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Adipose tissue is nowadays considered as a major endocrine organ, which apart from

controlling lipid metabolism, displays a significant role in energy expenditure, food intake

and in the regulation of various systemic physiological processes. Adipose derived pro-

inflammatory cytokines and adipokines, particularly leptin and adiponectin, provide inter-

communication of adipose tissue with various metabolic pathways, ultimately resulting in

a complex network of interconnected organ systems. Recent clinical and experimental

research has been focused on exploring the direct interaction between adipokine profile

and elements of mineral metabolism, including parathormone (PTH), fibroblast growth

factor-23 (FGF23) and calcitriol. The emerging crosstalk between adipose tissue and

calcium and phosphorus homeostasis suggests that metabolic disorders from one

system may directly affect the other and vice versa. It is current knowledge that fat

metabolism disturbance, commonly encountered in obese individuals, influences the

expression of calciotriopic hormones in general population, while various clinical trials

attempting to successfully achieve body fat loss by modulating mineral profile have

been published. In chronic kidney disease (CKD) state, there is an increasing evidence

suggesting that mineral disorders, influence adipose tissue and linked endocrine function.

On the contrary, the impact of disturbed fat metabolism on CKD related mineral disorders

has been also evocated in clinical studies. Recognizing the pathogenetic mechanisms of

communication between adipose tissue and mineral balance is critical for understanding

the effects of metabolic perturbations from the one system to the other and for

identifying possible therapeutic targets in case of disrupted homeostasis in one of the

two connected systems. To that end, this review aims to enlighten the recent advances

regarding the interplay between mineral metabolism, fat mass and adipokine profile,

based on in vitro, in vivo and clinical studies, in general population and in the course

of CKD.
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INTRODUCTION

It is current knowledge that white adipose tissue serves as a
principal human energy repository in the form of triglycerides,
and coordinates lipid metabolism in order to maintain whole
body free fatty acid balance. Among the adipocyte-derived
secreted proteins, also called adipokines, adiponectin boosts
lipid storage and adipogenesis, while leptin blocks adipogenesis
and enhances triglyceride hydrolysis (1). Both hormones
stimulate fatty acid beta oxidation, inhibiting ectopic fat
deposition (1). Emerging evidence indicates that adipokines
exhibit not only autocrine and paracrine but also pleiotropic
endocrine activity. Leptin and adiponectin intercommunicate
with central nervous system, though reciprocal hypothalamic
effects, providing homeostasis of energy expenditure, appetite,
and subsequently body weight (2). Moreover, adipose tissue
derived pro-inflammatory cytokines and adipokines are involved
in the regulation of various physiological processes, such as
local and systemic inflammation (3), cardiovascular function
(4), glucose homeostasis (5), bone hematopoiesis (6), renin-
angiotensin system and sodium balance (7). Components of these
systems are, in turn, interconnected with elements of mineral
homeostasis (8–10). Nevertheless, emerging evidence indicate,
apart from indirect, a reciprocal direct communication between
mineral metabolism, adiposity and related endocrine function
(11). Chronic kidney disease (CKD) is a condition characterized
by mineral disorders, which potentially modulate fat metabolism.
On the opposite, body fat mass and adipokine profile affects
mineral metabolism in general population and may additionally
affect CKD-related mineral disorders. The purpose of this review
paper is to enlighten the recent advances regarding the direct
crosstalk between mineral metabolism, fat mass and adipokine
profile, in general population and in CKD, based on in vitro, in
vivo and clinical studies.

ADIPOKINES BALANCE AND MINERAL
HOMEOSTASIS IN GENERAL POPULATION
AND CKD

Adipokines Balance in General Population
and CKD
In general population, serum adipokines levels are principally
influenced by adipose tissue mass and individual energy
demands. In specific, adiponectin expression is enhanced in lean
individuals, while leptin expression increases with obesity (12,
13). Low energy expenditure state, including fasting and caloric
deprivation diets, is significantly linked to decreased serum leptin
and possibly to increased serum adiponectin (14).

CKD is associated with perturbated adipokine profile.
Reduced renal clearance of leptin and adiponectin, although the
latter is primarily excreted by the liver, may in part explicate
the higher serum leptin and adiponectin levels commonly
observed in both adult and pediatric patients, compared to
healthy controls (15–23). Moreover, body fat mass plays, as
expected, a major role on adipokines expression among CKD
patients (24, 25). In detail, relatively higher serum leptin (15,

24, 25) and relatively lower serum adiponectin levels (26) are
often encountered in overweight adult and pediatric patients,
while poor nutritional status is often related to lower leptin
and higher adiponectin serum profile (27, 28). Furthermore,
uremic condition may affect adipokines production (20, 29).
Experimental studies indicated that uremic milieu increased
adipocyte production of adiponectin and leptin (30–32). In
clinical studies, serum leptin levels were positively correlated to
various serum inflammatory cytokines levels in CKD 5 patients,
suggesting a possible contributive role of systemic inflammation
on leptin overproduction in CKD (33, 34). However, other
researchers report that adipose tissue leptin and adiponectin
expression are downregulated in CKD, as a result of a negative
feedback regulation from reduced renal clearance (19, 35, 36).

Mineral Homeostasis in General
Population and CKD
Mineral metabolism is based on a complex network of
interconnected organs including intestine, kidney and
parathyroid gland, ensuring homeostasis of calcium, phosphate,
vitamin D, parathormone (PTH), and fibroblast growth factor-
23 (FGF23). Each regulator of mineral metabolism possesses
multiple roles. In brief, PTH secretion inhibits phosphate
reabsorption in renal proximal tubule, promotes calcium
reabsorption in the distal tubules, stimulates renal calcitriol
production and increases calcium and phosphate resorption
from bone (37). Osteocyte and osteoblast released FGF23
downregulates phosphate reabsorption in renal proximal tubule,
activates calcium reabsorption in distal tubules, decreases serum
calcitriol, by both suppression of renal 1a-hydroxylase synthesis
and stimulation of 24-hydroxylase, and weakly inhibits PTH
excretion (38). Both actions on kidney and parathyroid gland
are mediated via requisite linkage of FGF23 with its co-receptor
and co-factor transmembrane protein called Klotho (39).
Finally, calcitriol stimulates intestinal calcium and phosphorus
absorption, triggers FGF23 synthesis and renal klotho expression
and blocks PTH production.

CKD is strongly associated withmineral abnormalities leading
to defective bone mineralization. Progressive decline in renal
function reduces renal phosphorus clearance and calcitriol
synthesis, which in turn, directly stimulate PTH secretion
(40). Hypocalcemia, secondary to decreased calcitriol-induced
calcium intestinal absorption, calcium-phosphate precipitation
in extra-skeletal tissues and skeletal resistance to PTH action,
further enhances and sustains secondary hyperparathyroidism
(41). Current clinical data indicate that FGF23 rise precedes
increments in PTH during the course of CKD (42). In fact,
increased phosphate levels boost FGF23 production, which
additionally aggravates calcitriol suppression, leading to further
stimulation of PTH production (40). Furthermore, renal klotho
expression is reduced in parallel with progression of CKD, which
according to two hypothetical scenarios, may either precede
serum FGF23 rise, leading possibly to target-organ resistance to
FGF23 and maintenance of increased serum FGF23 levels, or
may be secondary to negative feedback from primary FGF23
excess (42).
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EFFECTS OF ADIPOKINE PROFILE ON
MINERAL HOMEOSTASIS

Results From Experimental Studies
Our current knowledge regarding the effects of adipokine profile
on mineral homeostasis partially derives from experimental in-
vitro and in-vivo studies (11) (Figure 1). We will focus on the
reported impact of adipose tissue derived leptin and adiponectin
on mineral metabolism.

Effects of Leptin on Mineral Metabolism
Tsuji et al. were the first to demonstrate that leptin administration
directly stimulates bone FGF23 but not renal Klotho
transcription in leptin-deficient mice (43), probably through
activation of JAK-STAT pathway, leading to downregulation of
type II sodium phosphate tubular cotransporter (NPT2a) and
phosphaturia (43). Interestingly, in another study on osteocyte-
like bone cells leptin administration lacked direct influence on
FGF23 expression but positively modulated calcitriol induction
of bone FGF23 production (46). The positive effect of leptin
on FGF23 expression has shed light regarding its impact on
vitamin D metabolism. In-vivo studies on leptin deficient mice
have shown that upregulation of bone FGF23 secretion by leptin
administration blocks proximal tubular calcitriol production,
leading to reduction of serum calcitriol levels and vitamin D 1-a
hydroxylase activity (43, 46–48).

The effects of leptin on PTH secretion has been examined in
few experimental models (44). Leptin administration increased
PTH expression in animal (49) and human (50) incubated
parathyroid glands and in leptin-deficient and wild-type mice
(43, 47, 49, 50). An indirect effect of leptin on parathyroid
glands was suggested by Matsunuma et al. and Tsuji et al.
studies, through upregulation of FGF23 expression (43) and
downregulation of calcitriol production (43, 47). Nevertheless,
Lopez et al. showed that leptin administration increased PTH
levels, although no significant change in calcitriol and FGF23
expression was observed (49). Subsequently, leptin receptors
were detected in the cytoplasm of both animal (49) and
human parathyroid chief cells (50), suggesting a direct positive
modulatory role of leptin on PTH secretion. Moreover, the
detection of leptin expression on parathyroid gland tissue, and
especially in case of hyperplasia, indicated that parathyroid gland
is also a source of leptin production (50).

Effects of Adiponectin on Mineral Metabolism
Adiponectin seems to exert an opposite to leptin effect on FGF23
metabolism (45). According to Rutkowski, adiponectin inhibited
osteocyte FGF23 and renal tubular epithelial Klotho expression
in vitro, with no effect regarding to NPT2a transcriptional
regulation (45), resulting in reduced serum FGF23 and Klotho
levels and increased tubular fraction calcium excretion in
adiponectin-overexpressing mice (45). Interestingly, although no
change on PTH and calcitriol expression was observed in-vivo
among adiponectin overexpressing, knockout and wildtype mice,
adiponectin seems tomodulate their expression after phosphorus
and calcium loading (45). In detail, phosphorus loading resulted
to relatively attenuated PTH in adiponectin knockout mice and

amplified FGF23 release in adiponectin-overexpressing mice,
while calcium loading boosted calcitriol expression in the latter
type of mice (45).

Impact of Obesity on Mineral Metabolism
in General Population
The impact of obesity on mineral profile has been intensively
studied during the last decades in various populations. Earlier
studies were focused on patients with morbid obesity, in whom
serum 25(OH)D levels were lower and serum PTH levels
higher compared to healthy controls (51–54). Subsequent studies
in healthy population confirmed that increased body mass
index (BMI) is associated to hypovitaminosis D, while body
fat mass is inversely correlated to serum 25(OH)D levels and
positively correlated to serum PTH levels in both adult (55–
61) and pediatric subjects (62–68). Furthermore, weight loss was
accompanied by increase in serum 25(OH)D levels (69, 70) and
decrease in serum PTH levels (70, 71) in both adult and pediatric
cohort studies, suggesting that obesity is a modifiable risk factor
of mineral disorder.

Impact of Obesity on Mineral Metabolism
in CKD
Along with clinical observations in general population, serum
25(OH)D deficiency was more prevalent in adult and pediatric
overweight patients with CKD in various clinical studies (72–
78) (Table 1). Moreover, obesity was positively associated with
secondary hyperparathyroidism in adult patients with CKD (79–
82) and in pediatric kidney transplant recipients (83), while
low PTH level was considered as a marker of malnutrition-
inflammation complex condition in CKD 5D patients (82)
(Table 2). However, no association was observed between PTH
and BMI status in other cross-sectional studies (75, 84).

Pathogenesis of Obesity Related Mineral
Disorders
Obesity and Vitamin D Deficiency
Multiple pathogenetic mechanisms have been proposed for the
comprised vitamin D status in obese population (Figure 2).
Decreased bioavailability of vitamin D from cutaneous and
dietary sources due to sequestration in body fat compartments
(87–89) or volumetric dilution in the large fat mass (90)
largely explains the lower serum 25(OH)D levels in obese
population. Reduced sun ultraviolet B exposure, attributed to
sedentary lifestyle, involving limited outdoor activities, and
inadequate mineral intake from unhealthy high caloric food,
may also play a role on the occurrence of hypovitaminosis D
in obese individuals, who frequently require higher amount of
cholecalciferol supplementation to normalize 25(OH)D levels
compared to normal-weight controls (91–93). Nevertheless,
in few adult and pediatric studies, the negative association
between 25(OH)D and body fat mass remained significant
after controlling for sunlight exposure and dietary intake of
calcium and vitamin D3 (51, 94). Furthermore, according to
some authors, lower serum 25(OH)D levels may be attributed
to negative feedback from increased 1,25(OH)2D production,
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FIGURE 1 | Proposed schematic overview of adipokines effects on mineral homeostasis. Leptin upregulates bone FGF23 expression leading to reduced 1,25(OH)2D

production and subsequently to enhanced PTH excretion. In parallel, leptin directly stimulates PTH excretion. Both elevated FGF23 and PTH secretion ultimately

results in increased phosphaturia. Adiponectin downregulates bone FGF23 and renal Klotho expression, leading to increased calciuria. Data from (11, 43–45).

due to high serum PTH, on hepatic 25(OH)D synthesis (51).
However, this assumption was not confirmed in all clinical
studies. In specific, serum 1,25(OH)2D levels have been variously
reported as higher (51, 54, 95, 96), similar (94), or lower (56,
97, 98) in obese population compared to normal-weight controls
and the association between serum 25(OH)D and body adiposity
status seems independent of serum PTH levels (58).

Obesity and Hyperparathyroidism
The pathogenesis of obesity-related hyperparathyroidism
has been partly clarified (Figure 2). Hypovitaminosis D
does not determinedly affect occurrence of obesity induced
hyperparathyroidism, given that the association between serum
PTH and body fat mass is independent of vitamin D status
(54, 58). Some investigators suggest that the reduced calcium
binding protein profile often encountered in obese subjects, may
decrease renal tubular calcium reabsorption and serum ionized
calcium, ultimately leading to hyperparathyroidism (71, 99).
Nevertheless, the difference of serum ionized calcium between
obese and normal-weight individuals was not always significant
(51, 100). The absence of elevated serum PTH in non-obese
vitamin D deficient subjects implies that adipose endocrine
function modifies vitamin D—PTH axis (101). Recent clinical
studies have shown that disrupted adipokine profile along with
increased body fat mass is the main incriminating factor of
disturbed mineral homeostasis. In specific, hyperleptinemia,
commonly observed in obesity, was positively correlated to PTH

in both adult and pediatric individuals (97, 102), indicating
that stimulation of leptin—PTH axis is the initial source of
hyperparathyroidism. Furthermore, increased serum leptin
levels are probably implicated in the enhanced FGF23 expression
in obesity. In detail, circulating FGF23 levels were often elevated
in both adult and pediatric obese population, and positively
correlated to fat mass accumulation (102–107). Of notice,
non-remarkable changes in serum FGF23 levels were reported
between hypertensive obese and non-obese children, while
serum FGF23 levels were decreased in obese pediatric subjects in
a cross-sectional study (108, 109). The conflicting impact of PTH
and FGF23 on 1,25(OH)2D expression and vice versamay be the
cause of the discrepancy of serum 1,25(OH)2D and FGF23 levels
in obese population among different clinical studies (97).

EFFECTS OF MINERAL HOMEOSTASIS ON
ADIPOSE TISSUE AND ADIPOKINE
PROFILE

Results From Experimental Studies
Effects of Calcium on Adipose Tissue
During the last decades, there is emerging evidence favoring
a key role of calcium balance on regulation of adiposity.
Firstly, experimental studies demonstrated that agouti protein,
an obesity gene product, acts on adipocytes via a calcium
dependent mechanism, suggesting that adipocyte intracellular
calcium regulates adipocyte lipid metabolism by stimulation of
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TABLE 1 | Results of clinical studies investigating the association between serum 25(OH)D levels, fat mass and adipokine profile in patients with chronic kidney disease

(CKD).

References No patients CKD stage Results

Figuiredo-Dias et al. (72) 120 35+/−15 ml/min • Serum 25(OH)D was negatively correlated to serum leptin (r = −0.20, p

= 0.027) and to subcutaneous abdominal fat (r = −0.23, p = 0.012).

• BMI > 30 kg/m2 was a risk factor of hypovitaminosis D [25(OH)D <

30 ng/ml] (OR 4.3, 95% CI 1.21–5.3, p = 0.018).

Barreto Silva et al. (73) 244 <60 ml/min • Serum 25(OH)D was negatively correlated to serum leptin (r = −0.19, p

= 0.03).

• Total body adiposity >34.4% measured by DXA was independently

associated with vitamin D deficiency [25(OH)D < 20 ng/ml] (OR 2.3, 95%

CI 1.1–5, p = 0.03).

• BMI ≥ 25 kg/m2 and waist-to-height ratio>0.55 were not significantly

associated with vitamin D deficiency (OR: 1.68, 95% CI 0.9–3.3, p =

0.13 and OR 1.41, 95% CI 0.7–2.9, p = 0.35, respectively).

Petchey et al. (74) 593 CKD stages 1-5 • A negative correlation was observed between serum 25(OH)D and BMI

(r = −0.22, p < 0001).

• On closer examination, the relationship between BMI and serum 25(OH)D

was not linear but quadratic with both extremes of weight associated with

lower serum 25(OH)D.

• Normal BMI (18.5–24.9) was independently associated with vitamin D

sufficiency [25(OH)D ≥ 30 ng/ml] (OR 1.94, 95% CI 1.22–3.07, p

= 0.005).

Kitsos et al. (75) 159 >15 ml/min/1.73 m2 • Compared to normal-weighted patients, serum 25(OH)D was lower in

overweight/obese patients in case of GFR ≥ 60 ml/min/1.73 m2 (p =

0.005), 30 ≤ GFR ≤ 59 ml/min/1.73 m2 (p = 0.001), and 15 ≤ GFR ≤

29 ml/min/1.73 m2 (p = 0.030).

• An independent negative correlation was observed between BMI > 25

kg/m2 and serum 25(OH)D (β −0.375, 95% CI −7.447–3.353, p

< 0.001).

Baxmann et al. (76) 100 KTx • Patients with either vitamin D deficiency [25(OH)D 15–30 ng/ml] or

insufficiency [25(OH)D < 15 ng/ml] presented higher body fat and weight

gain since KTx (p < 0.001 and p < 0.001, respectively).

• Waist circumference (p = 0.044), BMI (p = 0.001) and serum leptin (p =

0.001) were higher in patients with vitamin D deficiency.

• Body fat (r2 = 0.366, p < 0.001) and serum leptin (r2 = 0.285, p <

0.001) were negatively correlated to serum 25(OH)D.

Seeherunvong et al. (77) 258 106 +/– 51 ml/min/1.73 m2 • BMI>85th perc was significantly more prevalent in patients with either

vitamin D deficiency [15≤25(OH)D < 30 ng/ml] or insufficiency [25(OH)D

< 15 ng/ml] (p = 0.02).

Kovesdy et al. (78) 978 KTx • Serum leptin ≥ 15 µg/L was associated to higher 25(OH)D levels (p <

0.01).

BMI, body mass index; GFR, glomerular filtration rate; KTx, kidney transplantation.

lipogenesis and inhibition of lipolysis (110). Calcium deficiency
state promotes intracellular calcium overload, a state defined as
calcium paradox (111). Toward this direction, enhancement of
calcium intake in transgenic mice expressing the agouti gene
reduced adipocyte calcium influx, and subsequently led to weight
loss (110, 112). Further studies indicate that high-calcium intake
disrupts gut fat absorption by promoting the formation of
insoluble calcium-fatty acid soaps, which are ultimately excreted
in the feces (113, 114), and may also negatively influence
appetite (113, 115), or even activate calcium dependent apoptotic
proteases in mature adipocytes (116), signifying a complex
modulatory control of adiposity by calcium homeostasis (117).

Effects of PTH on Adipose Tissue and Adipokine

Profile
The effect of PTH on adipose tissue remains controversial. It
was generally hypothesized that PTH promotes fat storage, by

enhancing calcium influx in adipocytes (118). Nonetheless, in
vitro studies have shown that PTH induces lipolysis (119–121),
probably via protein kinase A (PKA)-mediated phosphorylation
of hormone-sensitive lipase (122). Further experiments in mice
with primary hyperparathyroidism indicate that elevated PTH
promotes browning of white adipose tissue, contributing to body
weight loss (123). Toward the same direction, a recent study
on CKD mice remarked that PTH contributes to white adipose
tissue browning and wasting, by promotion of thermogenic genes
expression, and more precisely uncoupling protein-1 (Ucp1), via
PKA pathway activation, eventually leading to fat store depletion
(124, 125).

The effect of PTH on leptin expression has not been
clarified yet. In a study by Hoang et al., subcutaneous adipose
tissue explants treatment with PTH resulted in increased leptin
expression, indicating a positive modulatory role of PTH on
leptin expression (50). Nevertheless, a negative feedback effect
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TABLE 2 | Results of clinical studies investigating the association between parathormone (PTH) and fat mass in patients with chronic kidney disease (CKD).

References No patients CKD stage Results

Kitsos et al. (75) 159 GFR>15 ml/min/1.73 m2 • PTH levels were similar in obese/overweight vs. normal-weight individuals

(p = 0.765).

• No correlation was observed between BMI > 25 kg/m2 and PTH (β =

0.011, 95% CI −24.957–28.684, p = 0.891).

Ishimura et al. (79) 590 CKD 5D • PTH was significantly correlated to fat mass (r = 0.171, p = 0.0014) in

male but not in female patients (r = 0.109, p = 0.0885).

• An independent correlation was observed between PTH and body

weight (β = 0.190, p < 0.0001), BMI (β = 0.177, p < 0.0001) and fat

mass (β = 0.142, p < 0.0005).

Kovesdy et al. (80) 496 GFR: 31.8 +/– 11.2 ml/min/1.73 m2 • PTH was independently associated with higher BMI (p = 0.008). This

association was limited to patients with lower albumin (p = 0.005 for

the interaction term) or higher white blood cell count (p = 0.026 for the

interaction term).

Drechsler et al. (81) 1,628 CKD 5D • PTH levels were lower in underweight, followed by normal weight,

overweight and obese patients.

• A ≥5% decrease in BMI over 3 months was associated with 26%

decrease in PTH [PTH (ratio) 0.74, p = 0.039], whereas a ≥5% increase

in BMI was associated with an 11% increase in PTH [PTH (ratio) 1.11, p

= 0.026].

• Patients with PTH reduction and weight loss presented a 2-fold higher

mortality (HR 2.02, 95% CI 1.45–2.83, p < 0.001), in contrast to those

with decreasing PTH without weight loss.

Dukkipati et al. (82) 748 CKD 5D • Lower ranges of PTH (<300 pg/mL) were correlated with the

malnutrition-inflammation score (r = −0.17, p < 0.001),

• A moderately low serum PTH in 100–150 pg/mL range was associated

with the greatest survival compared to other serum PTH levels (HR 0.52,

95% CI 0.29–0.92, p < 0.001, compared to PTH of 300–600 pg/mL)

Vanderstraeten et al. (83) 149 KTx • BMI SDS (β = 0.509, 95% CI 1.122–2.468, p = 0.011) was associated

with hyperparathyroidism 12 months after KTx.

Marchelek-Mysliwiec et al.

(84)

52 GFR: 15–60 ml/min/1.73 m2 • No significant correlation was observed between PTH and body fat

mass (rs = 0.22, p = 0.11)

Peters et al. (85) 12 CKD 5D • PTH was inversely correlated to total body fat (r = −0.69, p < 0.05)

before parathyroidectomy (PTX).

• Mean weight, BMI, conventional bioelectrical impedance measurements,

total body fat, lean body mass and total body water were unaffected by

surgery.

• Phase angle and reactance significantly increased after PTX (p = 0.030

and p = 0.020, respectively).

Jiang et al. (86) 209 CKD 5 • BMI did not differ between patients with or without parathyroidectomy

(PTX) (p = 0.128).

• Successful PTX led to an increase on body weight (p = 0.025), BMI (p

= 0.035), serum total cholesterol (p = 0.004) and triglycerides (p =

0.032) levels.

BMI, body mass index; CKD 5D, chronic kidney disease stage 5 on chronic dialysis; GFR, glomerular filtration rate; KTx, kidney transplantation; SD, standard deviation.

of PTH on leptin secretion was proposed in case of secondary
hyperparathyroidism (44). Jiang et al. studied leptin and PTH
interaction in case of secondary hyperparathyroidism by treating
differentiated adipocytes in vitro with human serum belonging
to CKD patients with severe secondary hyperparathyroidism
before and after parathyroidectomy and to CKD patients
with lower PTH levels (86). Adipocyte leptin expression and
production was relatively reduced in case of severe secondary
hyperparathyroidism and increased after parathyroidectomy
(86). Furthermore, the authors found that high PTH levels
suppressed adipocyte leptin production in vitro via inhibition of
Akt signaling, indicating a negative effect of PTH on adipocyte
leptin secretion (86). Conclusively, a positive loop between leptin

and PTH is probably the case in primary hyperparathyroidism,
whereas PTH seems to inhibit leptin expression in severe
secondary hyperparathyroidism (44).

Effects of Calcitriol on Adipose Tissue and Adipokine

Profile
The role of calcitriol on adipogenesis is probably equivocal, by
either promoting (126) or impeding (127, 128) adipogenesis,
depending of the type of adipocyte and stage of adipocyte
differentiation (129). In specific, calcitriol treatment increases
intracellular calcium and inhibits thermogenic gene uncoupling
protein 2 (UCP2) expression in human adipocytes, leading to
stimulation of lipogenesis and suppression of lipolysis (130, 131).
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FIGURE 2 | Schematic overview of the possible pathogenetic mechanisms implicated in obesity-related mineral disorders. Increased white adipose tissue (WAT)

stimulates adipocyte leptin expression, which in turn triggers fibroblast growth-factor-23 (FGF23) and parathormone (PTH) secretion. High body fat mass is also

associated with reduced serum 25(OH)D levels, which in turn accentuates PTH secretion. Increased 1,25(OH)2D expression secondary to high PTH levels further

enhances 25(OH)D deficiency. Reduced renal tubular calcium reabsorption, due to decreased serum calcium-binding protein profile, additionally increases PTH

expression.

On the contrary, calcitriol induces apoptosis of mature mouse
3T3-L1 adipocytes probably via activation of calcium-dependent
calpain and caspase-12 (132). In CKD mice, intraperitoneal
administration of calcitriol ameliorated cachexia, stimulated
appetite, improved weight gain and fat mass content and
attenuated the expression of thermogenic genes and other key
molecules involved in adipose tissue browning (133).

The reciprocal effect of FGF23-calcitriol axis on adipokines
secretion has not been elucidated yet. Long-term FGF23
deficiency does not affect fat metabolism in animal vitamin
D receptor mutant mice (134) and FGF23 receptors are not
present in adipose tissue (39), suggesting that FGF23 effect on
adipose tissue is probably indirect, mediated by calcitriol induced
activation of adipose tissue vitamin D receptor (135–137).
The results of experimental models investigating the interplay
between calcitriol and adipokine profile are contradictory and
inconsistent. In vivo studies have shown that vitamin D receptor
knockout mice develop a lean phenotype combined with lower
serum leptin and higher serum adiponectin levels (138, 139),
while mice with targeted overexpression of vitamin D receptor
present obesity associated with higher serum leptin and lower
serum adiponectin levels (140). Besides, direct stimulatory effect
of calcitriol on leptin expression via a vitamin D receptor
dependent manner was demonstrated in adipose tissue derived
from mice epididymal fat pads (141). Accordingly, calcitriol
attenuates adiponectin production in human pre-adipocytes
(142). Nevertheless, in vitro studies have shown negative control
of leptin secretion by calcitriol on human adipose tissue (143)
and in mouse 3T3-L1 adipocytes (144). Furthermore, calcitriol
treatment upregulated adiponectin in 3T3-L1 mature adipocytes
(145) and in high glucose cultured 3T3-L1 adipocytes (146),
while it had no effect on leptin expression in differentiated
cultured human adipocytes in another in-vitro study (147). Taken

together, there is a discrepancy regarding the role of calcitriol
on leptin and adiponectin expression between in-vivo animal
and in-vitro animal and human studies. Further studies are
needed to enlighten the possible effect of calcitriol on the adipose
tissue mass and adipokine profile depending on the type and
maturation stage of target tissue.

Effects of Klotho on Adipose Tissue
Few experimental models have attempted to detect the role
of Klotho on adipose tissue, through regulation of energy
homeostasis. Administration of a-Klotho in obese high-fat feed
mice resulted in reduced adiposity, increased lean mass, elevated
energy expenditure and reduced lipid accumulation in liver and
adipose tissue, probably by downregulating the expression of
lipogenic genes (148). On the other hand, a-Klotho knock-out
mice presented a barely detectable amount of white adipose tissue
but preserved brown adipose tissue, reduced energy expenditure,
mimicking a food-restricted condition (149). Moreover, a-Klotho
suppression reduced while a-Klotho overexpression increased
mRNA expression of adipocyte differentiation markers in vitro,
suggesting that this hormone promotes adipocyte differentiation
during the period of transient proliferation in the differentiation
process (150). Further studies are needed to enlighten the
potential role of a-klotho on fat metabolism.

Impact of Mineral Homeostasis on Fat
Mass and Adipokine Profile in General
Population
The potential role of mineral homeostasis, including PTH,
calcium and vitamin D status, on body fat mass in humans
has been thoroughly investigated. It is current knowledge
that patients with primary hyperparathyroidism usually exhibit
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FIGURE 3 | Schematic hypothetical overview of the possible pathogenetic mechanisms implicated in the effects of parathormone (PTH) and fibroblast growth

factor-23 (FGF23)-calcitriol axis on adipose tissue and adipokine profile in severe CKD. In advanced chronic kidney disease, severe secondary hyperparathyroidism

and reduced 1,25(OH)2D expression may induce white adipose tissue (WAT) reduction, leading to lower serum leptin and higher serum adiponectin. In parallel, high

circulating FGF23 levels might aggravate WAT reduction via blockage of 1,25(OH)2D expression, which in turn, further stimulates PTH secretion. Moreover, severe

secondary hyperparathyroidism possibly downregulates leptin expression. Higher serum adiponectin may favorize the upregulation of FGF23 and PTH secretion by

phosphate retention and the upregulation of FGF23 secretion by vitamin D receptor (VDR) activation.

higher BMI compared to healthy controls (151). Nevertheless,
parathyroidectomy does not seem to determinately influence
lipid profile and cardiovascular outcome of these patients (152,
153). On the other hand, according to a recent large-scale
longitudinal case-control study, parathyroidectomy seems to
finally lead to increased truck fat mass (152). Therefore, it is
probable that obesity predisposes to the incidence of primary
hyperparathyroidism, but it is unlikely that obesity is the result
of the PTH anabolic effect on adipose tissue (151).

Although weight loss is associated with increased circulating
25(OH)D levels (69, 70), the reciprocal beneficial effect of vitamin
D status on body fat mass remains controversial among clinical
studies. Some clinical trials have reported that native vitamin D
supplementation favorizes weight loss, body fat mass reduction
andmetabolic profile in obese adult (154) and pediatric (155, 156)
population, while in other studies no related difference on weight
loss was observed in obese subjects assigned to receive daily
native vitamin D (157). Therefore, the effect of native vitamin
D supplementation on successfully body fat mass reduction
remains unclear, with a total insignificant effect reported by some
(158, 159) but not all meta-analysis studies (160).

Emerging clinical data remarking a significant association
between lower calcium intake and greater fat mass in both
adult and pediatric population have raised the question whether
calcium supplementation may facilitate weight loss in obese
subjects (113). Despite the encouraging results of several trials
indicating that higher calcium intake results in relatively lower
fat mass gain (161), increased fecal fat excretion (162, 163),
and ultimately fat loss (164), no significant effect was evoked

in meta-analysis studies in both adult (165), and pediatric
(166) subjects. Calcium combined to vitamin D supplementation
seems a promising therapeutic option for facilitating weight
loss, according to some trials, but data are still limited (167,
168). Conclusively, whether supplementation of both calcium
and vitamin D may favorize weight loss and body fat mass
reduction in subjects with initially low calcium diet and vitamin
D deficiency as well as the supplementation dose required to
achieve such outcome needs further investigation.

Impact of Mineral Homeostasis on Fat
Mass and Adipokine Profile in Patients
With CKD
Clinical studies investigating the effects of mineral balance on
fat mass and adipokine profile in patients with CKD are limited
and principally concern adult population.We present the current
relevant literature, and we suggest the possible mechanisms
involved in the disturbed fat metabolism in the setting of CKD-
related mineral disorders.

Effects of Secondary Hyperparathyroidism on Fat

Mass and Adipokine Profile in Patients With CKD
According to Peters et al., severely increased serum PTH
levels in CKD 5D patients with need for parathyroidectomy
exerted a negative effect on total body fat mass (85).
Moreover, successful parathyroidectomy led to improvement of
malnutrition and increase in weight and BMI in adult patients
with severe secondary hyperparathyroidism (86). Therefore,
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TABLE 3 | Results of studies investigating the association between fibroblast growth factor-23 (FGF23) levels, fat mass and/or adipokine profile in patients with chronic

kidney disease.

References No. of patients CKD stage Results

Montford et al. (177) 654 CKD 5D • An increase per SD in log10 c-terminal FGF23 was independently associated with lower

BMI (β = −1.11, p = 0.008), TC (β = −6.46, p = 0.02), LDL-C (β = −4.73, p = 0.04),

and HDL-C (β = −2.14, p = 0.03).

Chiang et al. (178) 611 CKD 5D • C-terminal FGF-23 was independently and inversely associated with BMI (−0.24 kg/m2

per 50% higher FGF-23, 95% CI −0.38–0.10), WC (−0.44 cm per 50% higher FGF-

23, 95% CI −0.79–0.08), and % body fat (−0.58% per 50% higher FGF-23, 95% CI:

−0.79–0.37).

• C-terminal FGF-23 was inversely associated with serum leptin in univariate analysis

(−0.21 pg/mL per 50% higher FGF-23, 95% CI−0.29 –0.14).

• C-terminal FGF-23 remained significantly associated with %body fat after adjustment

for serum leptin levels (−0.17% per 50% higher FGF-23, 95% CI −0.32 –0.02).

Sgambat et al. (179) 593 GFR: 30–90 ml/min/1.73 m2 • Participants classified as overweight had similar circulating c-terminal FGF23 levels to

lean patients.

Bacchetta et al. (180) 227 GFR: 98 +/– 34 ml/min/ 1.73 m2 • No correlation was observed between FGF23 (intact and C-terminal) and relative height

and body weight (expressed as SD score).

Spoto et al. (181) 88 CKD 3–4 • Intact FGF23was independently and positively correlated to serum adiponectin (β = 0.22,

p = 0.003).

• Increase in FGF23 after paricalcitol treatment was substantially higher (p = 0.009) in the

highest adiponectin quartile than in the other quartiles.

Marchelek-Mysliwiec et al.

(84)

52 GFR: 15–60 ml/min/1.73 m2 • No correlation was observed between FGF23 and body fat mass (rs = 0.23, p = 0.15),

serum adiponectin (rs = −0.08, p = 0.35), and serum leptin (rs = 0.2, p = 0.14).

Hyun et al. (182) 1,435 Predialysis CKD Stages 1–5 • C-terminal FGF23 was positively associated with higher serum adiponectin (p < 0.001).

• High FGF23 patient group presented increased risk of CAC (OR 1.97, 95% CI

1.10–3.53). The association between FGF23 and CAC was modified significantly by

adiponectin level (p for interaction = 0.023).

BMI, body mass index; CAC, coronary artery calcification; CKD 5D, chronic kidney disease stage 5 on chronic dialysis; GFR, glomerular filtration rate; HDL-C, high-density lipoprotein

cholesterol; LDL-C, low-density lipoprotein cholesterol; SD, standard deviation; TC, triglycerides; WC, waist circumference.

although obesity per semay be associated with higher serum PTH
levels in CKD patients, severe secondary hyperparathyroidism
seems to be inversely correlated to body adiposity status
and implicated in the pathogenesis of advanced CKD-related
cachexia (169). These results are in accordance with the white
adipose tissue browning effect of secondary hyperparathyroidism
observed in CKD mice (124, 125).

Taking into consideration that adipokine profile majorly
reflects body fat mass levels even in patients with CKD, the
discrepancy among the reports investigating the association
between PTH and fat mass may also explain the variety
of associations observed regarding the correlation between
PTH and adipokine profile in this population (29, 44). In
detail, serum leptin was negatively correlated to PTH in three
clinical studies including 46, 73, and 161 hemodialysis patients,
respectively (25, 170, 171), confirming the negative impact of
secondary hyperparathyroidism on leptin secretion remarked in
experimental studies (44, 86). However, leptin was positively
correlated to circulating PTH levels in a cohort of 978 kidney
transplant recipients (78) and 142 patients with CKD stage
2–5 (172), while no correlation was observed in three cross-
sectional studies of 37, 72, and 107 hemodialysis patients (173–
175). Interestingly, serum adiponectin levels were positively
correlated to circulating PTH levels in a large scale cross-
sectional study, including 716 patients with various CKD stages
(176). This result accords with the findings of lessened PTH

secretion in adiponectin knockout mice after phosphate loading
(45). Considering that phosphate retention is increased in CKD,
higher adiponectin levels are expected to be correlated to higher
PTH levels.

Conclusively, according to clinical and experimental
studies, higher body fat mass may promote secondary
hyperparathyroidism, but simultaneously, severe secondary
hyperparathyroidism may contribute to white adipose tissue
reduction. Additionally, PTH possibly blocks leptin secretion
in case of severe secondary hyperparathyroidism. Moreover,
higher serum adiponectin levels seem to favorize PTH secretion,
especially in the context of increased phosphate retention
(Figure 3). Further studies are needed to draw firm conclusions
regarding the potential role of the severity and duration of
secondary hyperparathyroidism on the disturbed fat metabolism
in CKD.

Effects of FGF23/Calcitriol Axis on Fat Mass and

Adipokine Profile in Patients With CKD
The association between FGF23 and body adiposity status has
been rarely studied in CKD. Circulating FGF23 levels were
negatively correlated to BMI (177) and fat mass (178) in
adult CKD 5D patients in two recent studies. There are some
hypotheses that may justify these findings. Although higher
body fat mass may enhance FGF23 secretion, excessive FGF23
expression may reflect the decreased calcitriol expression or the
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severe secondary hyperparathyroidism, which in turn, aggravate
adipose tissue metabolism leading to reduced fat mass (124,
125, 133) (Figure 3). Nevertheless, no correlations were observed
between body weight, BMI or fat mass and serum FGF23
levels in early and moderate CKD in both adult (84) and
pediatric (179, 180) patients (Table 3). The reasons behind the
discrepancy among the results of different studies might be
attributed to the variable FGF23 release, which rises along with
the severity of CKD, but additional studies are required for
further clarification.

Results of studies investigating the association between FGF23
and adipokine profile are controversial. Both serum adiponectin
levels and changes were positively correlated to corresponding
serum FGF23 levels and changes in adult CKD patients (181,
182). Interestingly, serum leptin was negatively correlated to
circulating FGF23 in an adult CKD 5D study (178). Nevertheless,
no significant correlations between FGF23 and either serum
adiponectin or leptin were observed in early and moderate CKD
adult patients (84). Moreover, paricalcitol-induced stimulation
of FGF23 release was amplified in patients with higher serum
adiponectin levels, suggesting that adiponectin is a strong
modulator of FGF23 response to vitamin D receptor (VDR)
activation (181). Therefore, higher serum adiponectin levels
possibly enhance FGF23 secretion, in the context of increased
phosphate retention, similarly to the findings observed in
adiponectin-overexpressing transgenic mice (45), or possibly
after VDR activation (181) (Figure 3).

CONCLUSIONS

In conclusion, there is emerging compelling evidence that fat
and mineral metabolism are linked in both general population
and CKD patients. Therefore, aiming for balanced fat mass and
mineral homeostasis is crucial for optimal health of both systems.
In general population, randomized controlled trials are necessary
to target the optimal mineral status in order to impede or even
facilitate reduction of obesity. In CKD state, prospective studies
are needed to explore the impact level of increased adiposity on
mineral disorders, as well as the impact level of severe mineral
disorders on CKD-related fat loss.
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