). Instead of using

genes’ KO perturbation profiles to produce the landscape of

the gene-gene relationship (as shown in Figure 6B), genes’

expression information can also be used to make such a land-

scape. Indeed, we applied t-SNE to the UMI count matrix and

obtained the embedding plot of genes (Figure 6D). The differ-

ence between the embedding plot derived from the gene KO

perturbation profile and the one derived from gene expression

is noticeable (cf. Figures 6B versus 6D). The latter had no struc-

ture among genes. Genes clustered together in the three

example clusters in Figure 6B were found to be scattered in

the embedding derived from gene expression (Figure 6D). Per-

forming clustering on such an unstructured data cloud did not

produce any meaningful results. Subsequently, we calculated

the average distance between genes that belonged to the

same KEGG gene sets. We found that, across all KEGG gene

sets, the average distance in the embedding derived from KO

perturbation profiles was significantly smaller than that in the

embedding derived from the expression profile (Figure S6). Simi-

larly, an embedding plot of genes can be produced using genes’

network properties. We conducted additional analysis and

generated the embedding derived from the genes’ profile of

the weight of edges in the WT scGRN (Figure 6E). The same

pattern was uncovered—that is, the average distance is smaller

in the embedding derived from the KOperturbation profile than in

that derived from the scGRN edge weight (Figure S6). These re-

sults suggest that gene sets identified using the gene KO pertur-

bation profile were more likely to be functionally connected than

gene sets identified using other types of gene profiles.

Result 7: Characterization of a multifunctional gene
using scTenifoldKnk following systematic KO of the
gene in multiple cell types
ScTenifoldKnk can be used to knock out a gene in different cell

types systematically. In this way, it is possible to identify cell-

type-specific functions of the gene and functions shared across

multiple cell types. Here we use MYDGF (myeloid-derived

growth factor) as an example KO gene to illustrate such an appli-

cation. MYDGF, also known as C19orf10, is a 142-residue pro-

tein broadly expressed in multiple tissues and cell types.58,59

Mydgf has been shown in a mouse model to enhance cardiac

myocyte survival, tissue repair, and angiogenesis caused by

myocardial infarction.60 To elucidate MYDGF’s function, we
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downloaded multiple human scRNA-seq datasets from the Pan-

glaoDB database.61,62 From the downloaded datasets, we ex-

tracted cells from 45 different cell types. Subsequently, a virtual

KO ofMYDGF for each of these cell types and recovered 45 cell-

type-specific perturbation profiles was performed. We first

examined the perturbation profile of endothelial cells, in which

the function of MYDFG has been studied.63 GSEA analysis

with the ranked list of genes showed that the enriched functions

of MYDGF include cell cycle, VEGFA-VEGFR2 pathway, and

intra-Golgi traffic and activation (Figure 7A). These results are

consistent with previous findings,63 suggesting that scTeni-

foldKnk can recapitulate results from a cell-type-specific gene

function study. We also concatenated perturbation profiles of

45 different cell types. Therewere 1,294 genes expressed across

all tested cell types. From those genes, 364 were predicted as

perturbed in all the cases. As expected, several cell types ex-

hibited perturbation profiles similar to that of endothelial cells

(Figure 7B). When using the Spearman’s r to measure the simi-

larity between the perturbation profiles observed in endothelial

cells and that observed in other cell types, these are the most

similar cell types: T-cell (r = 0.59), hepatocyte (r = 0.45), podo-

cyte (r = 0.33), and cardiomyocyte (r = 0.32). Indeed, previous

studies show that Mydgf can regulate cell proliferation through

the activation of AKT signaling pathways in those cells.63–66 In

contrast, two cell types, proximal tubule cell (r = 0) and Leydig

cell (r =�0.08), differed themost from endothelial cells, suggest-

ing that Mydgf might play a very different role in these two cell

types. In addition, a t-SNE plot was produced to show the differ-

ence between cell types (Figure S7). GSEA analysis identified

enriched functions, including AKT signaling, endothelial NOS

activation, apoptosis, muscle contraction, and ALK2 pathway

(Figure 7C).67 These findings are consistent with the fact that

overexpression of Mydgf increases AKT phosphorylation and

cell proliferation via AKT/MAPK signaling pathways.66 Identified

functions were also related to promoting survival and growth, as

previously reported.60,68–70 In summary, we used Mydgf as an

example gene to demonstrate that scTenifoldKnk can be used

to knock out a gene across multiple cell types to identify shared

as well as cell-type-specific functions of the KO gene.

DISCUSSION

Gene expression is almost always under coordinated regulation

in cells of living organisms. Inferring GRNs is the key to a better

understanding of such coordinated regulation. However, infer-

ring GRNs is a challenging process—there are always many un-

known variables in the system, and the power of inference is

limited by the sample size. The development of single-cell tech-

nology has brought new ‘‘oil’’ to network science. We have pre-

viously shown that scRNA-seq information can be leveraged to

fuel the machine learning algorithms for reliable scGRN con-

struction.9 In a GRN, the regulatory effect manifests as observ-

able synchronized patterns of expression between genes. These

genes are associated with the same biological process,

pathway, or under the control of the same set of TFs.71 When a

gene involved in a process is perturbed (e.g., knocked out), the

expected first responders for such perturbation are those func-

tionally closely related to the KO gene. Thus, modeling influence

patterns in a GRN, such as using topological models to



Figure 7. scTenifoldKnk virtual KO predicts shared and type-specific functions of MYDGF across cell types

(A) Results of GSEA analysis with ranked gene lists generated by virtual KO of MYDGF in endothelial cells. Significant gene sets include cell cycle, apoptosis,

VEGFA-VEGFR2 pathway, and MAPK6/4 signaling pathway.

(B) Correlation matrix showing similarity between MYDGF perturbation profiles of 45 cell types.

(C) Heatmap showing GSEA enrichment scores for gene sets. Each row is a gene set in BioPlanet database. Rows are sorted in reverse order of average GSEA

enrichment score across cell types. Names of several gene sets with functions known to be associated with MYGDF are shown.
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approximate perturbation patterns,8 can be used to predict gene

function and prioritize target genes, which is helpful before

expensive experimental measurements are undertaken. Thus,

in principle, GRN-based perturbation analysis may contribute

to the planning and designing of real-animal experimental

work. Indeed, there is evidence showing that gene expression

data need not necessarily be collected from perturbation exper-

iments for GRN-based analysis to be successful.72,73

Our contribution is to provide a computationally efficient

scGRN-based perturbation analytical system. By performing

scTenifoldKnk virtual KO analyses with a series of existing

scRNA-seq data, we showed that scTenifoldKnk could predict

gene function by identifying KO responsive genes. Overall, the

inferred molecular functions of target genes are consistent with

those enriched in genes reported in those original KO experi-

ments. We also tested scTenifoldKnk using data from different

cell types known to be affected in Mendelian diseases. While

these diseases represent conditions caused by distinct genes

and involve other dysregulated molecular processes, scTeni-

foldKnk demonstrated its value in all cases. Finally, we showed

two case studies of systematic KO experiments.

Despite some apparent limitations associated with the virtual

KO method, we start by discussing its advantages. First, the vir-
tual KOmethod, as we implemented in scTenifoldKnk, is species

agnostic—it works with scRNA-seq data from humans and ani-

mal models. This feature gives the method a huge advantage

for KO experiments focusing on human samples. In the lack of

human KO samples, the KO animals are used as surrogates.

The evolutionary divergence between humans and animal

models is assumed to play a minor role in shaping orthologue

gene function—but we know this is not always the case. While

applying scTenifoldKnk to human scRNA-seq data, researchers

can avoid many pitfalls caused by extending the conclusions

from animal KO experiments to humans. Second, scTenifoldKnk

allows any gene to be knocked out for functional analysis as long

as the gene expression is detectable in theWT sample. Onemay

want to knock out all genes or a set of genes one by one to obtain

a perturbation profile for each of the KO genes. Genes have

similar perturbation profiles that are most likely to share molec-

ular functions or are involved in the same signaling pathways.

Genes with known functions can be used as positive controls

to gauge the performance of scTenifoldKnk in the tested system.

Third, scTenifoldKnk can be used to study the effects of gene KO

across multiple cell types. Given that typical scRNA-seq exper-

iments generate expression data for various cell types, scTeni-

foldKnk can be used to predict the function of any KO gene in
Patterns 3, 100434, March 11, 2022 13
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different cell types, allowing detection of diverse phenotypes

associated with the KO gene. Finally, scTenifoldKnk can be

used to study the function of essential genes, for which the

gene KO causes lethal outcomes, making it impossible to estab-

lish the KO animals. When scTenifoldKnk is applied to these

essential genes, especially with embryonic expression data of

the genes from the WT samples, developmental functions of

these genes can be studied.

scTenifoldKnk can be used in extended research areas

beyond KO experiments. For example, biologists often need to

know whether a genetic manipulation or perturbation will have

an effect or not. scTenifoldKnk can be applied to make the pre-

diction, suggest novel targets, and prioritize known targets

before in vivo or in vitro studies. One may use drugs to block

the transcription of predicted target genes in a candidate

pathway. If the drug has an effect, one will conclude that the

drug works on that pathway involved; otherwise, the pathway

is not affected. The scTenifoldKnk-based analysis may apply

to the follow-up research of genome-wide association studies

(GWASs). GWASs have successfully detected associations be-

tween variants and phenotypes; however, a phenotypic trait is

usually associated with many variants, presumably influencing

gene expression regulation. scTenifoldKnk may be used to

help geneticists to assess functional consequences to prioritize

actionable gene targets.With example datasets, we showed that

scTenifoldKnk could recapitulate major findings reported in real

KO experiments. We also showed the landscape of KO perturba-

tion profiles of all genes in a given system. Experimentally, such

systematic perturbation analysis has only been performed in

yeast.74 With scTenifoldKnk, systematic KO analysis in silico

can be performed in a cell-type-specific manner in any given

organismal systems.

Limitations of scTenifoldKnk are inherited from being a virtual

KOmethod. scTenifoldKnk cannot be used to predict the conse-

quence of gene overexpression, which is also a commonly used

method for gene function study. Also, as the power of scTeni-

foldKnk is rooted from the WT scGRN, the regulatory network

from theWTsample, the prediction of scTenifoldKnkmay ‘‘favor’’

regulatory rather than structural genes, as the latter tends to have

smaller degree in the network. Nevertheless, it is still possible to

adjust some details in the implementation of scTenifoldKnk to

make it better fit user analytical needs. For example, instead of

knocking out a target gene by setting its values to zeros in the ad-

jacencymatrix, a random shuffle of a gene’s expression values in

the expression matrix may be used prior to the scGRN construc-

tion to mimic gene dysregulation.

Prediction of gene expression responses to perturbation using

scRNA-seq data is an active research area.75 To the best of our

knowledge, there are two software tools that have been devel-

oped for this purpose: scGen and CellOracle.6,7 scGen is a pack-

age implemented in Python, using TensorFlow variational

autoencoders combined with vector arithmetic to predict gene

expression changes in cells.6 scGen works like a neural

network-empowered regression tool that predicts the changes

of gene expression in cells in response to specific perturbations

such as disease and drug treatment. scGen requires training da-

tasets from samples before and after being exposed to the same

perturbation. CellOracle is a workflow, developed in Python with

several R dependencies, that integrates scRNA-seq and single-
14 Patterns 3, 100434, March 11, 2022
cell chromatin accessibility data (scATAC-seq) data to infer GRN

and predict the changes of gene expression in response to spe-

cific perturbations. CellOracle constructs a GRN that accounts

for the relationship between TFs and their target genes based

on sequence motif analysis using the information provided by

the scATAC-seq data. After that, the constructed GRN is further

refined using regularized Bayesian regression models to remove

weak connections and is adjusted to infer the context-depen-

dent GRN using the scRNA-seq data. Compared to scGen and

CellOracle, scTenifoldKnk has a different, minimalistic design,

specifically focusing on virtual KO. Unlike scGen, scTenifoldKnk

does not need training data. Also, unlike CellOracle, scTeni-

foldKnk does not require information from scATAC-seq data.

Overall, we provide cogent evidence that scTenifoldKnk repre-

sents a powerful and efficient tool for conducting virtual KO anal-

ysis. The highly efficient implementation of scTenifoldKnk allows

systematic deletion of many genes from any given scRNA-seq

datasets. Thepredictionpower offeredby scTenifoldKnkenables

the accurate prediction of perturbations in regulatory networks

caused by the deletion of a gene, so that the KO gene’s functions

canbe revealed in acell-type-specificmanner.Weanticipate that

scTenifoldKnk will be adopted and widely applied in the predic-

tions of gene function in single-cell biomedical research.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be

directed to and will be fulfilled by the lead contact, James J. Cai (jcai@

tamu.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The source code of scTenifoldKnk is available at https://github.com/cailab-

tamu/scTenifoldKnk. scTenifoldKnk has been implemented in R, Python, Julia,

andMatlab. The R package is available at the CRAN repository at https://cran.

r-project.org/web/packages/scTenifoldKnk/. The Matlab application is avail-

able in scGEAToolbox.76

The scTenifoldKnk workflow

scTenifoldKnk is a machine learning workflow for virtual KO experiments with

scRNA-seq data. It utilizes a scRNA-seq expression matrix from a WT sample

as input, without using any data from a KO sample, to predict regulatory

network changes and perturbed genes caused by the KO of a gene. The input

expression matrix is assumed to have been properly normalized.

Construction of the WT scGRN

To construct scGRNs, scTenifoldKnk uses the method we previously pro-

posed for scTenifoldNet.9 The procedure of scGRN construction consists of

three steps: cell subsampling, PC regression, and tensor decomposition.

(1) Cell subsampling: Initially, scTenifoldNet builds several subsets of cells

via random sampling. Denote X˛Rn3p as the scRNA-seq data matrix

that reflects gene expression levels for p genes in n cells. A sub-sample

set of cells is constructed via randomly sampling m (< n) cells in X. By

repeating this subsampling process for t times, t sub-sample sets of

cells are derived, denoted as X 0
1; .; X 0

t˛R
m3p.

(2) Network construction: For each X 0
i , scTenifoldNet builds a GRNwith an

adjacency matrix W i via PC regression, where a PCA is applied to the

original explanatory variables, and then the response variable is re-

gressed on a few leading PCs. Since PC regression only utilizes

d PCs as the covariates in regression, where d <<min(m, n), it mitigates

over-fitting and reduces the computation time. To build an scGRN,

mailto:jcai@tamu.edu
mailto:jcai@tamu.edu
https://github.com/cailab-tamu/scTenifoldKnk
https://github.com/cailab-tamu/scTenifoldKnk
https://cran.r-project.org/web/packages/scTenifoldKnk/
https://cran.r-project.org/web/packages/scTenifoldKnk/
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each time scTenifoldNet focuses on one gene (referred to as the

response gene) and applies PC regression. The expression level of

the response gene is used as the response variable, and the expres-

sion levels of other genes are used as the explanatory variables in

PC regression. scTenifoldNet repeats this process for another p – 1

times, with one different gene as the response gene each time. In the

end, scTenifoldNet collects the coefficients of p regression models

together and forms a p3 p adjacencymatrixW i, whose (i, j) entry saves

the coefficient of the i-th gene on the j-th gene. W i could reflect the

interaction strengths between each pair of genes.

(3) Network denoising: The adjacency matrices of the t networks

W1;.; W t can be stacked to form a third-order tensor X˛ Rðp3p3tÞ.
To remove noise and construct an overall adjacency matrix, scTeni-

foldNet applies CANDECOMP/PARAFAC (CP) tensor decomposition

to X to extract important latent factors. More specifically, scTenifold-

Net approximates X by XR:

XzXR =
XR
r = 1

lrar+br+cr ;

where + denotes the outer product, ar˛Rp, br˛Rp, and cr˛Rt are unit-norm

vectors, and lr is a scalar. The reconstructed tensor XR˛Rðp3p3tÞ includes t

denoised adjacency matrices, and by taking the average of them, scTenifold-

Net obtains the overall stable adjacency matrix. After further normalizing its

entries by dividing them by their maximum absolute value, scTenifoldNet gen-

erates the final adjacency matrix of scGRN for the given sample. For later use,

denote it as Wd .

(4) Adjusting edge weights of the directed network:Weprovided an option

to adjust edge weights for the constructed scGRN. PC regression con-

structs directed networks. To obtain the strictly directed network, with

a given, denoised network Wd , for each gene pair ði; jÞ and ðj; iÞ, only
the entry with a larger absolute weight is kept. More specifically, we

defined the ði; jÞ entry for the strictly directed network Ws by

Wsði; jÞ=Wdði; jÞ; if jWdði; jÞj>jWdðj; iÞj and Wsði; jÞ= 0 otherwise.

Note that if jWdði; jÞj<jWdðj; iÞj; then we setWsði; jÞ = 0, and the infor-

mation in Wdði; jÞ is removed. To keep the information of Wdði; jÞ,
instead of removing the information completely, we defined a new

parameter l. Using this new parameter, we can integrate Wd and Ws

to generate an ‘‘interpolated network’’ W i , which contains part of the

information of Wdði; jÞ: Given parameter l, W i is define as follows:

W i = lWs + ð1� lÞWd;

where l˛½0; 1�: It is easy to check that when l = 0, we get the original denoised

network Wd, and when l = 1, it is to go back to the strictly directed

network Ws.

Deletion of the KO gene from the WT scGRN

We propose the virtual KO method that directly works on the WT scGRN (Fig-

ure 1B). The adjacency matrix Wd represents the scGRN constructed using

the WT data. In the virtual KO method, the entire row of the adjacency matrix

Wd for the gene is set to zero. We denote the adjacency matrix of the scGRN

generated as ~Wd.

Comparison between the WT and pseudo-KO scGRNs

After obtaining Wd and ~Wd, two comparable low-dimensional feature vectors

of each gene in the two networks are built and then compared to detect

affected genes. Our approach of creating low-dimensional feature vectors

was inspired by manifold alignment and its application;77–79 our approach is

referred to as quasi-manifold alignment because the adjacency matrices

used here are not symmetric matrices, whereas they are required to be sym-

metric in the original procedure. HereWd and ~Wd serve as the inputs for mani-

fold alignment, and the outputs are the low-dimensional features F˛Rp3k and
~F˛Rp3k of genes before and after knocking out the target gene, where k << p.

Before giving the details of the alignment procedure, we point out thatWd and
~Wd may include negative values, which reflect the negative correlation be-
tween genes. Before doing alignment, we add 1 to all entries in Wd and ~Wd;

and the range of Wd and ~Wd is transformed from [–1,1] to [0,2].

To perform quasi-manifold alignment, we first construct a joint adjacency

matrix W by combining Wd and ~Wd together, where W =

2
664
Wd

l

2
I

l

2
I ~Wd

3
775. We

can treat W as the adjacency matrix of a joint network formed by linking the

corresponding genes in two networks. The off-diagonal block of this matrix re-

flects the corresponding genes between two networks. l is a tuning parameter.

In practice, we select l as the mean of the row summations ofWd and ~Wd . We

further build F =

�
F
~F

�
˛R2p3k , and the manifold alignment problem of two net-

works characterized by the adjacencymatricesWd and ~Wd is equivalent to the

manifold learning problem that finds the low-dimensional features F for the

joint network characterized by the adjacency matrixW. For the sake of conve-

nience, we denote Fi˛Rk as the i-th row of F that reflects the projection corre-

sponding to the i-th gene in the large network. The next step is to build a ‘‘Lap-

lacian’’ matrix L = D� W, where D is a diagonal matrix with Dii =
Pn
j = 1

ðWÞj;i .

Denote f1; f2; .; fk as the eigenvectors corresponding to the k smallest

nonzero eigenvalues of L. Note that L is not a symmetric matrix. We found

that the usual solution of symmetrizing L does not work well with either simu-

lated or real data. We, therefore, use asymmetric matrix L in our quasi-mani-

fold alignment procedure. Since L is not symmetric, there may be imaginary

parts in the eigen decomposition. Based on our experiment, taking only the

real part of eigenvectors with respect to the eigenvalue that has the smallest

real part will give better overall results. The final low-dimensional representa-

tion is F = ½Reðf1Þ; Reðf2Þ; .; ReðfkÞ�, where ReðfÞ means the real part of f.

Test for significance of virtual KO perturbed genes

The virtual KO perturbed genes are identified as genes with significant differ-

ences in their regulatory patterns in two scGRNs constructed from theWT and

KO data. The method for testing the significance of the difference for each

gene is described here. With F=

�
F
~F

�
= ½Reðf1Þ; Reðf2Þ; .; ReðfkÞ� obtained

in manifold alignment, for each gene, we calculate the distance dj between

its two projected feature vectors from two networks. The rankings of dj are

used to help identify significant genes. To avoid arbitrariness in deciding the

number of selected genes, we proposed a c2 test. Specifically, since d2
j is

calculated by taking the summation of squares of the differences of projected

representations of two samples, its distribution could be approximately c2.

Instead of d2
j , we use the scaled FC, df,d2

j =d
2, as the test statistic for each

gene j to adjust the scale of the distribution, where df is the degree of freedom.

df,d2
j =d

2 approximately follows a c2-distribution with the df if the gene does

not perform differently before and after knocking out the target gene. By using

the upper tail (P[X>x]) of the c2 distribution and the Benjamini-Hochberg (B-H)

FDR correction formultiple testing correction,80 we assigned a p value for each

gene. To determine df, since the number of the selected significant genes will

increase as df increases, we choose df =1 to make a conservative selection of

genes with high confidence.

Gene functional annotation and enrichment tests

As described above, to predict the function of a given gene, the gene was

virtually knocked out using scTenifoldKnk. The output of scTenifoldKnk repre-

sents the perturbation profile of the KOgene, which is a ranked list of virtual KO

perturbed genes, subject to Enrichr and GSEA functional enrichment

tests.10,14 GSEA enrichment analysis was performed using the DR distances

transformed using Box-Cox transformation and standardized using Z score

transformation. In brief, an enrichment score (ES) was calculated by walking

down the list of genes ranked by the DR distance (proportional to the pertur-

bation), increasing a running-sum statistic when we encounter a gene that is in

a given gene set and decreasing when is not. The final ES is equal to the

maximum deviation from zero encountered in the random walk and corre-

sponds to a weighted Kolmogorov-Smirnov-like statistic. The reference

gene sets used for functional enrichment tests included KEGG_2019_Human,
Patterns 3, 100434, March 11, 2022 15
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KEGG_2019_Mouse, GO_Biological_Process_2018, GO_Cellular_Compo-

nent_2018, GO_Molecular_Function_2018, BioPlanet_2019, WikiPathway-

s_2019_Human, WikiPathways_2019_Mouse, and Reactome_2016. Top

genes in the ranked list were tested for significance (see above), and signifi-

cant genes were used as input for the Enrichr analysis.14 The full ranked

gene list was used as input for GSEA analysis.10 To remove redundant results

produced by the GSEA analysis, identified significant functional terms and

gene sets were grouped according to the overlap of leading-edge genes.

More specifically, for a given pair of identified gene sets, if Jaccard index,

J = jAXBj=jAWBj, is greater than 0.8, where A and B are leading-edge genes

of the two gene sets, then this pair of gene sets were grouped together. The

functional annotation of grouped gene sets was reported under the same en-

riched function group. In this way, non-redundant function groups of identified

gene sets were created and used for functional inference of the KO gene.

GSEA analysis was also conducted against gene sets made of marker genes

obtained from PanglaoDB.61 The protein interaction enrichment tests were

performed using the web tool provided by the STRING database.15 The CSV

files of gene set enrichment results are available for downloading from the

Github website of scTenifoldKnk.

Systematic KO analysis

Systematic KO analysiswas performedwith themicroglial scRNA-seq data from

the brain immune atlas. Data used in the systematic KO analysis was obtained

from the brain immune atlas (https://www.brainimmuneatlas.org), a scRNA-seq

resource for assessing and capturing the diversity of the brain immune compart-

ment, aspublished inVanHoveet al.55Datawere generatedusing the 10xGeno-

mics Chromium platform, including more than 61,000 CD45+ immune cells from

whole brains or isolated dura mater, subdural meninges, and choroid plexus of

mice. The downloaded data, referred to as the full aggregate dataset (combining

cells ofwhole brain and choroid plexus cells fromWT+ Irf8 KOmice), was stored

in the file named filtered_gene_bc_matrices_mex_irf8_fullAggr.zip. The down-

loaded matrix was processed, and the sub-matrix contained 5,271 microglia

from the WT mice. For all genes, the KO perturbation profile of each gene, i.e.,

a vector of DR distances, was transformed using Box-Cox transformation and

then was standardized using Z score transformation. The processed KO pertur-

bation profiles of all geneswere combined into onematrix for t-SNE embedding.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2022.100434.
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