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Abstract: This paper presents technological modifications of an electrostatic spinning device, which
significantly increase the thickness homogeneity (i.e., quality) of produced layers by creating auxiliary
dynamic electric fields in the vicinity of the spinning and collector electrodes. A moving body was
installed above the needleless spinning electrode, which destabilized the standing wave occurring
on the free surface of the spinning solution. Furthermore, an endless belt design was used for the
collector electrode instead of a roll-to-roll design, which made it possible to substantially increase
the surface speed of the substrate and, therefore, the dynamics of the electric field at the place of
collection of the fibers being spun. As a result, the coefficient of variation of the area weight of
912 samples cut out from the deposited nanofibrous layer, which was (1000 × 500) mm2 in size and
had an average area weight of (17.2 ± 0.8) g/m2, was less than 4.5%. These results were obtained
only when the dynamics of both the spinning and collector electrodes were increased at the same
time. These modifications resulted in a significant increase in the quality of deposited nanofibrous
layers up to the standard required for their use in pharmaceutical applications.

Keywords: electrospinning; nanofibers; homogeneity; large-area production

1. Introduction

In the process of electrostatic spinning, nanofibers are randomly deposited onto
the surface of a collector electrode, where they form a thin layer. The area distribution of
deposited nanofibers and, therefore, the resulting thickness homogeneity of the nanofibrous
layer are significantly affected by the distribution of static surface charges induced in the
electrostatic field on the surface of the collector. This distribution of charges is influenced
by the geometric parameters of the electrodes [1,2], local differences in the conductivity of
the collector electrode surface [3], properties of the substrate material [4], distribution of the
electrostatic field [5], properties of the already deposited nanofibrous layer, deposition time,
and potentially other factors. During the deposition process, these local charges gradually
acquire different intensities, new ones can occur in different locations, and existing ones
can dissipate. The positions of these surface charges and the amount of time they act
on the fibers being deposited cannot be independently controlled or monitored during
the spinning process. The distribution of these charges affects the resulting thickness
distribution across the deposited nanofibrous layer, and deviations in its homogeneity may
reach 10 s of percent [6]. Whenever a large-area nanofibrous layer with a uniform thickness
is being prepared, the effects of these surface charges prove to be a major issue.

Nanofibrous products have to comply with clearly defined requirements regarding
their quality, one of which is the admissible deviation in the weight of each unit of the
product. For example, in the case of pharmaceutical forms (tablet, capsule or powder)
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with an average unit weight of less than 80 mg, this deviation can be at most ±10% of
the average weight of the given unit; for more information, see [7]. This could also be
applied to other fields such as cosmetics or filtration. In laboratory and especially the
large-scale production of nanofibrous layers, maintaining the deviation within this limit
is still problematic; the products have to be individually checked (i.e., weighed) and
carefully sorted. Thickness and therefore weight inhomogeneities in layers produced by
electrospinning can have several different causes, as described in our previous study [8].
These laboratory results have also shown that the highest quality of deposited nanofibrous
layers can be achieved by increasing the dynamics of the electric fields by setting the
spinning nozzle and the surface of the substrate on the collector in motion. However,
the application of these technical solutions in large-scale production of high-quality large-
area nanofibrous layers poses considerable problems. Most of the production equipment
available on the market uses a roll-to-roll system, where the dynamics of the electric field
are influenced only by the movement of the substrate in the unwinding direction [9–11].
In our case, nanofibrous layers were produced using the unique production equipment,
which enables us to increase the dynamics of the electric field, and we were able to relate
these changes with the homogeneity of prepared nanofibrous layers. We focused on the
production of nanofibrous layers with the intended use in cosmetics, where the large-area
nanofibrous layers are cut to many products after its production and each product must
meet quality requirements.

2. Hypothesis

One of the possible ways to mitigate or eliminate the negative effects of surface charges
on the collector electrode and improve the quality of the produced nanofibrous layer is
to set the charges in motion—to create a non-stationary electric field. A dynamic electric
field can be created in the vicinity of the collector electrode by moving the surface of the
collector electrode or by moving the substrate itself. Setting and keeping larger electrodes
in motion is problematic from a technical point of view, which is why we focused on
moving the substrate. The motion of the substrate depends on the technology used for its
unwinding. Most of the devices that allow the preparation of large-area layers use winding
and unwinding units with a roll-to-roll design [8]—see Figure 1A.
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Figure 1. Diagrams of two fundamentally different basic collector designs with moving substrates
used in industrial devices for electrostatic spinning—roll-to-roll (A) and endless belt (B), where SD is
spinning direction and MD is machine direction.

If we want to produce a layer with an area weight of AWRR (kg·m2) on a roll of
substrate with a width of SW (m), we will need to unwind the roll at a speed of SS (m·s−1)
based on the known production rate of nanofibers using the chosen nozzles of PR (kg·h−1).
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Therefore, we can say that the area weight AWRR is inversely proportional to the unwinding
speed of substrate SS according to Equation (1).

AWRR =
PR

SW·SS
(1)

The speed of substrate is limited because the production rate is limited by the type
of spinning nozzle being used and the applied voltage. For example, if our aim is to
produce a layer with an area weight of AW = 0.01 kg·m−2 on a substrate with a width
of SW = 1 m using a device with a maximum production rate of PR = 0.01 kg·h−1 and a
roll-to-roll winding/unwinding unit, we have to set the unwinding speed of the substrate
to SS = 1 m·h−1. It clearly follows that the dynamics of the electric field are limited by these
process parameters and cannot be substantially increased. For this reason, it is better to
use an unwinding unit with a substrate of a finite length looped into an endless belt—see
Figure 1B. A different equation has to be used for this design to describe the relationship
between the desired area weight AWEB and the individual parameters, as demonstrated by
Equation (2).

AWEB =
PR·DT
SW·SL

(2)

where DT (h) is the deposition time and SL (m) is the total length of the substrate. It follows
from this equation that the resulting AW is directly proportional to the deposition time.
Since the speed of substrate SS is not included in Equation (2), there is theoretically no
limit to the value it can be set to. Therefore, this design makes it possible to significantly
change the dynamics of the electric field in the vicinity of the collector electrode, and it can
be assumed that there is a threshold speed, past which the effects of surface charges on the
thickness homogeneity of deposited layers are reduced.

The substrate always moves in a single direction, which is called the machine direction
(MD); its movement speed in this direction is equal to the value of SS. The direction
perpendicular to the MD at the plane of the substrate surface is called the cross direction
(CD). The substrate does not move in this direction at all, and the electric field acting in
this direction can, therefore, be considered stationary as well. According to our hypothesis,
movement and a dynamic electric field acting in this direction as well need to be introduced
into the system. Furthermore, according to [12,13], a standing wave occurs on the free
surface of a liquid in an electrostatic field, due to which fibers form in fixed positions at
regular intervals, which depend on the intensity of the acting electric field.

One of the aims of this work was to confirm the hypothesis that this standing wave
needs to be disrupted in a suitable way to ensure that fibers are deposited at short time
intervals from varying places and no preferred or fixed positions, otherwise localized
thicker deposits can form on the substrate in the CD, resulting in uneven layer thickness. In
other words, variation over time needs to be introduced into the electric field in the CD as
well in order to increase the degree of variation in the distribution of local surface charges
on the substrate, which will, in turn, increase the thickness uniformity of the deposited
nanofibrous layers.

The thickness homogeneity of a deposited nanofibrous layer can also be significantly
affected by the evenness of the flow of the spinning solution from needleless nozzles,
especially since they are several tens of centimeters long. The effects of the design of the
distribution chambers inside the nozzle on the ejection of the spinning solution from the
individual openings were confirmed with numerical simulations.

The thickness homogeneity of a nanofibrous layer can be evaluated using several
different methods. One method suitable for the evaluation of the thickness homogeneity
of low-weight nanofibrous layers that cannot be removed from the substrate in one piece
consists of analyzing the intensity of light passing through such a layer, or more precisely,
in analyzing its absorption by the nanofibrous layer manifested in lower pixel intensities of
its images in places of greater thickness [14]. This method allows researchers to quickly
assess the thickness distribution across the layer; however, different pixel intensities are
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not correlated with local differences in area weight. The obtained information needs to be
subsequently verified using another method—by directly weighing individual parts of the
analyzed layer. This method provides accurate information on differences in weight, which
can be used to calculate the area weight of the analyzed nanofibrous layer. The drawback
of this method is that it can be used only with self-supporting nanofibrous layers (removed
from the substrate) and that it is destructive.

Based on the hypothesis described above, the electrospinning device was modified in
two ways: (a) the endless belt design was used to move the substrate; (b) a moving body
was installed immediately above the spinning electrode.

3. Materials and Methods

An aqueous solution of a 6 wt % blend of hyaluronic acid (83 kDa, Contipro a.s., Dolní
Dobrouč, Czech Republic) and polyethylene oxide (PEO, 600 kDa, Meisei Chemical Works,
Ltd., Kyoto, Japan) combined at a ratio of 80:20 wt % was used for the electrospinning pro-
cess. Altogether, six samples were prepared using an in-house assembled electrospinning
pilot line. The solution was dosed at a rate of 2.0 mL·min−1 into two needleless spinning
nozzles forming the spinning electrode with their longer sides aligned with the CD—see
Figure 2A,B.

Polymers 2021, 13, 1968 4 of 10 
 

 

assess the thickness distribution across the layer; however, different pixel intensities are 
not correlated with local differences in area weight. The obtained information needs to be 
subsequently verified using another method—by directly weighing individual parts of 
the analyzed layer. This method provides accurate information on differences in weight, 
which can be used to calculate the area weight of the analyzed nanofibrous layer. The 
drawback of this method is that it can be used only with self-supporting nanofibrous lay-
ers (removed from the substrate) and that it is destructive. 

Based on the hypothesis described above, the electrospinning device was modified 
in two ways: (a) the endless belt design was used to move the substrate; (b) a moving body 
was installed immediately above the spinning electrode. 

3. Materials and Methods 
An aqueous solution of a 6 wt % blend of hyaluronic acid (83 kDa, Contipro a.s., 

Dolní Dobrouč, Czech Republic) and polyethylene oxide (PEO, 600 kDa, Meisei Chemical 
Works, Ltd., Kyoto, Japan) combined at a ratio of 80:20 wt % was used for the electrospin-
ning process. Altogether, six samples were prepared using an in-house assembled elec-
trospinning pilot line. The solution was dosed at a rate of 2.0 mL·min−1 into two needleless 
spinning nozzles forming the spinning electrode with their longer sides aligned with the 
CD—see Figure 2A,B. 

 
Figure 2. A diagram of the spinning system in the deposition chamber of the industrial device with 
two needleless spinning nozzles (SN) and a collector electrode with the endless belt design—shown 
from the cross direction (CD) (A) and machine direction (MD) (B). MB is moving body and HV is 
high voltage source. The third image shows the design of distribution chambers inside the needle-
less spinning nozzle (C); there were four of these segments in each nozzle. 

The outlets of the spinning nozzles were 550 mm long and the nozzles were 400 mm 
apart (measured in the machine direction). The flow of the spinning solution from the 
individual distribution chambers along the entire length of the spinning nozzle was stud-
ied using a computational fluid dynamics (CFD) simulation performed in the OpenFoam 
environment (OpenCFD Ltd., London, UK). The simulation was performed for one of the 
four separate parts of the spinning nozzle—see Figure 2C. The simulation took into ac-
count influencing parameters, such as the flow behavior of the liquid (viscosity, non-New-
tonian fluid characteristics) and pressure losses in narrow chambers, i.e., capillary and 
surface forces. A more detailed description of the numerical simulation methods and pa-
rameters is described in the Supplementary Materials of this paper (Tables S1 and S2). 

A moving body made of an electrically non-conductive material was installed (3 ± 1) 
mm above the upper edges of both spinning nozzles. This body could move in the CD 
along the entire length of the outlets of the spinning nozzles and during the entire spin-
ning process. An electric potential of +45 kV was applied to the spinning nozzles. The 
solution was spun in an air-conditioned chamber at a relative humidity of (20 ± 5)% and 
a temperature of (23 ± 2) °C. Fibers were deposited onto the surface of a textile substrate 

Figure 2. A diagram of the spinning system in the deposition chamber of the industrial device with
two needleless spinning nozzles (SN) and a collector electrode with the endless belt design—shown
from the cross direction (CD) (A) and machine direction (MD) (B). MB is moving body and HV is
high voltage source. The third image shows the design of distribution chambers inside the needleless
spinning nozzle (C); there were four of these segments in each nozzle.

The outlets of the spinning nozzles were 550 mm long and the nozzles were 400 mm
apart (measured in the machine direction). The flow of the spinning solution from the
individual distribution chambers along the entire length of the spinning nozzle was studied
using a computational fluid dynamics (CFD) simulation performed in the OpenFoam
environment (OpenCFD Ltd., London, UK). The simulation was performed for one of the
four separate parts of the spinning nozzle—see Figure 2C. The simulation took into account
influencing parameters, such as the flow behavior of the liquid (viscosity, non-Newtonian
fluid characteristics) and pressure losses in narrow chambers, i.e., capillary and surface
forces. A more detailed description of the numerical simulation methods and parameters
is described in the Supplementary Materials of this paper (Tables S1 and S2).

A moving body made of an electrically non-conductive material was installed (3 ± 1) mm
above the upper edges of both spinning nozzles. This body could move in the CD along the
entire length of the outlets of the spinning nozzles and during the entire spinning process.
An electric potential of +45 kV was applied to the spinning nozzles. The solution was
spun in an air-conditioned chamber at a relative humidity of (20 ± 5)% and a temperature
of (23 ± 2) ◦C. Fibers were deposited onto the surface of a textile substrate belt located
at a distance of 18 cm from the spinning nozzles. The substrate belt was attached to an
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electrically conductive foil, which served as a negatively charged electrode. An electric
potential of −30 kV was applied to the foil. Both materials were looped into a single
120-cm-long endless belt. The morphology of nanofibrous samples was studied using
electron microscopy (Carl Zeiss, Ultra Plus, Oberkochen, Germany). To prepare samples
for the SEM analysis, the nanofibrous mats were coated with a very thin layer of Au/Pd
(80/20) in a Leica EM ACE600 coater (Leica, Wetzlar, Germany). Images were acquired
using an InLens SE detector (Carl Zeiss, Ultra Plus, Oberkochen, Germany), the working
distance ranged from 2.6 mm to 4.0 mm, and the pressure was approximately 10−4 Pa.

To estimate the relationship between thickness homogeneity and the speeds of the
belt and the moving body, we spun the first five samples over only 20 min but at various
speeds. The speed of the belt was set to 25, 100 or 200 cm·min−1 in the MD and the speed
of the moving body was set to 15 cm·s−1, or it remained static. Each sample was deposited
three times using the same process parameters. Four photographs were taken at four
different locations on each of the deposited layers in order to obtain relevant data. A total
of 60 images were taken and analyzed, i.e., 12 images per sample. The thickness of these
five samples of nanofibrous layers allowed us to photograph them against light using a
Canon Coolpix P7700 camera (Canon, Tokyo, Japan). This method, although not as precise
as some other ones, allowed us to quickly estimate the thickness homogeneity of these
thin samples while they were still on the substrate. Ultimately, the deposition time was
increased to 120 min and a nanofibrous layer (sample 6) with a higher area weight was
prepared. The speed of the belt was set to 200 cm·min−1 and the speed of the moving body
was set to 15 cm·s−1. The other parameters remained unchanged. The higher weight of
the sample allowed us to remove it from the substrate and directly determine its weight.
Thus, the thickness uniformity of this layer was not evaluated visually by analyzing its
photograph but using a different, more precise method directly connected to the physical
parameters of the sample. The produced (100 × 50) cm2 nanofibrous layer was cut into
912 round pieces with a diameter of 23 mm using a plotter (Zund, S3 M-800, Altstätten
Switzerland). All the pieces were individually weighed using an analytical balance (Mettler
Toledo, XSR205, Greifensee, Switzerland), and the weight of each piece was converted to
area weight (per square meter).

4. Results and Discussions

The results of the numerical simulation shown in the diagram in Figure 3 predicted
that the liquid would flow at the same speed from all the distribution chambers. The results
are shown for one of four identical segments, and we assumed the behavior would be
identical along the entire length of the spinning nozzle.
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According to the results of the simulation, the effects of differences in the flow of the
spinning solution from different parts of the nozzle on the uniformity of the deposited layer
are negligible. Furthermore, we studied the effects of the movement of the body above the
spinning electrode and of the speed of movement of the belt on the thickness uniformity of
the deposited nanofibrous layers. These initial experiments were evaluated visually and
using image analysis tools. The image analysis was based on the fact that the pixel intensity
of an image of a deposited layer photographed against light corresponds with the thickness
of the layer [14,15]. Figure 4 shows images of layers deposited at different movement
speeds of the moving body above the spinning electrode and of the belt. The SEM analysis
do not show significant differences in the nanofibrous structure—see Figure 4B.
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Table 1. Results of the image analysis of layers deposited using different process parameters.

Sample
Number

Speed of the Body
Above the Nozzles

in CD (cm·s−1)

Speed of the
Belt in MD
(cm·min−1)

Correlation
Coefficient

(a.u.)

Standard Deviation
of the Correlation
Coefficient (a.u.)

1 0 25 0.64 0.06

2 15 25 0.82 0.06

3 0 100 0.65 0.09

4 15 100 0.86 0.03

5 15 200 0.88 0.03

The images in Figure 4A-1,A-3 clearly show bands in the structure of the deposited
layers oriented in the MD, which formed when the body above the spinning nozzles was
not activated or when the substrate moved too slow. A visual analysis of the images
revealed that sample 5′s layers were the most homogeneous. These layers were produced
when the moving body above the spinning nozzles was active and when the substrate
moved at a speed of SS = 200 cm·min−1. For this reason, one waveform of variations in
pixel intensity depending on their position along a line in the CD was selected from this
series and fitted with a parabolic curve. The curve of the parabola is shallow, likely due to
imperfections in the lighting panel (see Figure 4C) and the optical system of the camera
used to photograph the layers. The coefficients of correlation between this curve and the
waveforms of variations in pixel intensity depending on their position along a line in the
CD were obtained for all five samples using data from all the taken images. The values of
the correlation coefficients are directly proportional to the homogeneity of the nanofibrous
layers. In addition, standard deviations of the individual average correlation coefficients
were determined using all the images of the corresponding samples. These results are
presented in Figure 5 and Table 1.
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The results clearly show that in order to produce a nanofibrous layer with higher
thickness homogeneity, the body above the spinning nozzles must be moving. Thickness
homogeneity can be further increased by increasing the movement speed of the substrate
to at least 100 cm·min−1. The results of the experiment confirmed the hypothesis described
above and demonstrated that both modifications are required in order to obtain the best
results. In other words, it is necessary to create dynamic electric fields in the vicinity of
both electrodes at the same time, i.e., in the vicinity of the spinning nozzle and the collector.

Another experiment was performed to determine if the specified parameters would
also be suitable for the preparation of a homogeneous layer with a higher area weight. The
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increased weight would allow us to evaluate the layer by directly weighing it instead of
analyzing its images taken against light. For this purpose, the area weights of 912 pieces
cut out from a deposited layer were analyzed. Figure 6A shows an image of the analyzed
round pieces cut out from the layer, and Figure 6B shows an electron microscope image of
the nanofibrous structure of the layer.
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Figure 6. A photograph of the nanofibrous layer cut into 912 round pieces with a diameter of 23 mm
(A). An electron microscope image of the structure of the nanofibrous layer (B).

The statistical data obtained by calculating the area weights of the individual round
pieces of the nanofibrous layer are provided in the chart in Figure 7. The average area
weight of the pieces was AWEB = (17.20 ± 0.72) g·m−2. The coefficient of variation of
the area weight of the evaluated pieces was 4.2%. A total of 879 pieces, i.e., 96.3% of all
the pieces, had an area weight that was within the ±10% deviation range acceptable in
pharmaceutical applications.
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Figure 7. Area weights of all the cut-out pieces.

The pieces whose area weight was outside this range were taken from the edges of
the deposited area, and in all cases, the samples had an area weight that was higher than
intended. This result confirmed that the thickness of the deposited nanofibrous layer was
highly uniform.

5. Conclusions

In this paper, we focused on the preparation of large-area nanofibrous layers with
the aim of achieving uniform thickness across the entire deposited area. We hypothesized
that thickness uniformity could be increased by creating dynamic electric fields in the
vicinity of the spinning nozzles as well as the collector electrode. These electric fields
have several consequences and they disrupt the effect of charge on fibers deposited on the
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substrate as well as patterns created around spinning electrodes. The results have shown
that visible thickness inhomogeneities form in layers deposited using approximately static
fields, which was confirmed by analyzing images of the layers photographed against light.
The thickness uniformity of deposited layers increased significantly when dynamic electric
fields were created simultaneously in the vicinity of the spinning nozzles by a moving
body and in the vicinity of the collector electrode by the surface of the substrate moving
at a high speed. An analysis of the produced layer showed that the area weights of 96.3%
of all tested pieces were within the acceptable deviation range of ±10%; this was also
true for the sample with a higher area weight. These results are very promising, and they
indicate that this solution could allow the electrospinning of nanofibrous layers usable in
pharmaceutical products.

6. Patents

Patent application PCT/CZ2019/050026 is resulting from the work reported here.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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