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1  |  INTRODUC TION

Angiogenesis is a critical process during folliculogenesis, ovulation, 
and corpus luteum formation in the human ovary.1- 5 Ovarian follicu-
lar microvasculature development is regulated by angiogenic factors, 
including the hepatocyte growth factor, angiopoietin, and members 
of the vascular endothelial growth factor (VEGF) family and the 
CXC chemokine family.6- 14 Ovarian function is closely related to the 
degree of ovarian tissue vascular network development. Maternal 
age- related defects in the construction of the vascular network sur-
rounding the ovary can lead to ovarian hypoxia, which is assumed 
to affect ovarian follicle growth and development. Hypoxia and the 

aneuploid oocyte increase associated with advanced reproductive 
age can also result from age- related dominant follicle microvascula-
ture deficiencies.10,15

Mitochondrial quantity is highly positively correlated with oo-
cyte maturation and fertilization and the subsequent embryo devel-
opment.16- 19 Cellular hypoxia substantially suppresses mitochondrial 
gene expression, and the mitochondria count reduction caused by 
aging and hypoxia may be the primary source of infertility in ad-
vanced age animals.20- 23

Sirtuin- 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD+)- 
dependent protein deacetylase, detects and adapts to ambient 
stress.24- 26 SIRT1 is activated by caloric restriction and natural 
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Abstract
Background: Ovarian function is closely related to the degree of vascular network 
development surrounding the ovary. Maternal aging- related construction defects in 
this vascular network can cause ovarian hypoxia, which impedes oocyte nutrient sup-
ply, leading to physiological changes in the ovaries and oocytes. The anti- aging gene 
Sirtuin 1 (SIRT1) senses and adapts to ambient stress and is associated with hypoxic 
environments and mitochondrial biogenesis.
Methods: The present study is a literature review focusing on investigations involving 
the changes in SIRT1 and mitochondrial expression during hypoxia and the cytopro-
tective effects of the SIRT1 activator, resveratrol.
Main findings: Hypoxia suppresses SIRT1 and mitochondrial expression. Resveratrol 
can reverse the hypoxia- induced decrease in mitochondrial and SIRT1 activity. 
Resveratrol suppresses the production of hypoxia- inducible factor- 1α and vascular 
endothelial growth factor proteins.
Conclusion: Resveratrol exhibits protective activity against hypoxic stress and may 
prevent hypoxia-  or aging- related mitochondrial dysfunction. Resveratrol treatment 
may be a potential option for infertility therapy.
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polyphenolic compounds such as resveratrol27- 31 and is involved 
in the regulation of various cellular physiological and pathological 
processes, including gene silencing, stress resistance, apoptosis, 
and inflammation, all of which are associated with aging- related 
diseases.32- 35 SIRT1 activity is primarily nuclear but significantly im-
pacts mitochondrial biogenesis and turnover.23,36,37,38,39,40,41 Recent 
studies have demonstrated that SIRT1 promotes mitochondrial 
biogenesis via deacetylation of target proteins such as peroxisome 
proliferator- activated receptor- gamma coactivator (PGC)- 1α and 
hypoxia- inducible factor (HIF)- 1α, indicating potential therapeutic 
benefits of SIRT1 activation in metabolic and other aging- related 
diseases.36,42,43

To further elucidate the molecular and cellular mechanisms in-
volved in the role of SIRT1 in hypoxia, we focused this review on the 
changes in both SIRT1 and mitochondrial expression during hypoxia 
and the protective effects of resveratrol. Furthermore, we present 
possible remediation measures for ovarian hypoxia.

2  |  SIRT1 AND OVARIAN FUNC TION

2.1  |  SIRT1

Sirtuins are protein members of the class III NAD+- dependent 
histone deacetylase family, or the silent information regulator 2 
family. Because changes in the NAD+/NADH ratio regulate sirtuin 
activity, all members of this family may play crucial roles in the de-
tection of cellular energy status.27,44 To date, seven members of 
the sirtuin family, SIRT1– 7, have been identified in mammals, with 
each member exhibiting unique subcellular localization, function, 
and substrate specificity.45,46 SIRT1 and SIRT2 have been found in 
both the nucleus and cytosol, SIRT3, SIRT4, and SIRT5, exclusively 
in mitochondria, and SIRT6 and SIRT7, exclusively in the nuclear 
compartment.47- 49 The presence of all sirtuins has been confirmed 
in granulosa cells (GCs) and human ovarian granulosa- like tumor 
(KGN) cells.50

Among the sirtuins, SIRT1 is the most phylogenetically similar to 
yeast Sir2, the most prominent, and the most extensively studied.51 
Chiefly located in the nucleus, with some environmental signal- 
triggered shuttling to the cytosol, SIRT1 has the capability to extend 
lifespan, delay aging, and prevent aging- related diseases, primarily 
via catalysis of histone deacetylation and regulation of transcription 
factors or coactivators, such as p53, forkhead box O (FOXO), nuclear 
factor- κB (NF- κB), PGC- 1α, and Ku70.52- 54 It is involved in the regu-
lation of biological and pathological processes, such as apoptosis via 
inhibition of p53- dependent transcription, inflammation via reduc-
tion of NF- κB activity, and energy metabolism via regulation of met-
abolic enzymes like PPAR- γ.32,55,56,57,58,59 The SIRT1 preventative 
mechanisms in aging and aging- related diseases are likely diverse 
and dependent on the regulated proteins. In addition, SIRT1 endog-
enous levels are related to aging- related disease development.60 
Besides affecting the protein levels of SIRT1, aging also impacts its 
activity.61 Age- dependent decrease in the level of SIRT1 is observed 

in the brain, liver, muscle, and arteries.62- 66 SIRT1 deficiency pro-
motes the expression of genes characteristic of aging.67

SIRT1 is expressed not only in GCs and cumulus cells but also in 
oocytes and theca cells.65,68,69,70 In the reproductive system, SIRT1 
plays a role in GC apoptosis during follicular atresia, has been linked 
to follicular reserve preservation and ovarian lifespan extension, and 
is an essential factor in the activation of the steroidogenesis associ-
ated with luteinization and terminal differentiation.68,71,72

2.2  |  Resveratrol

Numerous studies have explored controlling sirtuin- dependent down-
stream pathways via pharmacological-  and nonpharmacological- 
based	 sirtuin	 activation.	 Resveratrol	 (3,5,4′-	hydroxystilbene),	 a	
natural polyphenolic compound commonly found in grapes, berries, 
red wine, and several botanical extracts, was one of the first com-
pounds recognized as a SIRT activator.30,73 Resveratrol has a chemical 
structure similar to that of some estrogens, such as diethylstilbestrol, 
and is considered a natural phytoestrogen.74,75 As the most potent 
natural SIRT1 ligand, resveratrol has received a great deal of atten-
tion due to its beneficial anti- oxidant, anti- inflammatory, anti- aging, 
anti- carcinogenic, and anti- angiogenic qualities.76- 81 Stressful events 
induce SIRT1 activation and binding to various molecular targets, in-
cluding NF- κB, tumor protein p53, FOXO, PGC- 1α, liver X receptor, 
and HIF- 2α.25,49 By activating these molecules via SIRT1, resveratrol 
plays a pivotal role in energy homeostasis regulation, gene silencing, 
genomic stability, and cell survival. Resveratrol has been found to 
extend the lifespan of Saccharomyces cerevisiae, Caenorhabditis el-
egans, and Drosophila melanogaster, and increase energy metabolism 
and mitochondrial oxidative capacity.82

2.3  |  Effect of resveratrol on GCs and oocyte 
via SIRT1

Sirtuin expression has been detected in mammalian ovaries, GCs, oo-
cytes, and embryos.65,68,69,70,83 Resveratrol may provide protection 
against ovarian aging through SIRT1- related cellular mechanisms, 
via an anti- oxidative effect, protecting oocytes from age- dependent 
defects.44

Various studies have reported the effects of resveratrol, such as 
increased ATP production and the promotion of mitochondrial bio-
genesis, on mammalian— including human— GCs.84 In rat GCs, resver-
atrol treatment induces transcription- level upregulation of SIRT1, 
the luteinizing hormone receptor, the steroidogenic acute regulatory 
protein, and P450 aromatase, but does not affect the regulation of 
the follicle- stimulating hormone receptor, suggesting that resvera-
trol and SIRT1 can modulate ovarian functions via folliculogenesis- 
related molecule and gonadotropin receptor activation.68

In swine GCs, resveratrol increases SIRT1 mRNA and protein 
levels in a dose- dependent manner, accelerating cell apoptosis, 
and follicular atresia.71 Resveratrol supplementation of cultured 
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porcine ovarian GCs increases SIRT1 protein levels, induces apop-
tosis, promotes testosterone and estrogen release, and inhibits cell 
proliferation.85

Interestingly, resveratrol treatment also promotes mitochondrial 
synthesis, ATP production, and autophagy in GCs from advanced age 
cows, improving mitochondrial function and in vitro oocyte develop-
ment.86 Improved regulation of GC function is an expected result of 
stimulation of mitochondrial biogenesis by resveratrol. Resveratrol 
supplementation of maturation medium enhances SIRT1 protein ex-
pression and increases the ATP content in bovine oocytes, resulting 
in improved fertilization outcomes.87 In human oocytes, resveratrol 
increases the emission rate of first polar body and reduces the per-
centage of spindle with abnormal morphology.88 These reports on 
the impact of resveratrol on GCs correlate with current evidence 
for the overall effect exerted by resveratrol on ovarian physiology 
and with the results of a recent study suggesting that mitochondrial 
function in cumulus cells and GCs can directly influence pregnancy 
outcomes.89- 91

These findings led us to investigate the direct impact of hypoxia 
and resveratrol on the SIRT1/PGC- 1α pathway and on the quantity 
of mitochondria in KGN cells (Figure 1A– F).92 Resveratrol signifi-
cantly and dose- dependently upregulates, whereas hypoxic stress 
induced by cobalt chloride (CoCl2, a hypoxia- mimicking agent) sig-
nificantly downregulates the expression of SIRT1, PGC- 1α, and mito-
chondrial DNA (mtDNA) in comparison to the controls.

To further examine the protective effect of resveratrol from 
CoCl2- induced hypoxic stress, KGN cells were cultured in medium 
containing 100 μmol/l CoCl2, with or without 50 μM resveratrol. 
CoCl2- induced hypoxic stress resulted in the downregulation of the 
expression of SIRT1 and PGC- 1α, and reduced mtDNA copy num-
ber, and resveratrol reversed the CoCl2- induced inhibitory effects 
of hypoxia.

The cumulative results indicate that upregulation of SIRT1 by 
resveratrol partially improves the condition of hypoxiated GCs by 
increasing mitochondria quantity. Thus, resveratrol may have a po-
tentially beneficial effect in ameliorating reproductive function via 
SIRT1 regulation.

2.4  |  SIRT1 activators other than resveratrol

Several SIRT1 activators other than resveratrol have been re-
ported to improve reproductive function. They have also been 
reported to improve reproductive function. Melatonin protects 
premature ovarian insufficiency by reducing oxidative stress and 
apoptotic damage via activation of SIRT1 signaling in a receptor- 
dependent manner in rats.93 N- acetyl- L- cysteine treatment has 
been demonstrated to increase the quality of the oocytes from 
old mice in association with the higher expression level of Sirt1 
and Sirt2, and increased telomerase activity and length.94 On the 
contrary, it was demonstrated that an inhibitor of SIRT1 increased 
the ratio of abnormal fertilization.95 Thus, SIRT1 is clearly involved 
in the protection of ovarian function.

2.5  |  Clinical studies with resveratrol

Surprisingly, resveratrol has been reported to have a negative ef-
fect on pregnancy outcomes. Ochiai et al. demonstrated that women 
with regular resveratrol supplementation (200 mg/day) during 
IVF– embryo transfer cycles had lower pregnancy rates and higher 
miscarriage rates. Resveratrol has potential therapeutic effects in 
improving ovarian function; however, it also has anti- deciduogenic 
activity. Therefore, it is recommended to avoid the consumption of 
the compound during the luteal and gestational phases.96 Initial clini-
cal applications of resveratrol have taken into account its various 
positive and negative effects.

Polycystic ovary syndrome (PCOS) is the most common endo-
crine disorder affecting women of reproductive age and is primarily 
characterized by hyperandrogenism and ovulatory dysfunction.97 
The effect of resveratrol on the endocrine and metabolic func-
tions of PCOS patients was evaluated during a 3- month placebo- 
controlled randomized clinical trial. This study revealed that 
resveratrol (1500 mg/day p.o.) reduces the levels of serum testos-
terone, serum dehydroepiandrosterone sulfate, and insulin, while 
increasing the insulin sensitivity index. Improvement in hyperan-
drogenemia observed in response to resveratrol was comparable to, 
or greater than, that observed in response to metformin, an effect 
possibly related to improvements in insulin sensitivity and level.98

The impact of resveratrol on the management of endometriosis- 
related pain was investigated in a clinical trial involving 12 patients 
of reproductive age (range 22– 37 years), with a laparoscopic diag-
nosis of endometriosis, who had failed to obtain pain relief using an 
oral contraceptive containing drospirenone +ethinylestradiol alone 
for 6 months. The addition of 30 mg of resveratrol to the contracep-
tive regimen resulted in a significant reduction in pain scores, with 
82% of patients reporting complete resolution of dysmenorrhea and 
pelvic pain after 2 months of use. These results demonstrate that 
resveratrol potentiates the efficacy of oral contraceptives in the 
management of endometriosis- associated dysmenorrhea.99

Although most studies that have revealed the excellent anti- 
cancer properties of resveratrol have been performed in cell culture 
and pre- clinical models, a small number of clinical trials involving 
cancer patients have been reported.100 In addition to the effects 
in subjects with cancer, the effect of resveratrol in subjects with a 
higher cancer risk has also been demonstrated. A pilot study was 
conducted in postmenopausal women with a high body mass index 
(BMI	≥25	kg/m2) to determine the clinical effect of resveratrol on 
systemic steroid hormones. A 12- week 1 g/day resveratrol sup-
plementation has been shown to increase the concentration of sex 
steroid hormone- binding globulin, a protein that has been linked to 
reduction in breast cancer risk, and resulted in an average of 73% 
increase in urinary 2- hydroxyestrone (2- OHE1) levels leading to a 
favorable change in urinary 2- OHE1/16α- OHE1 ratio.101 The results 
indicate that resveratrol supplementation has a favorable influence 
on estrogen metabolism and lowered breast cancer risk factors 
in obese and overweight postmenopausal women.102 Therefore, 
resveratrol has provided some benefit in cancer prevention and 
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F I G U R E  1 Protective	effects	of	resveratrol	during	CoCl2- induced hypoxic stress. Effects of various concentrations of the resveratrol on 
KGN cells. (A) Sirtuin 1 (SIRT1) mRNA and (B) peroxisome proliferator- activated receptor- gamma coactivator (PGC)- 1α mRNA levels were 
assessed via real- time PCR and calculated after normalization to elongation factor 1α mRNA levels. (C) Mitochondrial DNA copy number 
was determined via real- time PCR. Effects of CoCl2- induced hypoxic stress on mRNA expression and protein secretion. (D) SIRT1 mRNA 
and (E) PGC- 1α mRNA levels were assessed via real- time PCR and calculated after normalization to elongation factor 1α mRNA levels. (F) 
Mitochondrial DNA copy number was determined via real- time PCR. (G) The expression of hypoxia- inducible factor (HIF)- 1α was quantified 
using western blotting. The levels of HIF- 1α were normalized to β- actin levels. (H) The protein levels were quantified using ImageJ. (I) 
Levels of vascular endothelial growth factor protein were analyzed via enzyme- linked immunosorbent assay. Fold differences are shown 
in comparison with the control, for which the value was defined as 1.0. Data are presented as mean ±SEM, n = 3. Statistically significant 
differences are indicated in brackets: * p < 0.05 versus the control group; ** p < 0.05 versus the 100 μmol/L CoCl2 treatment group. These 
figures have been modified from Nishigaki et al.92 Reprod Med Biol. 2020
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treatment, and the efficacy and safety of resveratrol in human trials 
must be further investigated to better understand and develop its 
therapeutic potential.

At present, clinical trials of resveratrol have been limited due to 
unresolved issues, such as its extensive metabolism leading to poor 
bioavailability and its adverse side effects, including diarrhea, nau-
sea, and abdominal pain.103,104

3  |  HYPOXIA AND OVARIAN FUNC TION

3.1  |  HIF- 1α expression during hypoxia

Hypoxia potentially contributes to aging- related functional decline, 
and reducing hypoxic damage and senescence induction requires 
improved understanding of the molecular and cellular responses to 
hypoxia.21 An appropriate response to changes in oxygen availabil-
ity, particularly coping with oxygen deficiency in hypoxic environ-
ments, is essential for survival.

Cellular level hypoxic responses are largely mediated by HIFs, 
which act as transcriptional regulators of the genes involved in sur-
vival during periods of low oxygen and are regulated primarily by 
oxygen- dependent proteasomal degradation. HIF- 1α is stably ex-
pressed during hypoxia.105- 107

One such contribution involves VEGF, a 46- kDa disulfide- linked 
homodimeric glycoprotein that stimulates vascular endothelial cell 
proliferation, migration, tubule organization, and permeability.108 
Repeated evidence has demonstrated that VEGF production is reg-
ulated by HIF- 1α, particularly under hypoxic conditions.109 During 
hypoxia- stimulated angiogenesis, HIF- 1 transcriptionally regulates 
VEGF expression by directly binding to the hypoxia- response ele-
ments in the VEGF promoter.110,111 Recent studies have demon-
strated that VEGF is an essential regulator of ovarian angiogenesis, 
a critical process in follicular development and corpus lutea forma-
tion.108,112 In addition, both hypoxia and CoCl2 have been reported 
to induce VEGF production in ovarian GCs.10 VEGF acts as a key 
angiogenic factor in ovarian vascularization regulation and may play 
a modulatory role in GC functional activity and follicular growth.

As a follicle grows, follicular fluid oxygen concentration de-
creases, causing the accumulation of HIF- 1α, which is speculated to 
promote VEGF transcription and angiogenesis around the follicle. 
HIF- 1α, which is involved in follicle development and luteinization in 
the ovaries of mammals, including those of humans, is expressed in 
human corpus luteum and luteinized GCs. Hypoxia increases VEGF 
directly, and nuclear HIF- 1α is most active in the early luteal phase at 
the time of maximal angiogenesis.113

Aging contributes to ovarian hypoxic stress, which affects ovar-
ian follicle growth and development. Aging- related hormonal im-
balances cause non- optimal microvasculature to develop around 
maturing and mature follicles. The resulting reduction in perifollic-
ular capillary bed size and blood flow through the area leads to an 
oxygen deficit and the concomitant accumulation of carbon dioxide 
and anaerobic products, such as lactic acid, inside the follicle. The 

consequent decrease in oocyte intracellular pH diminishes the spin-
dle size, causing chromosome displacement and nondisjunction.15

Higher follicular fluid VEGF concentrations have been reported 
to correlate positively with female age.10 Thus, aging- associated 
deficient microvasculature around the dominant follicle results in 
hypoxia, and the predisposition toward increased aneuploid oocyte 
incidence is associated with advanced reproductive age.

Mitochondria are multifunctional organelles essential to en-
ergy production, apoptosis, and calcium homeostasis,114,115 and 
their quantity is closely related to oocyte maturation, fertilization, 
and subsequent development.16- 19 Cellular hypoxia significantly 
suppresses mitochondrial gene expression,21 and the reduction in 
mitochondrial quantity due to aging and hypoxia may be the pri-
mary cause of infertility in advanced age animals.16,23,116 Therefore, 
HIF- 1α regulation mechanisms have been implicated in the preven-
tion of premature cellular senescence and the pathogenesis of nu-
merous aging- related chronic diseases.

Recent reports have suggested an important connection be-
tween HIF- 1α and SIRT1.26,117,118 Lim et al. observed that SIRT1 
interacts with HIF- 1α in multiple cell lines and mouse tissues, and 
modulates cellular hypoxia responses via HIF- 1α deacetylation.26

3.2  |  SIRT1, a key regulator of hypoxic stress

During hypoxia, expression of SIRT1 is suppressed, whereas that 
of HIF- 1α is activated.21,118 At least two distinct mechanisms have 
been suggested of the former effect: reduced transcription of 
SIRT1 mRNA and a decrease in the NAD+/NADH ratio.119,120 The 
ratio of NAD+, a SIRT- mediated deacetylation substrate, to NADH 
is an important physiological regulator of SIRT activity, and intracel-
lular levels of both are modulated by nutrient deprivation, energy 
consumption, or hypoxia.49

During hypoxia, decreased NAD+ levels downregulate SIRT1 
activity, which leads to increased HIF- 1α acetylation and enhanced 
induction of hypoxic response genes, implying that crosstalk be-
tween hypoxia and metabolism detection pathways ensures cellular 
adaptation to hypoxia.26 In addition, HIF- 1α is inactivated by SIRT1 
activators, such as resveratrol, and is activated by SIRT1 inhibitors, 
such as nicotinamide and splitomicin.117 SIRT1 knockdown reverses 
the inhibition of HIF- 1α acetylation and activation by resveratrol, 
suggesting that resveratrol inhibits HIF- 1α through SIRT1 activation.

3.3  |  Effect of resveratrol on hypoxia

Resveratrol inhibits hypoxia- induced HIF- 1α and VEGF expression 
in human cancer cells via multiple mechanisms, including interfer-
ence with protein translational regulation and promotion of HIF- 1α 
protein degradation.121- 123 In one such mechanism, inhibition of pro-
tein kinase B and mitogen- activated protein kinase phosphorylation 
by resveratrol plays a partial role in the downregulation of HIF- 1α 
expression. An additional translation- level mechanism involves the 
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inhibition of protein translational regulators, including Mr 70,000 ri-
bosomal protein S6 kinase 1, S6 ribosomal protein, eukaryotic initia-
tion factor 4E- binding protein 1, and eukaryotic initiation factor 4E. 
Finally, resveratrol also induces substantial HIF- 1α protein degrada-
tion via the proteasome pathway.123

Based on these findings, we examined the effects of resveratrol 
on HIF- 1α and VEGF expression in KGN cells under CoCl2- induced 
hypoxic conditions (Figure 1G– I).92 HIF- 1α protein levels significantly 
increase in response to hypoxia, an induction which is significantly 
suppressed by treatment with resveratrol in a dose- dependent man-
ner. CoCl2 rapidly induces HIF- 1α protein accumulation due to a 
marked decrease in HIF- 1α protein degradation, indicating that res-
veratrol may substantially induce HIF- 1α protein degradation under 
hypoxic conditions. Resveratrol also attenuates CoCl2- induced pro-
duction of VEGF.

4  |  MITOCHONDRIAL BIOGENESIS AND 
ITS REL ATION TO HYPOXIA

4.1  |  Mitochondrial biogenesis

Mitochondria are the most dynamically responsive detection sys-
tems in eukaryotic cells, satisfying metabolic energy demands, sup-
plying biosynthetic precursors, and consequently regulating diverse 
processes including proliferation, immune response, apoptosis, and 
cell viability.124- 127 Cells can degrade damaged mitochondria via the 

process of mitophagy and, under appropriate conditions, stimulate 
functional mitochondria to proliferate through mitochondrial bio-
genesis, a complex process consisting of both the growth and the 
division of preexisting mitochondria.128

4.2  |  Deacetylation of PGC- 1 and mitochondrial 
biogenesis by SIRT1

Recent studies have demonstrated that SIRT1 promotes mitochon-
drial biogenesis by deacetylation of target proteins, such as PGC- 1α, 
which suggests the potential therapeutic benefits of SIRT1 activa-
tion in metabolic and aging- related diseases.129- 131 Both SIRT1 and 
the nuclear transcription factor PGC- 1α have been found in the mi-
tochondria of human cell lines and platelets, as well as in various 
mouse organs.

Within the mitochondria, deacetylase and its substrate are as-
sociated with mtDNA nucleoids and mitochondrial transcription 
factor A (TFAM), a key mitochondrial gene transcription factor and 
mtDNA copy number regulator.132,133 These findings suggest that 
SIRT1 and PGC- 1α may also directly affect mitochondrial transcrip-
tion (Figure 2).

TFAM and mitochondrial transcription factors B1 and B2 are 
critical in the regulation of replication, transcription, and main-
tenance during mitochondrial biogenesis.130 SIRT1 is primarily 
located in the nucleus, but its activities greatly impact mitochon-
drial biogenesis and turnover.36 Mitochondrial biogenesis involves 

F I G U R E  2 Regulation	of	mitochondria	
biogenesis by SIRT1 and HIF- 1α during 
hypoxia. During hypoxia, the activity of 
SIRT1 in the nucleus is reduced, which 
decreases Von Hippel Lindau tumor 
suppressor levels and subsequently 
stabilizes HIF- 1α. Activated HIF- 1α 
reduces c- Myc activity and subsequently 
reduces transcription of mitochondrial 
transcription factor A. PGC- 1β activity 
is also inhibited by HIF- 1α, resulting in 
the downregulation of mitochondrial 
genes. SIRT1 reduction suppresses PGC- 
1α activity and prevents mitochondrial 
synthesis
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the transcription of both nuclear and mtDNA- encoded genes and 
is orchestrated by the PGC- 1 family of transcriptional coactiva-
tors.42,134 The PGC- 1 family consists of three members: PGC- 1α, 
PGC- 1β, and the PGC- related coactivator.135 PGC- 1α, often cited 
as a master regulator of mitochondrial biogenesis, co- activates 
the transcription of nuclear respiratory factor 1 and 2, which, in 
turn, regulate TFAM transcription.130,136,137 TFAM translocates to 
the mitochondrial matrix, where it stimulates mtDNA replication 
and mitochondrial gene expression. PGC- 1α undergoes several 
modes of post- translational modifications, including acetylation 
and phosphorylation.

Acetylation alters the localization of PGC- 1α in the nucleus and 
inhibits its transcriptional activity. Conversely, several studies have 
demonstrated that PGC- 1α deacetylation is dependent on SIRT1 ac-
tivity, which increases PGC- 1α transcriptional activity.138- 140 Given 
the reliance of PGC- 1α activity on its acetylation status, investiga-
tions on metabolic regulation and mitochondrial biogenesis have 
focused on the connection between SIRT1 and PGC- 1α. Nemoto's 
group provided clear biochemical evidence that SIRT1 physically and 
functionally interacts with PGC- 1α.139

4.3  |  Hypoxia and mitochondrial biogenesis

During the aging process, HIF- 1α suppresses mitochondrial biogen-
esis, impairing energy- dependent cellular processes, including cell 
and tissue repair.32 HIF- 1α involvement in mitochondrial biogenesis 
regulation and nuclear- mitochondrial communication modulation 
during aging is independent of PGC- 1α.43 The upregulation of HIF- 1α 
activates the Mxi1 gene, which encodes a c- Myc transcriptional re-
pressor, resulting in an interruption of the c- Myc and TFAM binding, 
thus further suppressing TFAM promoter activity and mitochondrial 
biogenesis.43

PGC- 1β, an additional master regulator of mitochondrial biogen-
esis, oxidative metabolism, and antioxidant defense, is preferentially 
expressed in high oxidative capacity tissue, where it participates in 
the metabolic response to high energy demand by regulating mi-
tochondrial biogenesis.141 HIF- 1α also negatively regulates PGC- 1β 

activity. In the cardiac ventricles of hypoxic mice, increased HIF- 1α 
expression results in decreased PGC- 1β mRNA and protein levels 
due to HIF- 1α binding. Conversely, degradation of HIF- 1α leads 
to PGC- 1β release, which subsequently promotes mitochondrial 
biogenesis.142

During the hypoxia-  or aging- induced decline in nuclear en-
ergy state or NAD+ levels, the nuclear SIRT1 activity is reduced, 
downregulating the Von Hippel- Lindau protein and stabilizing 
the expression of HIF- 1α. The latter subsequently reduces c- Myc 
activity and prevents TFAM transcription, which is required for 
replication, transcription, and maintenance of mitochondrial 
biogenesis. PGC- 1β activity is also inhibited by its interaction 
with HIF- 1α, resulting in the downregulation of mitochondrial 
genes21,26 (Figure 2).

5  |  CONCLUSION AND FUTURE 
PERSPEC TIVE

Due to defects in the construction of vascular network surround-
ing the ovaries, maternal aging can cause ovarian hypoxia, which 
is assumed to affect the growth and development of ovarian 
follicles. Resveratrol enhances SIRT1 expression and mitochon-
drial function under hypoxic conditions, suggesting that it exerts 
a protective effect against hypoxia (Figure 3). Resveratrol may 
prevent mitochondrial dysfunction due to hypoxia or aging, and 
resveratrol treatment may be a potential therapy for treating 
infertility.
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