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Iron(III)-promoted rapid three-component deuteration of quinoxalinones with olefins and

NaBD4 is reported for the first time, which provides a novel, economic, and efficient

method for the rapid synthesis of deuterated quinoxalinones. In this transformation, a

radical pathway is involved according to the results of control experiments.
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INTRODUCTION

In recent years, deuterium-labeled compounds have received much attention because they play
an important role in studying chemical and biological processes (Mutlib, 2008; Gómez-Gallego
and Sierra, 2011; Konermann et al., 2011; Simmons and Hartwig, 2012; Atzrodt et al., 2018; Pirali
et al., 2019). The incorporation of deuterium is a very efficient strategy not only to measure the
kinetic isotope effect and track the reaction path in synthetic chemistry but also to change the
absorption, distribution, metabolism, and excretion (ADME) properties of drug candidates in
pharmaceutical chemistry (Atzrodt et al., 2007; Meanwell, 2011; Guengerich, 2012; Katsnelson,
2013; Gant, 2014). Since the first deuterated drug, deutetrabenazine, for the treatment of chorea
associated with Huntington’s disease was approved by the Food and Drug Administration in
2017 (Schmidt, 2017), which clearly proved a route for the development of deuterated drugs
in clinical medicine (Scheme 1A) (Junk and Catallo, 1997; Gowrisankar et al., 2012; Tolnai
et al., 2014; Ray et al., 2018), considerable interests have been devoted to developing novel and
efficient methods for the synthesis of such compounds (Yu et al., 2016; Kerr et al., 2017; Liang
et al., 2017; Li et al., 2017; Liu et al., 2018; Yang et al., 2018; Han et al., 2019; Shen et al.,
2019; Xu et al., 2019; Zhao et al., 2019; Chang et al., 2020; Dong et al., 2020). For instances,
in 2016, Chirik and coworkers reported an iron-catalyzed transformation for the deuteration
and tritiation of pharmaceuticals (Yu et al., 2016). Kerr’s group developed an iridium-catalyzed
hydrogen isotope exchange method for the site-selective deuteration of N-heterocycles (Kerr et al.,
2017). In 2012, Fe(III)/NaBH4-mediated free radical hydrofluorination of unactivated alkenes
was reported by Boger’s group (Barker and Boger, 2012) (Scheme 1B). Subsequently, Liu and
coworkers reported a similar method with Fe(III)-promoted free-radical hydroheteroarylation of
alkenes (Liang et al., 2017) (Scheme 1B). Dai and Yan, respectively developed novel methods
for the synthesis of deuterated arenes by a palladium-catalyzed, pyridine-directed remote meta-
C–H bond deuteration of arenes (Xu et al., 2019) or ruthenium catalysis (Zhao et al., 2019).
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SCHEME 1 | Three-component deuteration of quinoxalinones. (A) Representative bioactive compounds that contain deuterium. (B) Previous work Fe(III)-promoted

three-component deuteration. (C) Present Work: Iron (III)-promoted three-component deuteration.

In 2019, Wasa and coworkers demonstrated a B(C6F5)3-
catalyzed α-deuteration of carbonyl compounds with D2O,
providing an efficient protocol for the synthesis of deuterium
labeling carbonyl-based pharmaceuticals (Chang et al., 2020).
Despite their utilities, there is still a substantial interest in
developing novel and efficient methods for the synthesis of such
organic compounds.

Multicomponent reactions have become a hot field in modern
organic chemistry in recent years because multicomponent
reaction can form multiple chemical bonds in one step
in comparison with the traditional synthesis method, thus
realizing the simple, efficient, and atomic economic synthesis
of structural diversity compounds. Quinoxalines and their
derivatives are one of the important organic compounds
because they have been widely applied in organic synthesis,
material chemistry, agrochemical industries, and pharmaceutical
chemistry (TenBrink et al., 1994; Monge et al., 1995; Badran
et al., 2003; Refaat et al., 2004; Hoogewijs et al., 2013; Nakane

et al., 2015; Renault et al., 2017). Although a plenty of two-
component reactions for the synthesis of quinoxalinones were
achieved (Hong et al., 2019; Jin et al., 2019; Ke et al., 2019; Liu
et al., 2019; Wang et al., 2019, 2020; Wei et al., 2019; Xie et al.,
2019; Xue et al., 2019; Yan et al., 2019; Zhang H. et al., 2019;
Zhang W. et al., 2019; Bao et al., 2020).

Multicomponent transformations were rarely reported.
In 2019, Studer and coworkers demonstrated a visible-
light-initiated three-component reaction of quinoxalinones,
olefins, and perfluoroalkyl iodides (Zheng and Studer,
2019). In the same year, Koley’s group disclosed a
metal-free domino three-component radical cascde
reaction of quinoxalinones, olefins, and sulfinic acids
(Dutta et al., 2019).

We also achieved a useful method for the rapid synthesis of
quinoxalinone-containing organoazides using three-component
cascade reaction of quinoxalinones with olefins and TMSN3

(Shen et al., 2020). Keeping on our interests in developing simple
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and efficient methods for the synthesis of quinoxalinones (Xu
et al., 2019; Zhang H. et al., 2019; Shen et al., 2020), herein,
we demonstrated a radical-type three-component deuteration
of quinoxalinones with olefins and NaBD4 mediated by
Fe(NO3)3•9H2O for the first time (Scheme 1C).

RESULTS AND DISCUSSION

Initially, we commenced three-component deuteration of
quinoxalinones by the reaction of 1-methylquinoxalin-2(1H)-
one (1a), 2.0 equiv of styrene (2a), 1.0 equiv of NaBD4 (3) 4.0
equiv of Fe(NO3)3•9H2O in ethanol at room temperature for
10min, providing the desired product 4a in 55% yield (Table 1,
entry 1). This reaction could not take place if other solvents
(MeCN, dichloromethane (DCM), dioxane, dimethylformamide
(DMF), dimethyl sulfoxide (DMSO)] (Table 1, entries 2–6)
or catalysts (Table 1, entries 12–17) [FeBr3, CuCl2, CuO,
(NH4)2Ce(NO3)6, Fe2(ox)3, FeF3], or no catalyst (Table 1, entry
18) were used. However, it surprised us that using the mixed
solvent of ethanol and acetonitrile (v/v = 1:1) could improve
the reaction yield to 65% (Table 1, entry 7 among entries 7–
11). Subsequently, the dosage of styrene 2a and NaBD4 3 were
screened (Table 1, entries 19–23). The yield was decreased to 40%
when amount of 2a was reduced from 2.0 to 1.0 equiv (Table 1,
entry 19). By increasing the amount of NaBD4 3 from 1.0 to
2.0 equiv, a highest yield (73%) was observed (Table 1, entry
23). Furthermore, the product yield could also not be further
improved no matter changing the amount of Fe(NO3)3•9H2O
(Table 1, entries 24–25) or reaction time (Table 1, entries 26–
27). Thus, the highest yield could be obtained when the mixture
of 1-methylquinoxalin-2(1H)-one (1a), 2.0 equiv of styrene (2a),
2.0 equiv of NaBD4 (3) in EtOH/CH3CN (4.0ml, v/v = 1:1)
were reacted at 4.0 equiv of Fe(NO3)3•9H2O as oxidant at room
temperature for 10 min.

With the optimized reaction conditions in hand, the substrate
scope of the three-component deuteration was subsequently
explored by using various quinoxalinones (1) with styrene (2a)
and NaBD4 (3) (Table 2). To our delight, a wide range of N-
protecting groups including N-methyl, N-ethyl, N-butyl, N-
cyclopropylmethyl, and N-esteryl groups could work well under
standard conditions, affording the target products (4a−4e) in
70–77% yields. Quinoxalinones with various N-benzyl groups or
the methoxyl, chloro, bromo, and methyl groups on the benzene
ring were also tolerated in this reaction, as demonstrated with
products 4f−4q, or 4r−4u in good yields. It was noteworthy
that the N-free protecting quinoxalinone was also suitable for
the transformation; the product (4v) was obtained in 66% yield.
Unfortunately, other N-heterocycles, such as theophylline and
4-hydroxyquinazoline, could not undergo the reaction (see SI).

Some other olefins were then tested by the reaction with
1-methylquinoxalin-2(1H)-one (1a) and NaBD4 (3) (Table 3).
It was found that aromatic olefins bearing electron-rich or
electron-poor substituents (4aa−4ai) could react smoothly,
affording the desired products in good yields. The transformation
with nonfunctionalized olefin was also successful, giving
the corresponding product 4aj in 75% yield. The multiple

TABLE 1 | Optimization of reaction conditionsa.

.

Entry 2a (x) 3(y) Oxidant Solvent Yield (%)b

1 2 1 Fe(NO3)3•9H2O EtOH 55

2 2 1 Fe(NO3)3•9H2O MeCN 0

3 2 1 Fe(NO3)3•9H2O DCM 0

4 2 1 Fe(NO3)3•9H2O Dioxane 0

5 2 1 Fe(NO3)3•9H2O DMF 0

6 2 1 Fe(NO3)3•9H2O DMSO 0

7 2 1 Fe(NO3)3•9H2O MeCN/EtOH 65

8 2 1 Fe(NO3)3•9H2O DCM/EtOH 60

9 2 1 Fe(NO3)3•9H2O Dioxane/EtOH 30

10 2 1 Fe(NO3)3•9H2O DMF/EtOH Trace

11 2 1 Fe(NO3)3•9H2O DMSO/EtOH Trace

12 2 1 FeBr3 MeCN/EtOH 0

13 2 1 CuCl2 MeCN/EtOH 0

14 2 1 CuO MeCN/EtOH 0

15 2 1 (NH4)2Ce(NO3)6 MeCN/EtOH 0

16 2 1 Fe2(ox)3 MeCN/EtOH 0

17 2 1 FeF3 MeCN/EtOH 0

18 2 1 – MeCN/EtOH 0

19 1 1 Fe(NO3)3•9H2O MeCN/EtOH 40

20 3 1 Fe(NO3)3•9H2O MeCN/EtOH 65

21 3 2 Fe(NO3)3•9H2O MeCN/EtOH 71

22 3 3 Fe(NO3)3•9H2O MeCN/EtOH 72

23 2 2 Fe(NO3)3•9H2O MeCN/EtOH 73

24c 2 2 Fe(NO3)3•9H2O MeCN/EtOH 55

25d 2 2 Fe(NO3)3•9H2O MeCN/EtOH 73

26e 2 2 Fe(NO3)3•9H2O MeCN/EtOH 59

27f 2 2 Fe(NO3)3•9H2O MeCN/EtOH 72

aReaction conditions: 1a (0.2 mmol), 2a (x equiv), 3 (y equiv), oxidant (4.0 equiv), solvent

(4.0 ml, v/v = 1:1), room temperature, open flask, 10 min.
b Isolated yields.
cFe(NO3 )3•9H2O (3.0 equiv).
dFe(NO3 )3•9H2O (5.0 equiv).
eThe reaction was performed in 5 min.
fThe reaction was performed in 20 min.

substituted olefin (4ak) and cyclic olefin (4al) were also
compatible, providing the target products in 60 and 76% yields,
respectively (Tang et al., 2015; Yi et al., 2017). In addition,
olefins with various ester substituents were also well tolerated,
affording the target products (4am−4aq) in good yields.
More interestingly, olefins with high-activity functional groups
including halo (4ar) and alcohol substituents (4as−4av) also
could be converted into corresponding products in good yields
(65–79%). However, other olefins containing heteroaromatic
ring, such as 2-vinylpyridine, 4-vinylpyridine, and 1-vinyl-
2-pyrrolidone could not be transformed into corresponding
products (see SI).
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TABLE 2 | Substrate scope of quinoxalinonesa,b.

aReaction conditions: 1 (0.2 mmol), 2a (2.0 equiv), 3 (2.0 equiv), Fe(NO3 )3•9H2O (4.0 equiv), MeCN/EtOH (4.0 ml, v/v = 1:1), room temperature, open flask, 10 min.
b Isolated yields.

To demonstrate the synthetic utility of our method, a
gram-scale experiment was performed to synthesize 1-methyl-
3-(1-phenylethyl-2-d)quinoxalin-2(1H)-one (4a) in 66% yield
(Scheme 2A). It was worth mentioning that the modification
of estrone derivative further demonstrated its synthetic utility
(Scheme 2B).

To understand the reaction mechanism, the preliminary
mechanistic studies was proceeded (Scheme 3). When 2.0
equiv of TEMPO (2,2,6,6-tetramethyl-piperidin-1-oxyl)
were used as radical inhibitor, the reaction was completely
inhibited (Scheme 3A). In addition, the transformation
of 1-methylquinoxalin-2(1H)-one (1a) and diethyl 2,2-
diallylmalonate (5a) with NaBD4 (3) performed to give
product 6a in 70% yield (Scheme 3B). All these results
clearly implied that a radical pathway was responsible for the
three-component reaction.

Based on the above experimental results and previous
reports (Yi et al., 2017; Yan et al., 2019; Shen et al., 2020),
a probable radical mechanism for the three-component

reaction was proposed (Scheme 4). First, deuterium radical
(A) was generated from NaBD4 in the presence of Fe(III).
Second, the generated deuterium radical (A) attacked
olefin 2a to afford alkyl radical (B). Third, alkyl radical
(B) then attacked quinoxalinone 1a to give nitrogen
radical (C), which underwent a 1,2-hydrogen shift process
to produce carbon radical (D). After the generation of
carbon cation (E) from carbon radical (D) by the oxidation
of Fe(III), the final product 4a was obtained through a
deprotonation process.

EXPERIMENTAL SECTION

General Information
All reagents and deuterated solvents were commercially available
and used without further purification. All products were
separated by silica gel (200–300 mesh) column chromatography
with petroleum ether (PE) (60–90◦C) and ethyl acetate
(EA). 1H, 13C, and 19F NMR spectra were recorded on a
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TABLE 3 | Substrate scope of olefinsa,b.

aReaction conditions: 1 (0.2 mmol), 2 (2.0 equiv), 3 (2.0 equiv), Fe(NO3 )3•9H2O (4.0 equiv), MeCN/EtOH (4.0 ml, v/v = 1:1), room temperature, open flask, 10 min.
b Isolated yields.

Bruker Advance 500 spectrometer at ambient temperature
with CDCl3 as solvent and tetramethylsilane (TMS) as the
internal standard. Melting points were determined on an
X-5 Data microscopic melting point apparatus. Analytical
thin layer chromatography (TLC) was performed on Merk
precoated TLC (silica gel 60 F254) plates. Compounds for high-
resolution mass spectrometry (HRMS) were analyzed by positive
mode electrospray ionization (ESI) using Agilent 6530 QTOF
mass spectrometer.

Typical Reaction Procedure for the
Cascade Reaction of Quinoxalinones With
Unactivated Alkenes and NaBD4
A mixture of quinoxalinones (1) (0.2 mmol), olefins (2)
(2.0 equiv), Fe(NO3)3•9H2O (4.0 equiv), and MeCN/EtOH
(4.0ml, v/v = 1:1) in a 15-ml tube was stirred at room

temperature for 5min to make all the components dissolved.
Then, NaBD4 (2.0 equiv) was slowly added. The resulting
mixture was stirred for another 5min. After the completion
(as indicated by TLC), the reaction mixture was quenched
with aqueous NH3•H2O (2ml) and extracted with EtOAc
(5ml × 3). The collected organic layer was washed with
brine and dried with MgSO4. Finally, the organic solvent was
removed under reduced pressure, and the obtained residue was
purified by silica gel column chromatography (200–300 mesh
silica gel, PE/EA= 3:1).

Gram-Scale Synthesis of 1-methyl-3-(1-
phenylethyl-2-d)quinoxalin-2(1H)-one
A mixture of quinoxalinones (1) (6.0 mmol), olefins (2) (2.0
equiv), Fe(NO3)3•9H2O (4.0 equiv), and MeCN/EtOH (100ml,
v/v = 1:1) in a 250-ml flask was stirred at room temperature
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SCHEME 2 | (A,B) Gram-scale synthesis and modification of estrone derivative.

SCHEME 3 | Control experiments. (A) The experiment of deuterium radical inhibition. (B) The experiment of deuterium radical addition reaction.

for 5min to make all the components dissolved. Then, NaBD4

(2.0 equiv) was slowly added. The resulting mixture was stirred
for another 5min. After the completion (as indicated by TLC),
the reaction mixture was quenched with aqueous NH3•H2O
(50ml) and extracted with EtOAc (50ml × 3). The collected
organic layer was washed with brine and dried with MgSO4.
Finally, the organic solvent was removed under reduced pressure,
and the obtained residue was purified by silica gel column

chromatography (200–300 mesh silica gel, PE/EA = 3:1) to
provide product 4a in 66% yield (1.05 g).

CONCLUSION

In conclusion, a rapid three-component deuteration of
quinoxalinones with olefins and NaBD4 was reported
for the first time. Quinoxalinones or olefins bearing
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SCHEME 4 | Plausible mechanism.

various functional groups could undergo the reaction
smoothly, producing the target products in moderate
to good yields. This transformation gave a novel and
efficient method for the synthesis of previously unknown
deuterated quinoxalinones.
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