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Abstract

Motivation: Normalization of single-cell RNA-sequencing (scRNA-seq) data is a prerequisite to their interpretation.
The marked technical variability, high amounts of missing observations and batch effect typical of scRNA-seq data-
sets make this task particularly challenging. There is a need for an efficient and unified approach for normalization,
imputation and batch effect correction.

Results: Here, we introduce bayNorm, a novel Bayesian approach for scaling and inference of scRNA-seq counts.
The method’s likelihood function follows a binomial model of mRNA capture, while priors are estimated from ex-
pression values across cells using an empirical Bayes approach. We first validate our assumptions by showing this
model can reproduce different statistics observed in real scRNA-seq data. We demonstrate using publicly available
scRNA-seq datasets and simulated expression data that bayNorm allows robust imputation of missing values gener-
ating realistic transcript distributions that match single molecule fluorescence in situ hybridization measurements.
Moreover, by using priors informed by dataset structures, bayNorm improves accuracy and sensitivity of differential
expression analysis and reduces batch effect compared with other existing methods. Altogether, bayNorm provides
an efficient, integrated solution for global scaling normalization, imputation and true count recovery of gene expres-
sion measurements from scRNA-seq data.

Availability and implementation: The R package ‘bayNorm’ is publishd on bioconductor at https://bioconductor.org/
packages/release/bioc/html/bayNorm.html. The code for analyzing data in this article is available at https://github.
com/WT215/bayNorm_papercode.

Contact: samuel.marguerat@imperial.ac.uk or v.shahrezaei@imperial.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-cell RNA-sequencing (scRNA-seq) is a method of choice for
profiling global gene expression heterogeneity across tissues in health
and disease (Baslan and Hicks, 2017; Chen et al., 2018). Because it
relies on the detection of minute amounts of biological material, name-
ly the RNA content of one single cell, scRNA-seq is characterized by
unique and strong technical biases. These arise mainly because
scRNA-seq library preparation protocols recover only a small fraction
of the total RNA molecules present in each cell. As a result, scRNA-
seq data are usually very sparse with many genes showing missing

values (i.e. zero values, also called dropouts). The fraction of all tran-
scripts recovered from a cell is called capture efficiency and varies
from cell to cell, resulting in strong technical variability in transcripts
expression levels and dropouts rates. Moreover, capture efficiencies
tend to vary between experimental batches resulting in confounding
‘batch effects’. Correcting for these biases in order to recover scRNA-
seq counts reflecting accurately the original numbers of transcripts pre-
sent in a cell remains a major challenge in the field (Bacher and
Kendziorski, 2016; Vallejos et al., 2017; Ziegenhain et al., 2018).

A common approach to scRNA-seq normalization is the use of
cell-specific global scaling factors. These methods are based on
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principles developed for normalization of bulk RNA-seq experi-
ments and assume that gene-specific biases are small (Vallejos et al.,
2017). Typically, read counts per cell are divided by a cell-specific
scaling factor estimated either from spike-in controls (Brennecke
et al., 2013), or directly from the transcriptome data using methods
developed initially for bulk RNA-seq (Love et al., 2014; Robinson
and Oshlack, 2010; Robinson and Smyth, 2007) or specifically for
scRNA-seq (Lun et al., 2016; Vallejos et al., 2015). A recent method
called SCnorm extended the global scaling approach by introducing
different scaling factors for different expression groups (Bacher
et al., 2017).

Importantly, scaling methods do not correct for cell-to-cell varia-
tions in dropout rates, as genes with zero counts remain zero after
division by a scaling factor. Several approaches have been designed
to tackle this problem. A series of methods use zero-inflated distri-
bution functions, to explicitly model the dropout characteristics
(Finak et al., 2015; Kharchenko et al., 2014; Pierson and Yau,
2015). Alternatively, other studies have proposed to infer dropouts
based on expression values pooled across cells or genes (Eraslan
et al., 2019; Huang et al., 2018; Li and Li, 2018; van Dijk et al.,
2018). For instance, scImpute pools expression values across similar
cell subpopulations in each dataset and imputes dropouts using a
Gamma-Normal mixture model and population-specific thresholds
(Li and Li, 2018). Similarly, the MAGIC package is based on pool-
ing gene expression values across cells using a network-based simi-
larity metric (van Dijk et al., 2018). Another method is based on
K-nearest neighbor smoothing, which uses Poisson distribution and
aggregate information from similar cells (Wagner et al., 2018).
Conversely, the SAVER approach pools expression values across
genes within each cell using a Gamma-Poisson Bayesian model
(Huang et al., 2018). The Gamma-Poisson model is also used in two
other packages called Splatter and scVI for simulating and normal-
izing scRNA-seq data, respectively (Lopez et al., 2018; Zappia
et al., 2017). scVI belongs to new class of approaches which imple-
ment deep learning methods (Ding et al., 2018; Eraslan et al., 2019;
Grønbech et al., 2018; Lopez et al., 2018; Wang and Gu, 2018). For
instance, DCA, an autoencoder method, utilizes a zero-inflated
negative binomial noise model (Eraslan et al., 2019). Apart from
Gamma-Poisson model, multivariate Normal distribution was
assumed for the log transformed data in BISCUIT, which is a
Bayesian method that uses an iterative approach to normalization
and clustering Azizi et al. (2018) and Prabhakaran et al. (2016).
However, the log transformation can affect downstream analysis
(see Lun, 2018; for more discussion about issues in log transform-
ation of scRNA-seq data). Experimental batch-to-batch variations
are another common source of technical variability in scRNA-seq
data. The origin of batch effects is not fully understood but results
at least in part from differences in average capture efficiencies across
experiments (Hicks et al., 2018). Recently, several methods have
been specifically developed to remove batch effect in scRNA-seq
data (Butler et al., 2018; Haghverdi et al., 2018; Kiselev et al.,
2018).

Many of the methods discussed above treat normalization, im-
putation and batch effect correction as separate tasks. Moreover,
some methods rely on strong assumptions such as various zero-
inflation models. Here we provide a detailed account of a novel inte-
grated approach called bayNorm, which performs all the processing
steps discussed above at the same time using minimal assumptions.
We compared its performance with a series of available packages
focusing on true count recovery, differential expression (DE) ana-
lysis and batch effect correction.

2 Materials and methods

A scRNA-seq dataset is typically represented in a matrix of dimen-
sion P � Q, where P denotes the total number of genes observed
and Q denotes the total number of cells studied. The element xij

(i 2 f1; 2; . . . ;Pg and j 2 f1;2; . . . ;Qg) in the matrix represents the
number of transcripts reported for the ith gene in the jth cell. This is
equal to the total number of sequencing reads mapping to that gene
in that cell for a non-unique molecular identifier (UMI) protocol.

For UMI-based protocols this is equal to the number of individual
UMIs mapping to each gene (Parekh et al., 2018; Smith et al.,
2017). The matrix can include data from different groups or batches
of cells, representing different biological conditions. This can be rep-
resented as a vector of labels for the cell groups or conditions (Cj).
bayNorm generates for each gene (i) in each cell (j) a posterior distri-
bution of original expression counts (x0

ij), given the observed
scRNA-seq read count for that gene (xij) (Fig. 1a).

A common approach for normalizing scRNA-seq data is based
on the use of a global scaling factor (sj), ignoring any gene-specific
biases (for a recent review see Vallejos et al., 2017). The normalized
data ~xij is obtained by dividing the raw data for each cell j by its glo-
bal scaling factor sj:

~xij ¼
xij

sj
(1)

In bayNorm, we implement global scaling using a Bayesian ap-
proach to infer the original transcript counts in each cell. We assume

given the original number of transcripts in the cell (x0
ij), the number

of transcripts observed (xij) follows a Binomial model with probabil-
ity bj (Klein et al., 2015), which we refer to as capture efficiency and

(a)

(b) (c)

(d) (e)

Fig. 1. A binomial model of mRNA capture is consistent with the statistics of raw

experimental scRNA-seq data. (a) Cartoon illustration of the bayNorm approach.

Only a fraction of the total number of mRNAs present in the cell is captured during

scRNA-seq library preparation. This occurs with a global probability called capture

efficiency (b). Using cell-specific estimates of b, bayNorm aims at recovering the ori-

ginal number of mRNA of each gene present in each cell. Comparisons between raw

experimental scRNA-seq data from the Klein study (Klein et al., 2015) and synthetic

data obtained using the Binomial_bayNorm (orange), Binomial_Splatter (blue) or

Splatter (Zappia et al., 2017) (green) simulation protocols (see Supplementary Note

S2 for details). (b) Variance versus mean expression relationship. (c) Dropout rates

versus mean expression relationship (note that Binomial_Splatter and

Binomial_bayNorm are on top of each other in this panel). The dotted line shows

the eð�Mean expressionÞ function. (d) Distribution of dropout values per gene. (e)

Distribution of dropout values per cell. (Color version of this figure is available at

Bioinformatics online.)
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it represents the probability of original transcripts in the cell to be
observed for a cell with average size (or average transcript content).
The capture efficiencies are proportional to global scaling factors

normalized by an estimate of mean capture efficiency �b (the average
fraction of original transcripts that are observed across all cells) for
the experiment and correct for cell-to-cell variation in transcript
capture and original transcript content (see Supplementary Note
S1). In addition, we assume that the original number or true count

of the ith gene in the jth cell (x0
ij) follows Negative Binomial distribu-

tion with parameters mean (l) and size (or dispersion parameter, /),
such that:

Prðx0
ij ¼ nj/i; liÞ ¼

Cðnþ /iÞ
Cð/iÞn!

/i

li þ /i

� �/i li

li þ /i

� �n

:

So, overall we have the following model:

xijjx0
ij � Binomðx0

ij; prob ¼ bjÞ;

x0
ij � NBðmean ¼ li; size ¼ /iÞ:

(2)

Using the Bayes rule, we have the following posterior distribu-
tion of original number of mRNAs for each gene in each cell:

Prðx0
ijjxij;bj; li;/iÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Posterior

¼
Prðxijjx0

ij; bjÞ
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{Likelihood

� Prðx0
ijjli;/iÞ

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{Prior

Prðxijjli;/i;bjÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Marginal likelihood

(3)

The prior parameters l and / of each gene were estimated using
an empirical Bayesian method by pooling information across cells as
discussed in detail in Supplementary Note S1. The estimation is
termed ‘global’, if priors informed by combining all cells in the study
regardless of their conditions or batch (Cj) and is termed ‘local’, if
the prior is estimated by pooling information across specific cell
groups (Cj).

The marginal likelihood for gene i in cell j is

Prðxijjli;/i;bjÞ ¼
Xþ1
n¼0

n
xij

� �
b

xij

j ð1� bjÞn�xij|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Binomial

� nþ /i � 1
/i � 1

� � /i

li þ /i

� �/ i li

li þ /i

� �n

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Negative Binomial

¼ xij þ /i � 1
/i � 1

� � /i

libj þ /i

 !/ i libj

libj þ /i

 !xij

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Negative Binomial

;

(4)

which follows from using

nþ /i � 1
/i � 1

� �
n
xij

� �
¼ xij þ /i � 1

/i � 1

� �
nþ /i � 1

n� xij

� �
; (5)

and

Xþ1
n¼xij

zn
/i þ n� 1

n� xij

 !
¼
Xþ1
m¼0

zmþxij
/i þmþ xij � 1

m

 !

¼ zxij

ð1� zÞ/iþxij
;

(6)

with z ¼ li

liþ/i
1� bjÞ
�

in Equation (4). Hence we have that the num-

ber of transcripts reported for the ith gene in the jth cell

xij � NBðmean ¼ libj; size ¼ /iÞ; (7)

has a Negative Binomial distribution with mean libj and size /i.
It can also be shown that the posterior distribution of x0

ij is a
shifted Negative Binomial distribution. To sample from the poster-
ior distribution, we note that the original count can be expressed as

x0
ij ¼ xij þ fij; (8)

where fij is the lost count satisfying

fij � NB mean ¼
lið1� bjÞðxij þ /iÞ

libj þ /i

; size ¼ xij þ /i

 !
: (9)

The posterior mean and variance then evaluate to

E½x0
ij� ¼ xij

li þ /i

libj þ /i

þ li

/i � /ibj

libj þ /i

; (10)

Var½x0
ij� ¼

ðxij þ /iÞlið1� bjÞðli þ /iÞ
ð/i þ libjÞ2

: (11)

Note that when /i is small, the mean of posterior tends to
xij

bj
. After estimating the posterior distribution for each gene in each

cell, we can either sample a certain number of draws from it (3D
array output, see Supplementary Fig. S1) or extract the mean or
maximum a posteriori probability (MAP; Gelman et al., 2014; 2D
array output, see Supplementary Fig. S1). More details on the use of
Binomial distribution and estimation of b and priors can be found in
the Supplementary Note S1 and pseudo code (Algorithm 1) in the
Supplementary Note.

3 Results

3.1 The bayNorm model reproduces statistics of real

scRNA-seq data
bayNorm models the true transcript counts in each cell using a
Bayesian approach to global scaling normalization. The two original
aspects of the method are: (i) the use of the binomial likelihood func-
tion, and (ii) the use of shrinkage methods to estimate prior parame-
ters (l and /). The bayNorm likelihood function Prðxijjx0

ij; bjÞ is
assumed to be binomial as it describes the random sampling of a
fraction of a cell transcriptome with constant probability. This is a
simple model of transcript capture in scRNA-seq (Klein et al., 2015)
and we therefore hypothesized that it would be a good choice for
the bayNorm likelihood function. For the prior Prðx0

ijÞ, we assume a
negative binomial model, which describes the bursty distribution of
mRNAs in simple models of gene expression (Raj et al., 2006;
Shahrezaei and Swain, 2008) and is also commonly used in RNA-
seq analysis Love et al. (2014). Gene-specific prior parameters are
estimated using an empirical Bayes approach by pooling gene ex-
pression values across multiple cells (see Supplementary Note S1
and Supplementary Figs S27 and S28 for details). Although shrink-
age methods have been commonly used to estimate dispersion (see
e.g. Love et al., 2014; Robinson and Smyth, 2007), the use of empir-
ical Bayes shrinkage approaches for estimation of the mean is less
common (but see Huang et al., 2018; Love et al., 2014; Zhu et al.,
2018). bayNorm normalized count of gene i in cell j is either a point
estimate from posterior (mean/MAP) (2D array output) or samples
of the corresponding posterior distribution (3D array output). The
bayNorm 2D or 3D output can be used for further downstream
analysis.

To validate our choice of binomial likelihood model and prior
estimates, we generated simulated scRNA-seq data based on these
assumptions and investigated how closely they captured statistics of
several published scRNA-seq datasets (Fig. 1b–e and Supplementary
Figs S2–S7; Bacher et al., 2017; Klein et al., 2015; Torre et al.,
2018; Tung et al., 2017). The simulations assumed that mRNA
counts per cell followed negative binomial distributions and used
gene-specific priors obtained with bayNorm (Fig. 1, ‘Binomial_
bayNorm’), or sampled from estimates obtained with a modified
version of the Splatter package (Fig. 1, ‘Binomial_Splatter’, see
Supplementary Note S2; Zappia et al., 2017). These were compared
with simulations generated with the original Splatter package which
is based on the Gamma-Poisson distribution (Zappia et al., 2017).
Note that in Splatter, scaling factors are multiplicative to the
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Deleted Text: s
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz726#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz726#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz726#supplementary-data
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx2009;
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz726#supplementary-data
Deleted Text: ) (
Deleted Text: )) (
Deleted Text: &hx2009;
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz726#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz726#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz726#supplementary-data
Deleted Text: s
Deleted Text: )
Deleted Text: s
Deleted Text: )
Deleted Text: )
Deleted Text:  
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz726#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz726#supplementary-data
Deleted Text: While
Deleted Text: ) 
Deleted Text: and 
Deleted Text: )
Deleted Text: )
Deleted Text: )
Deleted Text: s
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: s
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz726#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz726#supplementary-data
Deleted Text: )
Deleted Text: )
Deleted Text: )
Deleted Text: )
Deleted Text:  
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz726#supplementary-data
Deleted Text: )
Deleted Text: )


Gamma distribution’s mean. In bayNorm, however, the cell-specific
capture efficiencies, which act as scaling factors, are set as the prob-
ability parameter of the binomial model. Mean-variance relation-
ship and mean-dropout relationship are two important features in
scRNA-seq data. Several models have been proposed to explain
these phenomenons (Anders and Huber, 2012; Hicks et al., 2018;
Kharchenko et al., 2014; Pierson and Yau, 2015; Andrews and
Hemberg, 2018a). The binomial model used in simulation
(‘Binomial_bayNorm’) can better capture both relationships than
Splatter (Fig. 1a–c).

Moreover, a parameter free approximation based on the bino-
mial model predicted the dropout fraction to depend on an exponen-
tial of the negative mean expression (see Supplementary Note S1).
This function produced a very close fit to the experimental data pro-
viding additional support for our choice of the binomial model
(Fig. 1c). Notably, the Binomial_bayNorm simulation protocol
using inferred gene-specific priors together with cell-specific param-
eters (bj) was the only one that recovered the distribution of dropout
rates per gene observed in experimental data (Fig. 1d). Finally, the
results presented on Figure 1b–e could be replicated consistently
using several additional experimental scRNA-seq datasets
(Supplementary Figs S2–S7).

The datasets discussed so far were obtained based on UMIs ex-
perimental protocol (Islam et al., 2011). Datasets obtained without
using UMIs are less likely to be well described by the binomial distri-
bution. Accordingly, their dependence of dropout fractions on the
mean expression has been reported to be more complex than in
UMI-based datasets (Andrews and Hemberg, 2018a). We investi-
gated this issue further and found that a simple scaling of non-UMI
raw data by a constant factor produced a reasonable match to the
binomial model (Supplementary Fig. S9; see Section 2). This scaling
factor can be interpreted as the average number of times original
mRNA molecules were sequenced after PCR amplification. This
indicates that, provided appropriate scaling, non-UMI datasets are
also compatible with the bayNorm model. Importantly, as
bayNorm recovers dropouts rates successfully in both UMI-based
and non-UMI protocols without the need of specific assumptions,
we conclude that invoking zero-inflation models is not required to
describe scRNA-seq data. Consistent with this, the differences in
mean expression levels of lowly expressed genes observed between
bulk and scRNA-seq data, which were suggested to be indicative of
zero-inflation, were recovered by our simulated data using the bino-
mial model only (Supplementary Fig. S10; Hicks et al., 2018).

We note that the ability of simulation protocols to recover the
statistics of experimental data depended intimately on the value of
cell-specific capture efficiencies (bj). We used different ways to esti-
mate b (spike-in, Scran scaling factors, trimmed means, or house-
keeping genes; see Supplementary Fig. S8) together with different �b
in the Binomial_Splatter simulation protocol. We found that
changes in bj values affected recovery of the distribution of dropout
rates per cell. (Supplementary Fig. S8). In particular, we found that
the use of spike-in controls or of housekeeping reference gene ex-
pression levels did not improve estimates of capture efficiencies
(Supplementary Fig. S8c–f). Altogether, this analysis demonstrates
that accurate statistics of experimental scRNA-seq data can be con-
sistently retrieved using the binomial model and empirical Bayes es-
timation of gene expression parameters implemented in bayNorm
along with accurate estimates of cell-specific capture efficiencies.

3.2 Recovery of true gene expression distributions and

gene–gene correlation from scRNA-seq data
Single-cell RNA-seq provides a unique opportunity to study stochas-
tic cell-to-cell variability in gene expression at a near genome-wide
scale. However, doing this requires normalization approaches able
to retrieve from scRNA-seq data transcripts levels matching quanti-
tatively in vivo mRNA numbers (Torre et al., 2018). bayNorm
imputes drop-outs that are a result of low capture efficiency using its
Bayesian approach (see Supplementary Fig. S25). However as
bayNorm posterior models the original counts in the cell bayNorm
should be effective in inference of the full transcript distributions.

With this in mind, we evaluated bayNorm performance in recon-
structing true gene expression levels from a series of experimental
scRNA-seq datasets that contained matched single molecule fluores-
cence in situ hybridization (smFISH) measurements for a series of
genes. We used mean capture efficiencies �b estimated directly from
smFISH together with gene-specific priors informed by the

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2. bayNorm recovers distributions of gene expression observed by smFISH. (a)

Stag3 mRNA distribution for cells grown in 2i measured by smFISH or by scRNA-

seq and normalized with different methods (from Grün study). ‘Raw’ denotes

unnormalized scRNA-seq data. (b) As in (a) for the LMNA gene (from Torre study).

Legend as in (a). Smoothing bandwidth is 10 for every method shown in (a and b).

(c) Log2 ratio between the means of scRNA-seq measurements for 18 genes normal-

ized by different methods and their matched smFISH measurements (from Grün

study). (d) As in (c) using 12 genes (Torre study). (e) Log2 ratio between the CV of

scRNA-seq measurements for 18 genes normalized by different methods and their

matched smFISH measurements (from Grün study). (f) As in (e) using 12 genes

(from Torre study). (g) Log2 ratio between the Gini coefficients of scRNA-seq meas-

urements for 18 genes normalized by different methods and their matched smFISH

measurements (from Grün study). (h) As in (c) using 12 genes (from Torre study).

For the bayNorm and SAVER normalized datasets, 20 or 5 samples were generated

from posterior distributions for the Grün and the Torre studies, respectively. All

normalized datasets except bayNorm and the Scaling method have been divided by

the �b value used in bayNorm procedure. For this analysis smFISH data were nor-

malized for variation in total transcript numbers using either cell size measurements

(Grün study) or expression levels of a house keeping gene (Torre study) as detailed

in see Supplementary Note S4

bayNorm 1177

Deleted Text: &hx2019;
Deleted Text:  
Deleted Text: )
Deleted Text: )
Deleted Text: )
Deleted Text: )
Deleted Text: )
Deleted Text: &hx201C;
Deleted Text: &hx201D;
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz726#supplementary-data
Deleted Text:  
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz726#supplementary-data
Deleted Text: unique molecular identifiers (
Deleted Text: )
Deleted Text: )
Deleted Text: )
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz726#supplementary-data
Deleted Text: Methods
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz726#supplementary-data
Deleted Text: )
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz726#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz726#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz726#supplementary-data
Deleted Text: -
Deleted Text: s
Deleted Text: )
Deleted Text: Baysian
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz726#supplementary-data
Deleted Text: origingal
Deleted Text: distrubutions
Deleted Text: s
Deleted Text:  
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz726#supplementary-data


sequencing data (Supplementary Fig. S11). After bayNorm normal-
ization, scRNA-seq counts reproduced accurately count distribu-
tions obtained by smFISH for several mRNAs (Fig. 2a and b). All
methods captured mean smFISH counts across different genes well
(Fig. 2c and d). However, noise in gene expression (coefficient of
variation, CV) and expression dispersion (Gini coefficient) measured
by smFISH were better captured by bayNorm compared with
normalization by scaling or by several recent normalization and im-
putation methods (Fig. 2e–h; Bacher et al., 2017; Eraslan et al.,
2019; Huang et al., 2018; Li and Li, 2018; van Dijk et al., 2018).
bayNorm’s good performance could also be confirmed in a series of
simulation studies (Supplementary Fig. S12).

Estimation of gene–gene correlations is essential in network in-
ference from scRNA-seq data. As the bayNorm prior, assumes no
correlation between genes, bayNorm could underestimate the corre-
lations. We used Torre study that contains smFISH data on gene–
gene correlations to illustrate that bayNorm gene-specific priors in-
deed underestimate the gene-gene correlation (Supplementary Fig.
S26). In comparison the adjusted SAVER correlation estimates tend
to overestimate the gene–gene correlation for most pairs of genes
(Supplementary Fig. S26). We believe this is due to pooling informa-
tion across genes in the same cell in SAVER’s empirical Bayes ap-
proach. However, bayNorm does not inflate gene–gene correlations
as observed for some imputation methods (Andrews and Hemberg,
2018b). In summary, bayNorm combined with gene-specific priors
inferred directly from the scRNA-seq data, retrieves gene expression
variability and gene–gene correlations matching smFISH data.

3.3 bayNorm enables accurate and sensitive DE

analysis
Differential gene expression analysis in scRNA-seq studies is chal-
lenging as several factors including variability in capture efficiencies,
dropout rates, sequencing depth and experimental batch effects can
introduce significant, yet spurious, DE signal. Normalization and
imputation approaches have, therefore, a significant impact on the
sensitivity and accuracy of DE analysis protocols. Two features of
the bayNorm approach have the potential to improve the perform-
ance of DE analysis. First, bayNorm posterior distribution of origin-
al counts maintains the uncertainty resulting from small capture
efficiencies and could therefore reduce false positive DE discovery
rates (Pimentel et al., 2017). Second, the use of priors specific to
each group of cells compared in the DE analysis could increase true
positive discovery rates. With this in mind, we have assessed
bayNorm performance in DE analysis using several experimental
scRNA-seq datasets and compared it with other normalization and
imputation methods. To identify DE genes we use model-based ana-
lysis of single-cell transcriptomics (MAST) (Finak et al., 2015),
which performs well in terms of false positives rates, precision and
recall (Jaakkola et al., 2016). MAST was first applied to individual
sample from the bayNorm posterior distribution (3D array,
Supplementary Fig. S1). Differentially expressed genes were then
called based on the median of Benjamini-Hochberg adjusted P-val-
ues of the individual samples (Benjamini and Hochberg, 1995).

As mentioned earlier, differences in capture efficiencies between
cells is a source of technical variability that could affect DE analysis.
To test bayNorm’s ability to correct for this bias, we selected the
1000 cells with the highest and lowest capture efficiencies based on
total counts in a recent UMI-based scRNA-seq study of fission yeast
with cell size measurements (Saint et al., 2019). We then applied
bayNorm to the 2000 cells using global prior estimation by pooling
information across the two groups (see Section 2). In this design, the
two groups of cells differ based on their capture efficiencies while
the cell size in two groups is not markedly different (Fig. 3b, inset).
Therefore, significant DE is not expected. Figure 3a shows the num-
ber of genes called differentially expressed as a function of increas-
ing average expression levels using a series of normalization and
imputation methods. bayNorm normalized data show almost no dif-
ferentially expressed genes, outperforming all the other methods.
Moreover, log2 gene expression ratios between cells of the two
groups were consistently close to zero, confirming bayNorm ability

to correct for biases inherent to different capture efficiencies in
UMI-based datasets (Fig. 3b).

Sequencing depth is another parameter affecting DE analysis espe-
cially because it impacts on the dropout rates of lowly expressed
genes. Moreover, differences in sequencing depth are likely to affect
levels of capture efficiencies, especially for non-UMI datasets where
PCR biases are not accounted for. To assess bayNorm’s ability to cor-
rect for this source of bias, we used a benchmark dataset published by
Bacher et al. (2017) that consists of non-UMI-based scRNA-seq data
for two groups of cells isolated from a single culture and sequenced to
a depth of either 1 or 4 million reads per cell. bayNorm and other im-
putation methods performed well in this setting (Supplementary Fig.
S13). Finally, bayNorm corrected robustly for variability in sequenc-
ing depth when applied to a series of simulated datasets
(Supplementary Figs S14 and S15; Bacher et al., 2017).

We have shown that bayNorm is efficient at removing spurious
DE from scRNA-seq data caused by variability in capture efficien-
cies and sequencing depth. We next explored bayNorm performance
in supporting sensitive and robust detection of genes truly regulated
between samples. To do this, we used two experimental scRNA-seq
datasets (Islam et al., 2011; Soumillon et al., 2014) and lists of
benchmark DE genes derived from matched bulk RNA-seq data
(Jaakkola et al., 2016; Ye et al., 2019). To maximize sensitivity, we
used priors specific to each groups of cells in the comparison (we
call this design ‘local priors’). With the first dataset, bayNorm
normalized data generated an area under the curve (AUC) value as
high as other normalization methods demonstrating that the ap-
proach supports sensitive DE detection (Fig. 3c). Analysis of the se-
cond dataset (UMI-based) (Soumillon et al., 2014) further
confirmed this observation with bayNorm performing better than
all other methods (Fig. 3d). Importantly, bayNorm’s performance
did not depend on the number of cells in each group, except for
groups with very low numbers of cells (Fig. 3d and Supplementary
Fig. S16). Finally, using a series of simulated datasets, we explored

 

(a) (b)

(c) (d)

Fig. 3. bayNorm enables robust and sensitive DE analysis. (a) Number of differen-

tially expressed genes between the 1000 cells with the highest and the 1000 cells

with the lowest total counts in Saint study (Saint et al., 2019). DE genes were called

using the MAST package (PMAST < 0:05) and plotted for six groups of genes with

increasing mean expression (1—low to 6—high). (b) log2 fold-change from (a). Inset

shows box plots of total count and cell sizes (as measured in Saint et al., 2019) in

the two groups, illustrating lack of strong correlation between scRNA-seq raw total

count and cell size. (c) DE analysis using MAST for different normalization methods

(Islam study) using a benchmark list of DE genes obtained from matched bulk

RNA-seq data Ye et al. (2019). (d) DE analysis using data from Soumillon study

(Soumillon et al., 2014). 20, 50, 80, 100, 200 or 400 cells were selected randomly

from two groups of stage-3 differentiated cells at day 0 (D3T0) or day 7 (D3T7). A

list of DE genes obtained from matched bulk RNA-seq data was used as a bench-

mark (1000 genes with the largest magnitude of log fold-change between the D3T0

and D3T7 samples, Ye et al., 2019). For bayNorm and SAVER, 3D arrays were

used
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situations where the compared groups have different mean capture
efficiencies and found that bayNorm supported robust DE detection
in all cases (Supplementary Fig. S17).

Three important parameters should be considered before
bayNorm normalization: (i) the choice of priors, (ii) the choice of
average capture efficiencies �b, iii) the choice of bayNorm output for-
mat (2D versus 3D array). Prior parameters can be either estimated
for all cells across groups (global) or within each group (local). Since
priors are gene specific, applying bayNorm across homogeneous
cells (i.e. using global prior) allows for mitigating technical varia-
tions (Supplementary Fig. S18a and b). On the other hand, using pri-
ors estimated ‘locally’ within each group amplifies differences in
signals between heterogeneous groups of cells increasing sensitivity
(Supplementary Fig. S18c and d). Average capture efficiencies �b are
specific to each scRNA-seq protocol and reflect their overall sensi-
tivity. This value represents the ratio of the average number of
mRNA molecules sequenced per cell to the total number of mRNA
molecules present in an average cell. It is not always easy to deter-
mine as quantitative calibration methods such as smFISH are not
widely used, and approaches based on spike-in controls have short-
comings (Vallejos et al., 2017). We investigated the impact of in-
accurate estimation of b on biases in DE detection. Critically we
found that DE results based on bayNorm normalized data are not
affected significantly by a 2-fold change of �b (Supplementary Figs
S20 and S21). Finally, bayNorm output consists of either samples
from its posterior distributions (3D array) or the modes/means of
these distributions as point estimates (2D arrays). For DE analysis
using MAST, 3D array outputs reduces false positive rates (FPRs)
but 2D array outputs perform slightly better in terms of AUC
(Supplementary Fig. S18c and d). Supplementary Figure S19 shows
DE results for two other non-parametric methods: reproducibility
optimized test statistic (Elo et al., 2008) and Wilcoxon test
(Jaakkola et al., 2016). Both approaches perform equally well with
3D arrays but show variable results when applied to 2D arrays with
the Wilcoxon test performing less well. In summary, our analysis
demonstrates that in addition to correcting for technical biases,
bayNorm also supports robust and accurate DE analysis of a wide
range of experimental and simulated scRNA-seq datasets.

3.4 bayNorm correction of experimental batch effects
scRNA-seq protocols are subject to significant experimental batch
effects (Tung et al., 2017). bayNorm can mitigate batch effects in
two ways. First, as described above, bayNorm efficiently corrects
for differences in capture efficiencies which is a pervasive source of
batch-to-batch variability (Hicks et al., 2018). Second, the use of
bayNorm data-informed priors is an efficient way to mitigate batch
variation by estimating prior parameters across different batches but
within the same biological condition.

To investigate bayNorm’s performance for batch effect correc-
tion we use data from the Tung study, where there are three batches
for each of three individuals (Tung et al., 2017). We first used priors
calculated within each individual, but across batches [bayNorm
local (individual)]. This strategy allows for maintaining differences
between individuals while minimizing batch effects as illustrated in
Figure 4a and b (also see Supplementary Fig. S22). To quantify the
result, we defined the ratio of the number of DE genes (detected be-
tween each pair of batches within the same individual, adjusted
PMAST < 0.05) and the total number of genes (13 058) to be the
FPRs (Supplementary Fig. S23). In parallel, we tested whether
bayNorm also maintained differences between individuals. To do
this, we detected DE genes between the iPSC lines NA19101 and
NA19239 and compared it with a benchmark list of 498 DE genes
(Ye et al., 2019). Efficient batch effect correction is expected to min-
imize FPR while maximizing AUC values of DE detection between
individuals. Using bayNorm with ‘within individual’ local priors
(estimated across different batches within the same line) outper-
formed other methods in terms of correcting batch effects while
maintaining meaningful biological information. As expected, using
global priors (estimated across batches and individuals, bayNorm
global) preserves low FPR, but reduces AUC significantly. Finally,

using ‘within batch’ local priors [bayNorm local (batch)] result in
higher FPRs, which is also expected.

Another common use of scRNA-seq data in heterogeneous sys-
tems is to identify different cell types by clustering cells in an un-
supervised manner. The Zeisel study provides a dataset where each
cell is assigned to a specific cell type based on lineage markers ex-
pression, which can therefore be used as gold standard Zeisel et al.
(2015). In Figure 4d and e, we compared 2D t-distributed stochastic
neighbor embedding (t-SNE) plots (van der Maaten and Hinton,
2008) of cells based on the scaling and bayNorm methods, respect-
ively. We used the Seurat package for cell clustering (Butler et al.,
2018). The Jaccard index was calculated for each method using
‘cluster_similarity’ function from R package ‘clusteval’. This ana-
lysis illustrates how bayNorm with global priors can preserve clus-
tering of different cell types as well as the scaling methods.
Moreover, this observation was confirmed using two additional
datasets, where cell type annotation was not provided (Baron et al.,
2016; Chen et al., 2017). There, we used cell labels determined
based on scaling normalized data as references (see Supplementary
Fig. S24).

4 Discussion

We introduced bayNorm, a versatile Bayesian approach for imple-
menting global scaling that simultaneously provides imputation of
missing values and true counts recovery of scRNA-seq data.
Bayesian methods have been applied to different aspects of RNA-seq
data analysis before (Hardcastle and Kelly, 2010; Huang et al.,
2018; Kharchenko et al., 2014; Vallejos et al., 2015). We showed
that using the binomial model and an empirical Bayes approach to
estimating gene expression priors across cells results in simulated
data almost identical to experimental scRNA-seq measurements.
Importantly, this suggests that zero-inflated models are not required
to explain the frequency of dropout observed in scRNA-seq (see also
Svensson, 2019; Soneson and Robinson, 2018). Although designed
initially for UMI-containing scRNA-seq protocols, a simple scaling
factor makes bayNorm applicable to non-UMI data as well. This
flexibility will allow using this approach with most present scRNA-

(a) (b) (c)

(d) (e)

Fig. 4. Batch effect correction and cell type identification (a and b) each color repre-

sent a different cell line derived from a different individual. Color shades represent

different batches within a line/individual. (c) Differentially expressed genes were

called between lines NA19101 and NA19239 as well as different batches within

each line (seven pair of comparisons in total). FDRs were averaged across the seven

pairs. The vertical and horizontal dashed lines represent 0.25 and 0.75 indicative

cutoffs, respectively. bayNorm was applied either across batches but within lines

[‘bayNorm local (individual)’] or across all cells (‘bayNorm global’) or within each

batch [‘bayNorm local (batch)’]. Global gene-specific prior parameter estimation

across all cells results in clear clusters of different cell types compared with Scaling

normalization using the data from Zeisel et al. (2015). t-SNE plots are shown based

on Scaling normalization (d) and bayNorm (e). The clustering performance is quan-

tified by Jaccard index (the value reported at the top left of each panel). For

bayNorm, 1 sample of 3D array was used. (Color version of this figure is available

at Bioinformatics online.)
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seq datasets. We showed using datasets that combine smFISH and
scRNA-seq, that bayNorm is accurately recovering true gene expres-
sion across a wide range of expression levels. This approach could
therefore be particularly useful for quantitative analysis of more dif-
ficult scRNA-seq datasets, such as those generated from small quies-
cent cells or microbes, for instance. In fact, we have recently used
bayNorm successfully in the first scRNA-seq study of fission yeast
(Saint et al., 2019).

One of the most powerful features of bayNorm is its use of gene
expression priors directly calculated from gene expression values
across cells. We showed that grouping cells according to experiment
design or phenotypic features increased significantly the robustness
and sensitivity of DE analysis. This removes almost completely the
sequencing depth and capture efficiency biases, and reduces batch
effects. Critically, this approach preserved accurate and sensitive de-
tection of benchmark DE genes in contrast to some recently devel-
oped methods of batch correction. Also, where there is no prior
knowledge available for cell types, using a global approach does not
affect clustering of cell types. The clustering results could be
improved if priors are iteratively improved using a method of simul-
taneous normalization and clustering as proposed in Prabhakaran
et al. (2016).

Bayesian methods have been applied to different aspects of
RNA-seq data analysis before (Hardcastle and Kelly, 2010; Huang
et al., 2018; Kharchenko et al., 2014; Prabhakaran et al., 2016;
Vallejos et al., 2015). The approach most related to bayNorm is
taken by SAVER, which uses a Poisson-Gamma model and pooling
information across genes for true count recovery (Huang et al.,
2018). In contrast, bayNorm uses a binomial model of mRNA cap-
ture as likelihood and achieves similar or improved performance
relative to SAVER on real and simulated data (Figs 2–4).

Accurate estimation of cell capture efficiencies (or scaling fac-
tors) is central to most scRNA-seq normalization methods including
bayNorm. Interestingly, we observed that the choice of cell-specific
capture efficiencies affect how closely simulated data recovers statis-
tics of real data. We therefore propose that comparison of drop-out
rates per cell in simulated datasets and experimental data could be
used as a tool to inform appropriate choice of global scaling factors
and mean capture efficiency estimates. The option to tailor
bayNorm priors based on phenotypic information about cell subpo-
pulations will be a powerful asset for discovery of gene expression
programs associated with specific phenotypic features of single cells
such as cell size (Saint et al., 2019). Finally, the concepts and math-
ematical framework behind bayNorm will be useful if combined
with other emerging theoretical approaches such as deep learning
(for instance Ding et al., 2018; Eraslan et al., 2019; Grønbech et al.,
2018; Lopez et al., 2018; Wang and Gu, 2018). Overall, bayNorm
provides a simple and integrated solution to remove the technical
biases typical of scRNA-seq approaches, while enabling robust and
accurate detection of cell-specific changes in gene expression.
bayNorm has been made freely available as an R package (https://bio
conductor.org/packages/release/bioc/html/bayNorm.html) released in
Bioconductor (Gentleman et al., 2004).
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