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Abstract: Surgical skill levels of young ophthalmologists tend to be instinctively judged by
ophthalmologists in practice, and hence a stable evaluation is not always made for a single
ophthalmologist. Although it has been said that standardizing skill levels presents difficulty as
surgical methods vary greatly, approaches based on machine learning seem to be promising for this
objective. In this study, we propose a method for displaying the information necessary to quantify
the surgical techniques of cataract surgery in real-time. The proposed method consists of two steps.
First, we use InceptionV3, an image classification network, to extract important surgical phases and
to detect surgical problems. Next, one of the segmentation networks, scSE-FC-DenseNet, is used
to detect the cornea and the tip of the surgical instrument and the incisional site in the continuous
curvilinear capsulorrhexis, a particularly important phase in cataract surgery. The first and second
steps are evaluated in terms of the area under curve (i.e., AUC) of the figure of the true positive rate
versus (1—false positive rate) and the intersection over union (i.e., IoU) obtained by the ground truth
and prediction associated with the region of interest. As a result, in the first step, the network was
able to detect surgical problems with an AUC of 0.97. In the second step, the detection rate of the
cornea was 99.7% when the IoU was 0.8 or more, and the detection rates of the tips of the forceps
and the incisional site were 86.9% and 94.9% when the IoU was 0.1 or more, respectively. It was thus
expected that the proposed method is one of the basic techniques to achieve the standardization of
surgical skill levels.

Keywords: cataract surgery; neural networks; anomaly detection; image classification;
image segmentation

1. Introduction

It is known that there is a correlation between the number of cases performed and postoperative
outcomes in surgery. For example, in gastric bypass surgery, the risk of postoperative complications is
about twice as high with surgeons who have done less than 500 operations as with those who have
done more than 500 operations [1]. In cataract surgery, the incidence of reactive corneal edema in the
central corneal thickness at 2 hours after surgery was reported to be approximately 1.6 times greater
for inexperienced surgeons than for experienced surgeons [2]. Therefore, shortening the acquisition
time for surgical skills is one of the most important issues in medicine.
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A common issue in surgical training is the difficulty in establishing objective criteria for the
evaluation of surgical techniques. Although it has been pointed out that the quantitative measurement
and standardization of surgical techniques is a necessary element for the systematic advancement of
surgical training [3], there are a great variety of techniques in the continuous curvilinear capsulorrhexis
(CCC) alone, which is essential in cataract surgery [4], and it is a difficult task to index all of them.
Therefore, this study proposes a method for displaying the information necessary to quantify surgical
techniques in real-time by identifying CCC and nuclear extraction, which have a high surgical difficulty,
detecting the occurrence of surgical problems, and tracking cornea and surgical instruments.

In this study, we propose a method to determine whether CCC and nuclear extraction phases,
which are critical surgical phases, have been successfully performed in cataract surgeries. The method’s
capability to detect abnormality is evaluated by comparing the time when the proposed method
detected a surgical problem with the actual time when the problem occurred. In addition, we propose
a method for real-time detection of the corneal area, the tips of the forceps, and the incisional site of a
patient in the CCC phase and evaluate its effectiveness.

2. Related Works

In recent years, video recording of surgical operations has become common practice and the use of
video recordings in research pertaining to surgeries has become extremely popular. For surgical phase
classification, we proposed a method [5] to extract the CCC and nuclear extraction phases, which are
particularly important surgical phases in cataract surgery, with real-time utilization of one of the neural
networks, InceptionV3 [6].

Detection of abnormal motions as well as detection and tracking of surgical instruments has
also been actively conducted. Sakabe et al. [7] and Suzuki et al. [8] detected abnormal motions
using video footage of the entire operating room. In Sakabe et al. [7], cubic higher-order local
auto-correlation (CHLAC [9]) was used to detect features that are not normally visible, such as a scene
where surgical instruments were picked up after being dropped on the floor. In Suzuki et al. [8],
the study, focusing on the fact that the rapid movement seen in the video occurs when there are
problems in operations, detected abnormal motions based on the amount of change in the video file
size. However, these detection methods are difficult to apply to cataract surgeries which involve less
movement, and it is not possible to detect surgical problems before they occur.

In the detection and tracking of surgical instruments, detection methods using bounding boxes [10]
and segmentation methods [11] have been proposed. However, it is difficult to track the fine movements
of the tips of surgical instruments, although the methods are suitable for tracking the rough movements
of surgical instruments. Furthermore, surgical evaluation based on the positional relationship between
the affected area and instruments is required, but the above method of tracking the instruments alone
cannot be used for such an evaluation. A study that evaluated the technology of robotic surgery has
been reported [12]; however, the proposed method is not applicable to cataract surgery performed
manually by surgeons because the motion of the surgical instruments is detected and evaluated by a
gyroscope attached to a robot.

Marco et al. [13,14] proposed a real-time simulation system for cataract surgery based on virtual
reality technology. They developed Phaco-emulsification [13], using a mesh-less shape-based dynamic
simulation algorithm and a smoothed particle hydrodynamics-based scheme. On the other hand,
the system [14] was developed on the premises of using a three-dimensional tactile device and binocular
display. Cataract surgery training is comprehensively available not only for Phaco but also for CCC,
by applying the said system [14]. The systems [13,14] are clearly useful in acquiring numerical data
associated with track dislocation, speed change, and so forth, of surgical instruments because they
occur in simulations on computers. In other words, the systems [13,14] will be powerful devices to
evaluate the surgical techniques of cataract surgery. In actual cataract surgery, however, acquiring
the above numerical data is not as simple a task as the data acquisition performed on simulation.
One of the objectives of the proposed method is to acquire the numerical data of various regions
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of interest from actual cataract surgery. If on-line data acquisition is feasible during actual cataract
surgery, it is expected that the evaluation established by the systems [13,14] is applicable to actual
surgical techniques. Besides, it is probable that the effectiveness of surgical training on simulation is
quantized with the proposed method.

3. Datasets

Ophthalmologists working at Saneikai Tsukazaki Hospital (Himeji, Japan) watched video
recordings of cataract surgeries performed at the hospital, and checked the time points when CCC
started, nuclear extraction finished, and surgical problems occurred. Such time points were registered
on electronic files. The use of these video recordings has been approved by the Ethics Committee of
Tsukazaki Hospital.

Let us discuss surgical problem detection. In this detection, 425 video recordings of cataract
surgeries were used. The resolution of the videos was 1920 × 1080 at a frame rate of 30 FPS with a
mean duration of about 1018 s and a standard deviation (SD) of about 1046 s. The above electronic files
were used to annotate surgical phases in the videos using labels. The number of classes is two. In other
words, the label “important phase” is assigned to frames corresponding to the period between the two
time points, from the time when CCC started through when nuclear extraction finished, while the label
“other” is assigned to frames corresponding to the period exclusively included as time slots when
neither CCC nor nuclear extraction were performed. The mean (SD) duration between the start of
CCC and the end of the nuclear extraction was about 376 s (427 s), while the mean (SD) duration of the
other phases was 642 s (798 s).

In surgical problem detection, we evaluated the neural network’s performance using 310 training
data (57 with problems and 253 without problems), 15 validation data (5 with problems and 10 without
problems), and 100 test data (50 with problems and 50 without problems) from 425 videos. The video
frame rate was downsampled to 1 FPS, and the resolution was downsampled to 256 × 168 to perform
surgical phase recognition and problem detection frame-by-frame. This yielded 422,559 images from
425 videos.

Recall that the above electronic files have information on the occurrence of surgical problems.
In addition to one of the two labels, important phase or other phase, a label to indicate the presence
or absence of a surgical problem was also added to each video frame. The labeling was performed
based on information associated with surgical problems in the above files, and it is safely said that
the annotation of surgical problems was made by ophthalmologists working at Tsukazaki Hospital.
The phase breakdown of the obtained image data is shown in Table 1, and a sample of the actual images
of each phase are shown in Figure 1. Additionally, a problem breakdown is tabulated in Table 2.

Table 1. Breakdown of datasets for the detection of cataract surgical phases.

Detected Class Training Data
(Images)

Validation Data
(Images)

Test Data
(images)

Total
(Images)

CCC to nuclear extraction (normal) 60,304 3492 10,085 73,881
CCC to nuclear extraction (abnormal) 37,532 2561 42,196 82,289

Others 153,086 11,759 101,544 266,389
Total 250,922 17,812 153,825 422,559

Also, the performance of detecting the surgical instrument was only evaluated for the CCC
phase without problems. The occurrence of a problem in cataract surgery often results in either a
low rate of progress or in interruption. The surgery then tends to consume much time. In such cases,
no remarkable change appears between the consecutive frames of the video in which the surgery
is recorded. When employing machine learning, acquiring data with high diversity is preferable to
acquiring a large amount of data with low diversity. In other words, training data used to construct
discrimination models by machine learning should be prepared from frames with clear changes made
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by surgical instruments. This is why surgical instrument detection is only applied to cases where no
problems occur. Of the 302 videos, 211 videos were utilized as training data, 30 as validation data,
and 61 as test data. As with surgical problem detection, the video frame rate was downsampled to
1 FPS, and the resolution was downsampled to 256 × 128 to perform surgical instrument detection.
This resulted in 9354 training data, 981 validation data, and 2299 test data from 302 videos, for a total
of 12,634 images. Ophthalmologists working at Tsukazaki Hospital annotated surgical instruments
in videos with labels. They then used the annotation tool known as LabelMe [15]. The labels are as
follows: the patient’s corneal area, the tips of the forceps, and the incisional site. Examples of an input
image and the corresponding segmentation images are shown in Figure 2.J. Clin. Med. 2020, 9, x FOR PEER REVIEW 4 of 17 

 

 
Figure 1. Sample images of each surgical phase. (A) CCC (Inamura forceps, retro illumination 
method), (B) nuclear extraction, (C) others (intraocular lens insertion). 

Table 1. Breakdown of datasets for the detection of cataract surgical phases. 

Detected Class Training Data 
(Images) 

Validation Data 
(Images) 

Test Data 
(images) 

Total 
(Images) 

CCC to nuclear extraction (normal) 60,304 3492 10,085 73,881 
CCC to nuclear extraction (abnormal) 37,532 2561 42,196 82,289 

Others 153,086 11,759 101,544 266,389 
Total 250,922 17,812 153,825 422,559 

Table 2. Breakdowns of surgical problems. As there were surgeries in which multiple problems 
occurred at the same time, the number of surgical videos with problems does not correspond to the 
total number of problem breakdowns. 

Type of Problem Number of Events 
Vitreous prolapse 44 
Capsule rupture 39 

Damage to the iris 31 
Iris prolapse 30 

Rupture of the zonule of the Zinn 15 
Dropped nucleus 14 

Discontinuous CCC 13 
CCC tear 7 

Wound suture 5 

 
Figure 2. Segmentation example of surgical instrument detection. (A) input image, (B) ground truth 
of corneal area, (C) ground truth of forceps’ tips, (D) ground truth of incisional site. 

4. Neural Networks (NN) 

4.1. InceptionV3 

In this study, we used a convolutional neural network (hereinafter referred to as NN) model, 
known as InceptionV3, to recognize the cataract surgery phases and detect surgical problems. It is 
considered that surgery-phase recognition deeply depends on NN’s capability in classifying the 
given data. Surgical-problem detection requires extremely short response times for the data 
presented to the trained NN. It can generally be considered that data-classification accuracy and short 
response time are related to the transactions. We selected InceptionV3, which provides high 
performance with real-time operating capability, by referring to the benchmark [16] which 
investigated the relationship between the performance of major NN and computational capacity. 

Figure 1. Sample images of each surgical phase. (A) CCC (Inamura forceps, retro illumination method),
(B) nuclear extraction, (C) others (intraocular lens insertion).

Table 2. Breakdowns of surgical problems. As there were surgeries in which multiple problems
occurred at the same time, the number of surgical videos with problems does not correspond to the
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Type of Problem Number of Events

Vitreous prolapse 44
Capsule rupture 39

Damage to the iris 31
Iris prolapse 30

Rupture of the zonule of the Zinn 15
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Discontinuous CCC 13
CCC tear 7

Wound suture 5
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Figure 2. Segmentation example of surgical instrument detection. (A) input image, (B) ground truth of
corneal area, (C) ground truth of forceps’ tips, (D) ground truth of incisional site.

4. Neural Networks (NN)

4.1. InceptionV3

In this study, we used a convolutional neural network (hereinafter referred to as NN) model,
known as InceptionV3, to recognize the cataract surgery phases and detect surgical problems. It is
considered that surgery-phase recognition deeply depends on NN’s capability in classifying the given
data. Surgical-problem detection requires extremely short response times for the data presented to
the trained NN. It can generally be considered that data-classification accuracy and short response
time are related to the transactions. We selected InceptionV3, which provides high performance with
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real-time operating capability, by referring to the benchmark [16] which investigated the relationship
between the performance of major NN and computational capacity.

InceptionV3 replaces n × n convolution with 1 × n and n × 1 convolution called the Inception
module and introduces a mechanism to reduce the number of channels in 1 × 1 convolution called the
bottleneck layer, which reduces the number of parameters and computation time and suppresses the
vanishing gradient.

The number of parameters and the number of computations in the convolutional layer is
represented by the Equations (1) and (2), respectively, where kh, kw, h, w, cin, and cout are the vertical
kernel size of the convolution, the horizontal kernel size of the convolution, the vertical size of the
input tensor, the horizontal size of the input tensor, the channel size of the input tensor, and the channel
size of the output tensor, respectively.

(Number of parameters) = khkwcincout + cout (1)

(Number of computations) = khkwhwcincout (2)

Therefore, if n × n convolution is replaced by 1 × n and n × 1 convolution, the number of
parameters and the number of computations can be reduced to about n/2. In addition, the bottleneck
layer can significantly reduce the number of parameters and the number of computations thereafter by
reducing the channel size of the tensor with a small number of parameters and computation times.

In this study, we used five types of Inception modules, as shown in Figure 3. “Base” is the
input tensor to the Inception module. The “conv” is a convolutional layer, where the convolution is
performed on a local region of the image and learns high-order features of the image. The pooling layer
compresses the tensors to reduce the amount of computation and prevent over-learning. “Max Pooling”
computes the maximum value of the local region of the tensor, and “Average Pooling” computes the
average value and compresses it. “Filter Concat” represents the concatenation of tensors.
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image, and learns high-order features of the image. The pooling layer compresses the tensors to reduce
the amount of computation and prevent over-learning. “Max Pooling” computes the maximum value
of the local region of the tensor, and “Average Pooling” computes the average value and compresses
it. “Filter Concat” represents the concatenation of tensors. (A) The module obtained by replacing
part of the 5 × 5 convolution with 3 × 3 convolutions. (B) The module obtained by replacing 5 × 5
convolution with 3 × 3 convolutions. (C) The module obtained by replacing 7 × 7 convolution with
1 × 7 convolution and 7 × 1 convolution. (D) The module obtained by replacing 7 × 7 convolution with
1 × 7 convolution, 7 × 1 convolution and 3 × 3 convolution. (E) The module obtained by replacing 3 × 3
convolution with 1 × 3 convolution and 3 × 1 convolution.

4.2. scSE-FC-DenseNet

In this study, one of the segmentation NNs, scSE-FC-DenseNet, was used to detect the corneal
area of the patient and track the surgical instruments. High computational complexity is imposed on a
segmentation NN, and hence the NN must be carefully designed if its response time is shortened so
that the NN can safely be said to be nearly real time. The scSE-FC-DenseNet is an FC-DenseNet [17],
which incorporates the Dense block proposed in DenseNet [18] into U-Net [19], with an attention
mechanism called the scSE (Spatial and Channel Squeeze & Excitation) module [20]. It is discussed
in [17] that employing DenseNet enables us to easily adjust the computational complexity imposed on
the NN.

U-Net is a type of Fully Convolutional Networks (FCNs). As shown in Figure 4, it is characterized
by the introduction of a mechanism called “skipped connections” that utilizes information during the
encoding process when the encoded image is decoded. By using the skip connection, small features
that are lost due to compression of the image by the pooling layer can be restored.
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DenseNet is a NN that uses a structure called Dense block, which combines a skipped connection
and a bottleneck layer. This structure allows us to construct NNs that do not increase the number of
parameters explosively, even when the convolutional layer is more multi-layered. FC-DenseNet is a
NN obtained by replacing the usual convolutional layer used in U-Net with this Dense block.



J. Clin. Med. 2020, 9, 3896 7 of 17

The scSE module is a combination of the Spatial Squeeze and Excitation (cSE) proposed in SE-Net,
an image classification NN [21], which averages the whole image for each channel (Squeeze) and
gives its attention (Excitation), and an sSE (Channel Squeeze and Spatial Excitation) that squeezes
to the channel direction and excites each pixel. This module can effectively introduce the attention
mechanism in a segmentation NN.

In this study, we used the scSE-FC-DenseNet40, which consists of 40 layers of Dense blocks, with a
scSE module embedded after each Dense block.

5. Monitoring of Cataract Surgery

5.1. Problem Detection in Critical Phases

For the problem detection in the critical phases of cataract surgery, the convolutional NN model
known as InceptionV3 was used to recognize two surgical phases, CCC to nuclear extraction and
others. The input to the NN model was 299 × 168 × 3 color images. The number of output layer
neurons was set to 2, the number of surgical processes to be recognized. The class corresponding
to the maximum value of the output layer neurons was set to the surgical phase estimated by the
model. The structure of the InceptionV3 model used in the study is shown in Table 3. The “type”,
“Patch size/stride”, and “Input shape” columns indicate the type of layer, the size of the local window
and its stride width, and the size of the tensor to be input to each layer, respectively.

Table 3. The InceptionV3 model used.

Type Patch Size/Stride Input Shape

Convolution 3 × 3/2 299 × 168 × 3
Convolution 3 × 3/1 149 × 83 × 32

Convolution padded 3 × 3/1 147 × 81 × 32
Max pooling 3 × 3/2 147 × 81 × 64
Convolution 1 × 1/1 73 × 40 × 64
Convolution 3 × 3/1 73 × 40 × 80
Max pooling 3 × 3/2 71 × 38 × 192

Inception As in Figure 3A 35 × 18 × 192
2 × Inception As in Figure 3A 35 × 18 × 256

Inception As in Figure 3B 35 × 18 × 288
4 × Inception As in Figure 3C 35 × 18 × 288

Inception As in Figure 3D 17 × 8 × 768
2 × Inception As in Figure 3E 8 × 3 × 1280

Average pooling 8 × 3 8 × 3 × 2048
Full connection 2048
Full connection 1024

SoftMax 2

The NN model was trained by initializing each parameter with trained parameters in the ILSVRC
2012 dataset [22]. The training parameters were set to a batch size of 32, the loss function of categorical
cross-entropy, the optimization function of momentum SGD (learning rate, 0.0001; momentum, 0.9),
and the number of epochs of a maximum of 300. In addition, for pre-processing, the pixel values of the
images were normalized in the range of 0 to 1. To prevent over-learning, we randomly applied the
image augmentation process as shown in Table 4. To address the imbalance in the number of images
for each phase, the classes with a small number of images were trained multiple times within one
epoch. The network was trained on a system with two NVIDIA GTX 1080 Ti GPUs and the evaluation
was done on a single GPU.



J. Clin. Med. 2020, 9, 3896 8 of 17

Table 4. Types of image processing used for learning surgical phase recognition and their parameters.

Types Parameters

Rotation Up to 90 degrees
Horizontal movement Up to 20%

Vertical movement Up to 20%
Shear conversion Up to 5 degrees

Scaling Up to 10%
Channel shift Up to 100

Flip horizontally
Flip vertically

Random erasing [23] Up to 25%

We then used a similar method to identify whether any problems occurred during the critical
phases of surgery. The network, training parameters, and image augmentation process parameters
used were the same as for the critical phase recognition.

Next, our two NN models were used to detect surgical problems and estimate the time of their
occurrence. The moving average of the output values of InceptionV3 was used to stabilize the output
results of the phase recognition and problem detection. We set the number of frames for moving
average to 10 because increasing the number of image frames used for moving average slows down
the response time. First, the images obtained from the surgical videos were arranged in chronological
order and inputted into the InceptionV3 to obtain the output results. In the output layer, three neurons
correspond to three classes, i.e., CCC, nuclear extraction, and others. Let evali j denote the value of the
jth output neuron at the ith second, the value of the moving average is denoted as follows.

Avei j =
1

10

i∑
k=i−9

evalk j (i > 9, 1 ≤ j ≤ 2) (3)

Next, the risk of surgical problems, Dt, was defined and calculated by the Equation (4), where PAi j ,
TAi j , i, and j are the moving average of the output values of the surgical phase recognition NN calculated
by the Equation (3), the moving average of the output values of the surgical problem detection NN
calculated by the Equation (3), the ith second of the movie, and the jth output neuron, respectively.

Dt = PAi jTAi j (i > 9, 1 ≤ j ≤ 2) (4)

Finally, the time when the risk Dt exceeded the threshold was set as the time of the surgical
problem estimated by the NN.

5.2. Tracking Cornea and Surgical Instruments during the CCC Phase

In this study, scSE-FC-DenseNet40, a segmentation NN built with 40 layers of Dense block,
was used to detect the corneal area, the incisional site, and the tips of surgical instruments during
the CCC phase. The 256 × 128 color images were used as the input and 256 × 128 × 3 as the output
for NN (input image size, 256 × 128; the number of classes, 3). The actual NN structure used in the
study is shown in Table 5. The “Skip Connection” column indicates the connection between the layers,
which means that the output tensor of the layer corresponding to Output (x) is connected to the input
tensor of the layer corresponding to Concat (x). The training parameters were set to a batch size of
16, the loss function of mean square error, the optimization function of AdaBound (learning rate:
0.001) [24], and the number of epochs of a maximum of 300. In addition, for pre-processing, the pixel
values of the images were normalized in the range of 0 to 1. To prevent over-learning, we randomly
applied the image augmentation process as shown in Table 6. The network was trained on a system
with two NVIDIA GTX 1080 Ti GPUs and the evaluation was done on a single GPU.
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Table 5. Structure of the scSE-FC-DEnseNet40 used.

Type Patch Size/Stride Input Shape Skip Connection

Convolution 3 × 3/1 256 × 128 × 3
2 × (Dense block & scSE module) 256 × 128 × 48

Convolution 1 × 1/2 256 × 128 × 80
4 × (Dense block & scSE module) 128 × 64 × 80 Output (1)

Convolution 1 × 1/2 128 × 64 × 144
8 × (Dense block & scSE module) 64 × 32 × 144 Output (2)

Convolution 1 × 1/2 64 × 32 × 272
6 × (Dense block & scSE module) 32 × 16 × 272 Output (3)

Transposed Convolution 3 × 3/2 32 × 16 × 96
8 × (Dense block & scSE module) 64 × 32 × 368 Concat (3)

Transposed Convolution 3 × 3/2 64 × 32 × 128
4 × (Dense block & scSE module) 128 × 64 × 272 Concat (2)

Transposed Convolution 3 × 3/2 256 × 128 × 64
2 × (Dense block & scSE module) 256 × 128 × 144 Concat (1)

Convolution 1 × 1/1 256 × 128 × 176
Sigmoid 256 × 128 × 3

Table 6. Types of image processing used for learning corneal and positions of surgical instruments,
and their parameters.

Types Parameters

Rotation Up to 90 degrees
Horizontal movement Up to 20%

Vertical movement Up to 20%
Shear conversion Up to 5 degrees

Scaling Up to 20%
Flip horizontally

Flip vertically

6. Experimental Results

6.1. Problem Detection in Critical Phases of Cataract Surgery

The results of the frame-by-frame recognitions of critical phases and surgical problems using
InceptionV3 are shown in Tables 7 and 8. The correct response rates for the critical phases and others
were 84.4% and 94.9%, respectively, with a mean correct response rate of 91.3% (Table 7). The correct
response rates for “without problems” and “with problems” were 86.0% and 91.2%, respectively, with a
mean correct response rate of 90.2% (Table 8). Note that the results were obtained by applying the
proposed method to videos with frames in which surgical instruments appeared. The proposed phase
recognition and problem detection can be applied to a video consisting of consecutive frames without
surgical instruments, because in addition to the instruments, the eye area is also targeted for training.
However, their accuracy decreases in such cases.

Table 7. The results of critical phase recognition per image using the NN.

Correct Class

Detected Class
Critical [%] Others [%]

Correct Response Rate
[%]

Critical 84.4 15.6 84.4
Others 5.1 94.9 94.9

Mean: 91.3%
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Table 8. The results of problem detection per frame using the NN.

Correct Class

Detected Class Without Problems
(%)

With Problems
(%)

Correct Response Rate
(%)

Without problems 86.0 14.0 86.0
With problems 8.8 91.2 91.2

Mean: 90.2%

Next, we calculated the risk level Dt for each video using Equation (4). Based on the obtained risk
levels, the videos without problems were labeled as negative, and the videos with problems as positive,
and a ROC curve was drawn (Figure 5). Table 9 shows the results of the surgical problem detection
for each video when using the obtained threshold value as a reference. The AUC was 0.970, and the
correct response rates were 94% for “without problems” and 90% for “with problems”, with a mean
correct response rate of 92%. The histogram in Figure 6 represents the differences between the time
when the risk level Dt exceeded the threshold and the time when the ophthalmologist determined that
a problem occurred in a video, for the videos correctly recognized as “with problems”. The “0” time
point on the horizontal axis means that there was no difference between the problem-occurring time
determined by the ophthalmologist and that detected by the NN. It is shown that the NN detected
problems earlier than the ophthalmologist in 42 out of 44 cases. Figure 7 shows examples of the risk
level Dt for videos without problems Figure 7A and videos with problems Figure 7B. The figure clearly
shows that the risk level in Figure 7B is larger than Figure 7A.
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Table 9. The results of problem detection per video using the NN.

Correct Class

Detected Class Without Problems
(%)

With Problems
(%)

Correct Response Rate
(%)

Without problems 94 6 94
With problems 10 90 90

Mean: 92%
J. Clin. Med. 2020, 9, x FOR PEER REVIEW 11 of 17 

 

 
Figure 6. Differences between the problem-occurring time detected by the NN and the problem-
occurring time determined by the ophthalmologist. The “0” time point on the horizontal axis means 
that there was no difference between the problem-occurring time determined by the ophthalmologist 
and that detected by the NN. If the time is negative, it means that the NN detected the problem earlier 
than the ophthalmologist. 

 
Figure 7. Difference in risk levels for videos with or without problems. (A) the risk level for videos 
without problems, (B) the risk level for videos with problems. 

6.2. Tracking Cornea and Surgical Instruments during the CCC Phase 

The tracking of the cornea and surgical instruments was evaluated with the Equation (5) and 𝐴𝐶𝐶ூஹே, defined based on the IoU (Intersection over Union) shown in Figure 8. 𝐴𝐶𝐶ூஹே is denoted 
by the Equation (6). IoU = 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛   (5) 

𝐴𝐶𝐶୍୭ஹே = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 data satisfying IoU  𝑁 𝑑𝑎𝑡𝑎𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑑𝑎𝑡𝑎   (6) 

The correct response rates of detecting the cornea, the incisional site, and the tips of the forceps 
are shown in Table 10. Note that the value of N is a parameter related to IoU. IoU takes the value 1 

Figure 6. Differences between the problem-occurring time detected by the NN and the
problem-occurring time determined by the ophthalmologist. The “0” time point on the horizontal
axis means that there was no difference between the problem-occurring time determined by the
ophthalmologist and that detected by the NN. If the time is negative, it means that the NN detected the
problem earlier than the ophthalmologist.

J. Clin. Med. 2020, 9, x FOR PEER REVIEW 11 of 17 

 

 
Figure 6. Differences between the problem-occurring time detected by the NN and the problem-
occurring time determined by the ophthalmologist. The “0” time point on the horizontal axis means 
that there was no difference between the problem-occurring time determined by the ophthalmologist 
and that detected by the NN. If the time is negative, it means that the NN detected the problem earlier 
than the ophthalmologist. 

 
Figure 7. Difference in risk levels for videos with or without problems. (A) the risk level for videos 
without problems, (B) the risk level for videos with problems. 

6.2. Tracking Cornea and Surgical Instruments during the CCC Phase 

The tracking of the cornea and surgical instruments was evaluated with the Equation (5) and 𝐴𝐶𝐶ூஹே, defined based on the IoU (Intersection over Union) shown in Figure 8. 𝐴𝐶𝐶ூஹே is denoted 
by the Equation (6). IoU = 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛   (5) 

𝐴𝐶𝐶୍୭ஹே = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 data satisfying IoU  𝑁 𝑑𝑎𝑡𝑎𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑑𝑎𝑡𝑎   (6) 

The correct response rates of detecting the cornea, the incisional site, and the tips of the forceps 
are shown in Table 10. Note that the value of N is a parameter related to IoU. IoU takes the value 1 

Figure 7. Difference in risk levels for videos with or without problems. (A) the risk level for videos
without problems, (B) the risk level for videos with problems.



J. Clin. Med. 2020, 9, 3896 12 of 17

6.2. Tracking Cornea and Surgical Instruments during the CCC Phase

The tracking of the cornea and surgical instruments was evaluated with the Equation (5) and
ACCIoU≥N, defined based on the IoU (Intersection over Union) shown in Figure 8. ACCIoU≥N is denoted
by the Equation (6).

IoU =
Area o f Overlap
Area o f Union

(5)

ACCIoU≥N =
Number o f data satisfying IoU ≥ N data

Number o f all data
(6)
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The correct response rates of detecting the cornea, the incisional site, and the tips of the forceps
are shown in Table 10. Note that the value of N is a parameter related to IoU. IoU takes the value 1 as
its maximum. IoU = 1 means the prediction result obtained by the proposed method perfectly matches
the ground truth. IoU ≥ N means that the ratio of the area obtained by overlapping the prediction
result with ground truth compared with the area obtained by uniting the former to the latter is larger
than or equal to N. The correct response rate for the cornea showed remarkably high accuracy. On the
other hand, the correct response rates for the incisional site and the tips of the forceps were 94.9%
and 86.9% respectively, when the value of N in the Equation (6) was 0.1. In other words, the value
obtained with the Equation (6) is not high under N = 0.8. However, as shown in Figure 2, the area for
which the correct label is assigned for surgical instrument detection is exceedingly small; therefore,
even with the criteria, it seems that results for tracing the incisional site and the tips of forceps causes
no major troubles during practical use. It can be thus considered that the NN is capable of tracking
instruments successfully. Figure 9 shows examples of segmentation results and the visualization of
the segmentation. The image Figure 9A is an input image, and the images Figure 9B–D represent
the segmentation result of the cornea, the tips of the forceps, and the incisional site, respectively.
The image Figure 9E shows a visualization of the cornea (red circle), the tips of the forceps (blue circle),
and the incisional site (green circle). The trained scSE-FC-DenseNet40 outputs a value belonging to
the range 0 to 1 as certainty values of segmentation for each pixel. It is judged that the segmentation
result is appropriate as its certainty approaches the value 1. The certainty values of segmentation
for each pixel are made into a gradation map. The maps overlap with images to be segmented as
shown in Figure 9B–D. Here, the color becomes bluer (or redder) as certainty of segmentation for each
pixel approaches the value 0 (or 1). Binarization is executed provided that the threshold certainty of
segmentation for each pixel is set to the value 0.5. The circumscribed circle is next depicted for each of
the segmented objects. Figure 9E is then obtained as a result. Note that its ground truth is depicted as
shown in Figure 2.
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Table 10. Results of cornea and surgical instrument detections during the CCC phase. N is a parameter
related to IoU. IoU ≥ N means that the ratio of area obtained by overlapping the prediction result with
ground truth compared with the area obtained by uniting the former to the latter is larger than or equal
to N.

ACCIoU≥N

N
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Cornea 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.7 92.6
Incisional site 94.9 44.7 7.85 7.66 7.66 7.66 7.66 7.66 7.66
Tips of forceps 86.9 28.5 6.14 6.14 6.14 6.14 6.14 6.14 6.14
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Figure 9. Sample images of a patient’s corneal area and the visualization of surgical instrument
detection results. NN outputs the certainty of segmentation for each pixel in the range of 0 to 1.
The certainty that is closer to 1 indicates a class that NN wants to detect. Images (B–D) are overlapping
image (A) with gradation maps, showing blue when the certainty value is 0, and red when the certainty
value is 1. Image (E) shows a circumscribed circle of the segmented figure by binarizing with the
certainty of 0.5 as a threshold value. In addition, the ground truth is the same as in Figure 2.

7. Discussion

First, the validity of estimating the problem-occurring time by identifying surgical problems is
examined. One of the possible applications of this problem detection NN is the construction of a
system that detects a problem during surgery and alerts physicians to stop the surgery. This application
considers the fact that the NN could estimate the occurrence of a problem earlier than an ophthalmologist
in most cases. This was shown in the histogram in Figure 6. This implies that the risk alert based on the
proposed method is quite promising. However, the proposed method estimates the problem-occurring
time more than one minute before the ophthalmologist in most videos. The estimated time by
the NN may not be consistent with the estimated time that ophthalmologists prefer. For example,
residents tend to make larger incisions than experienced ophthalmologists during the CCC phase,
and the proposed method may place too much weight on this tendency. It seems that the above
are caused by differences that sometimes arise in evaluation criteria for surgical techniques between
experienced ophthalmologists and the proposed method. The proposed method should be based
on the evaluation criteria for surgical techniques that the majority of experienced ophthalmologists
consider to be appropriate. To achieve this objective, it is unfavorable that differences sometimes arise
in the evaluation criteria. The proposed method therefore must be refined so that its criteria can be as
close as possible to those of experienced ophthalmologists. Refining the proposed method thus makes
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it possible to create a practical problem detection system that can estimate a problem based on causal
relationships and which demonstrates greater consistency with ophthalmologists’ judgement criteria.

Next, we discuss the possible cause that led to a lower detection accuracy for the tips of the forceps
compared with that for the incisional site in the tracking of the cornea and surgical instruments during
the CCC phase. The incisional site is the border between the outer and middle of the cornea and is
easy to locate, while the tips of the forceps are inside the cornea, which can make it difficult to see
depending on the condition of the eye, as shown in Figure 10. This may have resulted in a lower
detection accuracy for the forceps than for the incisional site. To improve accuracy, we have tried
to apply several schemes of general image processing to make it easier for the NN to recognize the
eye and instruments as a preprocessing step. An essential scheme has yet to be discovered, however.
It is possible that engaging in schemes specialized for cataract surgery is preferable to examining
well-known schemes. We will continue to search for such an image processing scheme.
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Figure 10. Example image of a hard-to-see forceps tips.

Cataract is one of the most frequent causes of blindness, especially in poor countries. To reduce
the number of blindness due to cataract, education of ophthalmologists performing cataract surgeries
is of absolutely importance all over the world. Eyesi Surgical, a virtual reality simulator for intraocular
surgery training, has been developed in Germany [25]. On the other hand, femtosecond laser–assisted
cataract surgery [26] has been receiving a lot of attention. These high-end machines are unavailable for
ophthalmologists working in developing countries. Developing the AI-supported system based on the
proposed method will make it possible to remarkably reduce the costs for education of ophthalmologists
and to enhance its convenience. In addition, the proposed method seems to be useful in grading
surgical skill levels with marks (e.g. Appendix A). In other words, it is comparatively easy to achieve
the skill-level standardization with the proposed method. Experienced ophthalmologists can also
optimize their surgical guidance for inexperienced ophthalmologists, while referring to evaluation
reports submitted by the proposed method.

8. Conclusions

In this study, we proposed a cataract surgery monitoring system using the NN. This system
consists of two steps, and the step-by-step instructions are as follows. In the first step, the extraction
of the CCC and nuclear extraction phases, which are critical surgical phases in cataract surgery,
is performed using a convolutional NN called the InceptionV3. The surgical videos are downsampled
to a frame rate of 1 FPS and a resolution of 299 × 168 to decompose into frames. Using these frames,
the critical phase recognition (the CCC to nuclear extraction) and the surgical problem detection in
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critical phases are performed using the InceptionV3. Next, the frames from a movie are arranged in
chronological order, and the 10-s moving average of these two models is calculated, and the obtained
values are multiplied to calculate the risk level Dt. Finally, a ROC curve is drawn based on the risk level
value of Dt for each video and evaluated with the AUC. In our experiment, the accuracies of the critical
phase recognition and the problem detection in critical phases were 91.3% and 90.2%, respectively,
and the AUC for each video was 0.970.

In the second step, the tracking of the cornea and surgical instruments during the CCC
phase is performed using scSE-FC-DenseNet40, a segmentation NN. The proposed method uses
scSE-FC-DenseNet40, which consists of 40 layers of Dense blocks that incorporate the scSE module
into FC-DenstNet. The scSE module is an attention mechanism proposed for the segmentation NN.
In our experiment, the results were as follows: ACCIoU≥0.8 = 99.7% for the cornea, ACCIoU≥0.1 = 86.9%
for the tips of the forceps, and ACCIoU≥0.1 = 94.9% for the incisional site.

Further steps needed to improve the system include matching the judgment criteria for surgical
problems between the NN and the ophthalmologist by performing problem detection with the
information on the cornea and instrument tracking, as well as performing the cornea and instrument
tracking during the nuclear extraction phase.
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Appendix A

In this chapter, we introduce a system that tracks the cornea and surgical instruments during
the CCC phase in real-time by the method proposed in Section 4.2 and that shows alerts when the
incisional site would become too large. Figure A1 illustrates the results of applying this system to
a video. Figure A1A shows a cornea before incision; the white circle represents the corneal area,
and the orange dotted line represents the reference area for the incision. Figure A1B shows the cornea
immediately after the insertion of the forceps into the eye, and the green circle represents the incisional
site. Figure A1C shows the beginning of the capsulorrhexis; the blue circle represents the tips of the
forceps. Figure A1D shows the capsulorrhexis. Figure A1E shows the tips of the forceps exceeding the
reference area, and the red arrow is suggesting that the tips of the forceps should be moved back to
the center.
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