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Introduction: Current Fertility-Preservation 
Strategies
In women, the incidence of cancer increases dramatically from 
about 1 in 10,000 shortly after birth to about 1 in 300 as women 
reach the end of reproductive life during their mid-forties.1 It 
is well-documented that treatment of girls and of women 
before the age 45 for cancer with radiation, chemotherapeutic 
drugs or a combination of the two therapies can result in sig-
nificant, and often irreversible, side-effect damage to the repro-
ductive system.2–6 Oocytes are highly sensitive to cytotoxic 
therapies, with premature depletion of the ovarian follicle 
reserve frequently reported as an unintended consequence of 
anticancer treatments, especially those that involve pelvic radi-
otherapy or alkylating agents.7–11 At present, the cryopreserva-
tion of mature eggs and preimplantation embryos is the clinical 
standard of care for female cancer patients, although the 
patient’s age (adolescents), type of cancer (estrogen-respon-
sive), or urgency of treatment initiation (aggressive cancers) 
may preclude the use of these approaches for all patients. 
Alternative strategies that involve the collection of immature 
(germinal vesicle-stage) oocytes for subsequent in-vitro matu-
ration (IVM) and in-vitro fertilization (IVF) followed by 
embryo transfer,12–20 as well as the cryopreservation of ovarian 

cortical tissue strips for autologous transplantation after the 
anticancer treatments are completed,21–27 have gained increased 
attention as potential fertility-preservation options and are in 
clinical study around the world.

In addition to these approaches, which rely almost entirely 
on the cryopreservation of either oocytes (or embryos) or ovar-
ian tissue strips containing oocytes before the initiation of 
treatments for cancer, parallel work has focused on minimizing 
ovarian damage in female cancer patients in vivo through phar-
macologic protection of existing oocytes from cytotoxic insults 
during treatment.28–30 For example, building on early preclini-
cal studies with rhesus monkeys showing that gonadotropin-
releasing hormone (GnRH) agonists could reduce the loss of 
ovarian follicles caused by cyclophosphamide exposure,31 
promising results have been obtained in some clinical studies of 
GnRH agonist treatment for ovarian protection in female can-
cer patients.32–40 However, other studies have questioned if use 
of GnRH analogs as a co-treatment in women receiving chem-
otherapy provides a clear benefit to maintaining specifically 
fertile potential in women.41–44 Although the consensus appears 
to be that GnRH agonist treatment can minimize ovarian 
damage in female cancer patients such that a resumption of 
menses and normal endocrine profiles are observed, the field 
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remains divided over whether these outcomes actually lead to 
improvements in pregnancy success rates in women after cessa-
tion of treatment.

In parallel to studies of GnRH agonists, other work has 
explored the prospects of using anti-apoptotic small molecules 
as ovarian-protective agents in the face of radiotherapy and 
chemotherapy. This line of investigation arose from the obser-
vation that exposure of oocytes to chemotherapeutic drugs 
activates apoptosis or programmed cell death.45 Extensive 
genetic studies in mice, designed to define the key pathways 
utilized by oocytes to die,8 uncovered an indispensable role for 
ceramide generated by acid sphingomyelinase in triggering 
chemotherapy-induced oocyte apoptosis. In turn, a natural 
inhibitor of ceramide, termed sphingosine-1-phosphate (S1P), 
was shown in mice to prevent oocyte loss and infertility result-
ing from anticancer treatments.46,47 These findings of a protec-
tive effect of S1P on fertile potential in vivo after radiotherapy 
exposure were eventually extended to nonhuman primates, 
with the birth of healthy offspring free of any evidence of 
propagated cytogenetic damage.48

Although clinical studies of S1P or S1P analogs have not 
yet, to our knowledge, been pursued, several reports have 
provided evidence supporting a similar cytoprotective function 
of S1P in human ovaries. For example, two separate studies 
have shown that S1P reduces primordial follicle loss in human 
ovarian tissue xenografted in mice and exposed to 
cyclophosphamide as an in-vivo model of chemotherapy-
induced ovarian damage.49,50 In addition and of direct relevance 
to clinical studies focused on restoration of fertility in women 
through orthotopic or heterotopic transplantation of 
cryopreserved-and-thawed ovarian cortical tissue strips,21–27 
S1P has also been reported to minimize the loss of primordial 
follicles that occurs during vitrification and thawing of mouse 
ovarian tissue grafts51 as well as during the slow-freezing and 
thawing of human ovarian cortical tissue.52

These encouraging outcomes have prompted efforts to 
identify additional factors capable of minimizing ovarian dam-
age caused by anticancer treatments, with one of the most 
recent being a preclinical study in rats reporting that injections 
of curcumin and capsaicin can offset cyclophosphamide-
induced premature ovarian failure.53 In other studies, co-
administration of imatinib (Gleevec), a 2-phenyl amino 
pyrimidine derivative that inhibits activity of the tyrosine 
kinase domains of c-Abl, c-Kit and platelet-derived growth 
factor receptor, has been reported to attenuate follicle depletion 
in mice caused by cisplatin treatment,54 the latter of which acti-
vates apoptosis in mouse oocytes through the TAp63 signaling 
pathway.55 However, a subsequent study with two different 
strains of mice failed to show protective effects of imatinib on 
either oocyte apoptosis (follicle depletion) or infertility result-
ing from cisplatin treatment,56 leaving open the question of 
whether small molecules such as imatinib, which specifically 
target receptor-associated tyrosine kinases, would be beneficial 

for fertility preservation in women exposed to cytotoxic agents. 
In fact, therapeutic strategies that interfere with c-Kit function 
may actually be counter-productive in efforts to maintain or 
restore female fertility, given the well-established importance 
of c-Kit to germ-cell development and survival.57,58

Discovery of Mammalian Oogonial Stem Cells
While the use, in some manner, of existing oocytes or the 
embryos generated from these oocytes through IVF as the tra-
ditional approach to female fertility preservation has yielded 
positive clinical results, progress toward the development of 
future technologies aimed at sustaining or restoring fertility in 
female cancer survivors would be severely constrained if exist-
ing oocytes were the only resource to work with. In 2004, this 
constraint was lifted by a report that identified the existence of 
mitotically active germ cells in postnatal mouse ovaries capable 
of supporting de-novo oogenesis and folliculogenesis during 
adult life.59–62 This report was met, not surprisingly, with a mix 
of cautious excitement along with outright disbelief.63–66 In 
short, it defied one of the foundational tenets in the field of 
reproductive science—female mammals are endowed with all 
of the oocytes they will ever have at birth, and this pool is not 
subject to renewal during postnatal life.67,68

Amid debate, continued studies on this topic from multiple 
laboratories around the world eventually produced a now large 
body of evidence substantiating the occurrence of postnatal 
oogenesis in mammals,69–76 as well as the characteristic features 
and functional properties of the germ cells responsible for contin-
ued oocyte formation.77 These cells, termed female germline or 
oogonial stem cells (OSCs), have been identified in, and isolated 
for study from, adult ovarian tissue of mice,75,76,78–102 rats,103 
cows,104 pigs,105,106 nonhuman primates,107 and women.82,85,102,108–

111 In evaluating OSCs from a functional perspective, the identity 
of these cells as bona-fide oocyte-producing germ cells has been 
independently verified by several groups using intragonadal trans-
plantation-based approaches in rodent models,76,78,80,82,90,94,103 
which are universally considered the litmus test for functional 
identity testing of the male-equivalent spermatogonial stem cells 
(SSCs) in the testis.112–114 These studies have collectively shown 
OSCs, expressing a fluorescent reporter for cell fate tracking, 
transplanted into ovaries of adult wild-type recipients generate 
oocytes that develop into mature eggs which fertilize to produce 
viable embryos and offspring.76,78,80,82,90,94,103 Extending these 
observations, two groups have also used genetic mouse models 
that enable inducible tracking of cell fate in vivo to discern the 
physiological significance, if any, of OSCs and postnatal oogenesis 
in adult females. These experiments confirmed the occurrence of 
germ cell meiotic entry and de-novo oogenesis in the ovaries  
during reproductive life,75,76 and further showed that oocytes 
formed during adulthood are used to produce offspring in natural 
mating trials.76 This considerable body of evidence, from multiple 
laboratories around the world, documenting the existence and 
functional properties of OSCs in adult mammalian ovaries across 
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species should erase any residual doubts that the long- 
standing paradigm of a fixed pool of oocytes being endowed in 
ovaries of female mammals at birth has repeatedly been proven 
incorrect.77

Characteristics of Human OSCs
The isolation of OSCs from ovaries of women by at least four 
independent groups to date has enabled detailed comparative 
studies of these cells with OSCs in animal models, and by all 
accounts, the human cells display the fundamental characteris-
tics of oocyte-generating germline stem cells.82,85,102,108–111 
Although complete functional identity testing has not yet, at 
least to our knowledge, been performed with human OSCs, the 
cells have been tested for oocyte-forming capacity in a number 
of ways. For example, human OSCs maintained as pure germ 
cell cultures exhibit the same capacity as rodent OSCs to spon-
taneously generate in-vitro-derived (IVD) oocytes after pas-
sage and replating.82,85 Importantly, these human IVD oocytes 
express expected patterns of oocyte-specific genes82 and are 
able to complete meiotic progression to reach formal haploid 
status, as defined by flow cytometric analysis of DNA content 
per cell,82 as well as by fluorescence in-situ hybridization of 
chromosome numbers per cell.111 Building on these observa-
tions from cultured OSCs, introduction of enhanced green 
fluorescent protein (EGFP)-expressing human OSCs into 
adult human ovarian cortical tissue ex vivo has been used to 
trace the generation of new EGFP-positive oocytes that form 
primordial follicles capable of early development and 
growth.82,108 Moreover, similar outcomes can be achieved by 
simple reaggregation of EGFP-expressing human OSCs with 
cellular dispersates prepared from adult82 or fetal110 human 
ovarian tissue, collectively supporting that OSCs are fully 
capable of differentiating into oocytes that interact with appro-
priate ovarian somatic cell partners to form new follicles.

Although still early, these exciting findings offer a strong 
foundation on which to push forward with additional models 
and testing, including incorporation of existing technologies 
for in-vitro follicle growth115–119 along with those for IVM  
of germinal vesicle-stage oocytes for IVF and embryo  
transfer.12–20 The ultimate goal will be to establish an in-vitro 
platform that reliably enables the generation of developmen-
tally competent eggs derived from human OSCs recombined 
in some manner with autologous ovarian somatic cells to 
facilitate oogenesis and folliculogenesis.77,120 Given the estab-
lished ability of rodent OSCs to successfully differentiate into 
eggs that yield viable offspring,76,78,80,82,90,94,103 we feel that, 
with the appropriate environmental support, human OSCs 
will indeed be capable of achieving the same outcomes as 
their mouse and rat counterparts.

Reconstitution of Human Folliculogenesis in vitro
As discussed earlier, ovarian tissue cryopreservation and trans-
plantation is now offered by some clinics as an option for 

fertility preservation in female cancer survivors.21–27 However, 
the live-birth success rate of the approach, even 15 years after 
initial reports of its use, remains fairly low.25 This limitation, 
coupled with the fact that the procedure presents significant 
risks associated with the multiple surgeries required to obtain 
and subsequently return the ovarian tissue used for cryopreser-
vation and transplantation, highlights the need for additional 
technologies to adequately meet the family-planning hopes of 
these patients once their treatments are completed.121 
Cryopreservation of eggs and embryos are now well-estab-
lished alternatives for women diagnosed with cancer to con-
sider for a future chance at having a baby; however, these 
approaches are not a viable option for all patients, especially 
those who are adolescent or suffer from premature ovarian 
insufficiency. With just these few options available, efforts by 
several groups to design and test new in-vitro and in-vivo plat-
forms rooted in the principles of stem cell-based regenerative 
medicine may offer additional fertility solutions for cancer 
survivors.

To that end, significant strides have been made over the 
past several years in the generation of functional eggs from 
stem cells entirely outside of the body, using mice as an 
exploratory model system. This line of investigation dates 
back to the early work of Hübner et al,122 who first reported 
the in-vitro derivation of oocyte-like cells and follicle-like 
structures from mouse embryonic stem cells (ESCs) in cul-
ture. Almost a decade later, Hayashi et al123 successfully speci-
fied primordial germ cell-like cells (PGC-LCs) from mouse 
ESCs and induced pluripotent stem cells (iPSCs). When the 
PGC-LCs were aggregated with fetal gonadal somatic cells 
and then grafted to ovaries of adult female recipients, the cells 
differentiated into immature oocytes that yielded viable off-
spring following IVM, IVF, and embryo transfer.123 These 
experiments were further refined to eventually remove the 
need for in-vivo tissue grafting, ultimately providing a plat-
form for complete reconstitution of female gametogenesis 
from ESCs and iPSCs entirely ex vivo.124 Parallel studies of 
human ESCs and iPSCs have provided evidence that, like 
their murine counterparts, these cells are capable of generat-
ing PGC-LCs as well125,126 and that ovarian follicle-like 
structures can be formed from human ESCs in culture.127 
Collectively, these studies have prompted widespread, but in 
our view quite premature, speculation that technologies 
involving ESCs and iPSCs will one day in the not-too-dis-
tant future offer women in need of fertility assistance the 
opportunity to produce essentially unlimited eggs for assisted 
reproduction.128–130

However, it is critical to emphasize several key points when 
evaluating the potential of ESCs or iPSCs to solve human 
female infertility in the future. The first of these is the apparent 
obligate need for PGC-LCs to interact with fetal gonadal 
somatic cells for differentiation into oocytes that can mature 
into competent eggs,123,124 a concept reinforced by previous 
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studies with mice showing that PGC-LCs introduced in adult 
ovarian tissue generate only immature oocytes that arrest and 
degenerate at very early stages of follicle development.128 It is 
therefore unclear, if only for practical reasons, how human fetal 
gonadal tissue would be obtained and made available for use in 
any type of clinical platform involving gametogenesis from 
pluripotent stem cells. Even if this major obstacle is overcome, 
the issue is further complicated by the fact that non-autologous 
fetal ovarian tissue would be needed to produce eggs from 
iPSC-derived germline cells of another individual. A second 
stumbling block to human translation of the mouse work with 
iPSCs pertains to regulatory issues surrounding genetic manip-
ulation of the parental somatic cells to obtain iPSCs in the first 
place, whether or not one employs nonintegrating genetic 
approaches for nuclear reprogramming. Finally, it remains to be 
determined, even in mice, if nuclear reprogramming of differ-
entiated somatic cells into iPSCs for subsequent generation of 
PGC-LCs generates germline cells that effectively carry out 
the process of maternal mitochondrial inheritance. In other 
words, studies must be performed to demonstrate that off-
spring produced from iPSC-derived eggs are not burdened 
from the outset with compromised mitochondrial genomes 
that are pre-existent in the parental somatic cells reprogrammed 
into iPSCs for germ cell specification.131

In comparison, OSCs represent an alternative source of 
oocyte-generating stem cells present in the ovaries of women 
which are free of these limitations and complications, but 
exhibit the same capacity as ESCs or iPSCs in mouse studies 
to generate fully functional eggs that fertilize and produce via-
ble offspring.76,78,80,83,90,94,103 Unlike iPSCs, however, the use of 
OSCs does not require any genetic manipulation or repro-
gramming since OSCs are already germline stem cells naturally 
wired to produce oocytes in adult ovaries.76 Moreover, OSCs 
are capable of generating mature oocytes when introduced into 
adult ovarian tissue,76,78,80,83,90,94,103 removing the need for fetal 
ovarian somatic cells that ESC- or iPSC-derived PGC-LCs 
depend on to achieve full functionality as egg precursor 
cells.123,124 Despite these advantages, however, OSCs are not 
capable of differentiation into fully functional eggs alone, and 
any technology platform that uses these cells, like all other 
stem cells, will require parallel incorporation of appropriate 
somatic cell partners for success.120

Without question, the most important of these partners are 
primitive or undifferentiated granulosa cells (sometimes 
referred to as pregranulosa cells), which are capable of interact-
ing with newly generated oocytes to form primordial follicle-
like structures. While previous studies have reported the 
existence and functional characterization of ovarian somatic 
stem cells that can give rise to thecal-interstitial cells,132,133 we 
are not aware of any publication to date that has definitively 
identified a putative granulosa stem cell population in postna-
tal ovarian tissue. The possibility that primitive granulosa cells 
differentiate from multi-potent stem cells present in the 

ovarian surface epithelium was proposed many years ago, based 
largely on indirect in-vitro studies of undefined (heterogene-
ous) ovarian cell cultures.134,135 However, rigorous follow-up 
experiments that have functionally tested this hypothesized 
lineage relationship, or that have confirmed multi-potent stem 
cells in adult mammalian ovaries are a physiological source of 
pregranulosa cells for de-novo folliculogenesis in vivo, are lack-
ing. In fact, it is still unclear if primitive granulosa cells can 
even be isolated from adult ovarian tissue and successfully 
expanded in vitro in an undifferentiated state for use in biomi-
metic stem cell-based platforms aimed at achieving folliculo-
genesis and, ultimately, ex-vivo egg generation.120 By employing 
fluorescence-activated cell sorting (FACS), we have very 
recently isolated a distinct population of ovarian somatic cells 
that express stem cell-associated genes (e.g. POU domain class 5 
transcription factor 1 or Pou5f1, and Nanog), can be stably 
expanded in-vitro over many passages, and exhibit several key 
features of primitive granulosa cells. The latter includes expres-
sion of the Forkhead box L2 (Foxl2) and Wingless-type MMTV 
integration site family member 4 (Wnt4) genes, as well as induc-
ible expression of follicle-stimulating hormone (FSH) receptor 
and the molecular machinery required for steroidogenesis (T. 
Akahori, D.C. Woods and J.L. Tilly, unpublished data). While 
we await the outcome of functional characterization studies 
that are underway in our laboratories to unequivocally establish 
the identity of these cells, we will turn our attention back to 
published studies on potential sources of primitive granulosa 
cells.

Building on earlier observations of Hübner et al122 that folli-
cle-like structures, capable of steroidogenesis and extrusion of 
oocyte-like cells, can be observed in cultures in mouse ESCs, 
other groups reported similar outcomes using mouse ESCs 
with some disagreement on “normalcy” of the oocyte-like cells 
contained within the follicle-like structures.136–138 Moreover, all 
of these reports focused almost entirely on the germline side of 
the story, with comparatively little attention placed on the puta-
tive granulosa cells also present in these structures. In 2013, 
Woods et  al139 reported the first in-depth study of primitive 
granulosa cell specification from a dual-reporter mouse ESC 
line engineered to express EGFP driven by a modified Pou5f1 
gene promoter and red fluorescent protein (DsRed) under con-
trol of the Foxl2 gene promoter to simultaneously track germ 
cell and granulosa cell formation, respectively. After confirming 
the generation of follicle-like structures containing EGFP-
positive germ (oocyte-like) cells surrounded by DsRed-positive 
somatic (pre-granulosa) cells in ESC cultures (Figure 1), the 
DsRed-positive cells were isolated by FACS at various time 
points postspecification and analyzed by several approaches.

Of several interesting findings presented in this study, 
DsRed-expressing cells collected relatively early after specifica-
tion from ESCs exhibited a gene expression profile consistent 
with an in-vivo pregranulosa cell phenotype, as defined by 
expression of Foxl2, Wnt4, Follistatin (Fst), and Kit ligand 
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(Kitl), among other genes.139 As the culture time was extended, 
the gene expression profile in the DsRed-positive cells changed 
to one more in line with granulosa cells at an early stage of dif-
ferentiation, as demonstrated by the activation of FSH receptor 
(Fshr), anti-Müllerian hormone (Amh), cytochrome P450 family 
19 subfamily a polypeptide 1 (Cyp19a1), and steroidogenic acute 
regulatory protein (Star) gene expression. Perhaps the most con-
vincing evidence of a granulosa cell identity, however, was 
derived from in-vivo transplantation studies of DsRed-positive 
cells isolated from these ESC cultures, in which the fate of the 
cells in ovaries was traced to incorporation in the granulosa cell 
layer of immature follicles.139 The findings reported in this 
study, which showed that Foxl2-expressing somatic cells 
formed from differentiating ESCs express granulosa cell mark-
ers, actively associate with germ cells in vitro, synthesize ster-
oids, respond to FSH, and participate in folliculogenesis in 
vivo,139 have been repeated and extended by others.140–142

Collectively, these observations offer a strong impetus to 
consider the use of patient-derived iPSCs to generate autolo-
gous primitive or pregranulosa cells for aggregation with 
OSCs to successfully reconstitute the process of oogenesis and 

folliculogenesis in vitro143 (Figure 2). It is also worth mention-
ing that several studies have reported the generation of steroi-
dogenic cells from iPSCs derived from reprogrammed 
granulosa cells.144–146 In one of these studies, it was further 
concluded that generation of iPSCs from the cell type that 
one seeks to ultimately specify in vitro may prove advanta-
geous due to epigenetic memory of the parental cells being 
carried through the reprogramming and lineage specification 
process.145 In any case, the prospect of designing an in-vitro 
platform for the generation of mature human eggs through 
stem cell-based bioengineering, while still early in develop-
ment, is clearly inching closer to reality.

Human Ovarian Regeneration in vivo
In parallel to the efforts outlined above for in-vitro reconsti-
tution of human oogenesis and folliculogenesis from stem 
cells, a growing body of evidence supports that a reintroduc-
tion of OSCs back into ovarian tissue following chemother-
apy may enable at least some recovery of normal ovarian 
function and fertility. The first observations made in this 
regard came from mouse studies a decade ago, in which 

Figure 1.  Specification of primitive ovarian granulosa cells from ESCs in vitro, which are capable of interacting with early germ cells to initiate 

folliculogenesis. Differentiation of mouse ESCs engineered to express green fluorescent protein (GFP) driven by a ΔPE-Pou5f1 gene promoter (germ cell 

marker) and DsRed driven by a Foxl2 gene promoter (primitive granulosa cell marker) leads to the in-vitro formation of ovarian follicle-like structures 

containing GFP-positive oocytes surrounded by DsRed-expressing granulosa cells. Reproduced from Woods et al.139
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transplantation of EGFP-expressing OSCs into ovaries of 
adult wild-type female mice previously conditioned with 
chemotherapy was used to demonstrate that the cells  
can successfully differentiate into GFP-positive oocytes 
which complete maturation and produce viable offspring in 
natural mating trials.78 These observations from OSC trans-
plantation have been independently confirmed by others 
using chemotherapy-treated mice as a model90 and are in 

keeping with the well-established ability of SSC transplan-
tation to restore fertility in male mice conditioned with 
busulfan.114

A different way to look at the question of ovarian regen-
eration in vivo could entail therapeutic “reactivation” of resi-
dent OSCs, which perhaps undergo some type of protective 
dormancy in the face of cytotoxic insults, to resume normal 
function once the anticancer treatments are completed. 

Figure 2.  Working model for ex-vivo reconstitution of autologous human ovarian tissue. Aggregation of OSCs with primitive granulosa cells, specified 

from iPSCs or isolated from ovarian tissue during OSC purification, enables de-novo oogenesis and folliculogenesis in the reconstituted tissue in vitro. 

The tissue containing new follicles is then used for orthotopic grafting to the ovaries for in-vivo growth to produce maturing follicles for oocyte aspiration or 

for in-vitro follicle culture to generate oocytes. Oocytes obtained from either approach are subjected to in-vitro maturation and in-vitro fertilization to 

generate blastocysts for embryo transfer and establishment of successful pregnancies.
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However, such an approach to female fertility preservation 
or restoration would depend on several factors to realize 
success. One of these would be the identification and valida-
tion of deliverable “oogenic” factors capable of driving OSC 
differentiation into oocytes. Unfortunately, the list of these 
factors is quite small at present and includes histone dea-
cetylase inhibitors,73 bone morphogenetic protein 4 
(BMP4),84 Hippo signaling pathway components,95 and as-
yet unidentified factors present in the peripheral circulation 
of males.72 Nevertheless, the ability of OSCs to generate 
IVD oocytes in culture76,82,84,85,102,111 provides a firm foun-
dation on which to perform high-throughput screening of 
candidate oogenic factors that can then be rigorously tested 
for their ability to expand the ovarian reserve in vivo.120

A second point worth considering here is the type of 
anticancer treatment employed, since those regimens known 
to present a high risk for premature ovarian failure—such as 
radiotherapy or alkylating agents, may destroy resident 
OSCs. However, other chemotherapeutic agents, such as 
doxorubicin (Adriamycin), may not kill off OSCs and thus 
might allow for a spontaneous recovery of oocyte numbers 
and ovarian function, depending on dose, mode of delivery 
and duration of the treatment.69 Likewise, a recent study of 
age-matched ovarian tissue collected from women without 
and with previous treatment with an adriamycin, bleomycin, 
vinblastine, and dacarbazine (ABVD)-based chemothera-
peutic regimen uncovered a significant increase in nongrow-
ing follicle density in ABVD-exposed ovaries.147 Although 
the mechanistic basis of this surprising observation remains 
to be determined, it was postulated that OSCs were possibly 
recruited into action following the initial damage to the 
ovaries, leading to enhanced de-novo oogenesis and follicu-
logenesis after the ABVD treatments were ceased.147

Any approach designed to achieve ovarian regeneration 
in vivo should also take into account methods that entail 
delivery of various somatic cell preparations capable of 
broadly repairing ovaries damaged by anticancer treatments, 
possibly enabling resident stem cells to resume normal func-
tion. For example, early studies by Johnson et al69 demon-
strated that systemic bone marrow transplantation (BMT) 
into adult female mice conditioned beforehand with a com-
bination of cyclophosphamide and busulfan could partially 
restore oocyte numbers and ovarian function compromised 
by the chemotherapy regimen. Evaluation of the ovaries of 
the wild type mice receiving BMT using EGFP-expressing 
transgenic female mice as donors further indicated the pres-
ence of EGFP-positive oocytes contained in immature  
follicles.69 However, like the developmental arrest observed 
in oocytes generated from ESC-derived PGC-LCs trans-
planted into adult ovaries,128 bone marrow stem cell- 
derived oocytes exhibit a similar developmental arrest and 
do not contribute to the pool of ovulated eggs used for 
reproduction.148,149

Nonetheless, in rodent models, BMT has a clear beneficial 
effect on fertility preservation in chemotherapy-treated adult 
females,149 and these restorative outcomes are also observed in 
untreated female mice that exhibit natural aging-associated 
impairments in fertility and reproductive outcomes in natural 
mating trials.150 Although it remains unresolved if BMT exerts 
similar protective effects in women subjected to chemotherapy 
or radiotherapy,151 recent studies using human bone marrow-
derived stem cells infused into immunodeficient female mice 
treated with chemotherapy to induce ovarian damage indicate 
that human bone marrow cells can, like their mouse counter-
parts, significantly improve follicle development and fertil-
ity.152 These types of studies support that stem cell-based 
ovarian regeneration in women is, in all likelihood, possible, 
but that the approach will need to encompass a restoration of 
oogenesis and follicular development69,149,152 along with repair 
of the ovarian stroma and microvascular beds which are known 
to be negatively impacted by chemotherapy.153

Concluding Remarks and Future Directions
The field of fertility preservation has made tremendous strides 
over the years in bringing new hope to survivors of cancer that 
they can have genetically matched children once their treatments 
are completed. Progress in human oocyte, embryo, and ovarian 
tissue cryopreservation, coupled with continued improvements in 
IVM of human oocytes and in efforts to therapeutically protect 
ovarian function in vivo during the course of cytotoxic treatments 
aimed at killing cancer cells, offers several options for women to 
consider. However, many limitations exist, both in technology 
and in application, which support the need for development of 
additional approaches to achieve fertility preservation or restora-
tion. Of the various scientific directions currently being pursued, 
the relatively recent introduction of regenerative medicine-based 
technologies into efforts designed to improve natural and assisted 
reproduction is one of the most exciting, and potentially the most 
high-impact, areas of investigation.77,120,143,154,155

In this regard, it is important to emphasize that the success-
ful reconstitution of female gametogenesis in mice from mitot-
ically active germ cells to functional eggs entirely in 
vitro123,124—an accomplishment that only a decade ago was 
incomprehensible to most scientists in the field of reproductive 
biology, conceptually epitomizes the power of stem cell biology 
for potentially addressing unmet needs in reproductive medi-
cine. Likewise, the existence of oocyte-producing stem cells in 
the ovaries of mammals,59–62 which are fully capable of sup-
porting de-novo oogenesis in adult life,76,78,80,82,90,94,103 was not 
even considered a possibility 15 years ago because of five dec-
ades of previous dogmatic thinking arguing in support of fixed 
endowment of oocytes at birth.67,68 With human OSCs now 
identified and under rigorous investigation by several  
groups,82,85,102,108–111 scientists have tools to work with today 
that have the inherent capacity to forever change the landscape 
of human reproduction and infertility. These types of research 
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investigations, coupled with those in other exciting arenas of 
reproductive medicine and health, combine to offer great hope 
for the future of female fertility preservation.77,120,143,154–157
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