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Abstract

tumorigenesis.

Background: Metastatic neuroblastoma (NB) occurs in pediatric patients as stage 4S or stage 4 and it is
characterized by heterogeneous clinical behavior associated with diverse genotypes. Tumors of stage 4 contain
several structural copy number aberrations (CNAs) rarely found in stage 4S. To date, the NB tumorigenesis is not still
elucidated, although it is evident that genomic instability plays a critical role in the genesis of the tumor. Here we
propose a mathematical approach to decipher genomic data and we provide a new model of NB metastatic

Method: We elucidate NB tumorigenesis using Enhanced Fused Lasso Latent Feature Model (E-FLLat) modeling the
array comparative chromosome hybridization (aCGH) data of 190 metastatic NBs (63 stage 4S and 127 stage 4). This
model for aCGH segmentation, based on the minimization of functional dictionary learning (DL), combines several
penalties tailored to the specificities of aCGH data. In DL, the original signal is approximated by a linear weighted
combination of atoms: the elements of the learned dictionary.

Results: The hierarchical structures for stage 4S shows at the first level of the oncogenetic tree several whole
chromosome gains except to the unbalanced gains of 17g, 2p and 2q. Conversely, the high CNA complexity found
in stage 4 tumors, requires two different trees. Both stage 4 oncogenetic trees are marked diverged, up to five
sublevels and the 17q gain is the most common event at the first level (2/3 nodes). Moreover the 11q deletion, one
of the major unfavorable marker of disease progression, occurs before 3p loss indicating that critical chromosome
aberrations appear at early stages of tumorigenesis. Finally, we also observed a significant (p = 0.025) association
between patient age and chromosome loss in stage 4 cases.

Conclusion: These results led us to propose a genome instability progressive model in which NB cells initiate with
a DNA synthesis uncoupled from cell division, that leads to stage 4S tumors, primarily characterized by numerical
aberrations, or stage 4 tumors with high levels of genome instability resulting in complex chromosome
rearrangements associated with high tumor aggressiveness and rapid disease progression.

Background

Neuroblastoma (NB) is a clinically and biologically het-
erogeneous pediatric cancer, the onset of which can be
localized or disseminated disease. Disseminated tumors
are classified as clinical stages 4S and 4. Stage 4S occurs
in infants, usually have a good prognosis without any
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treatments, although a small fraction of stage 4S patients
can have a disease progression requiring chemotherapy
[1]. Both infants and children can present stage 4 NB,
but older patients have usually a worse outcome with a
rapid disease progression that leads to death in more
than half of patients [2].

Genome-wide studies have showed that gains of chro-
mosomes 2p, 7 and 17q are frequently present together
with losses of 1p, 4p, 9p, 11q, and 14q in stage 4 tumors,
whereas stage 4S tumors frequently display numerical
copy number aberrations (CNAs) [3-5]. The origin of
such complex chromosomal aberrations is still unclear,
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and there are currently no accurate models of NB
tumorigenesis. Nonetheless, experimental evidence indi-
cates that NB is characterized by a high level of genome
instability [6] and that CNAs accumulate in an age-
dependent manner [7, 8].

As a result of the publicly available high-throughput
array comparative genomic hybridization (aCGH) data re-
positories in the Gene Expression Omnibus (GEO), it is
now possible to investigate CNAs in large cohorts of NB
samples. A signal measured with the aCGH technology is
made of a piecewise constant component plus some com-
posite noise. The typical analysis on such data is segmen-
tation, which is the automatic detection of chromosome
loci where CNAs (amplifications or deletions) occur, as
shown in the Fig. 1. Beyond that, it is crucial to under-
stand how these alterations co-occur. This turns to identi-
fying shared patterns (latent features) in the data, which
may reveal a genotype-phenotype relationship.

Several methods have been suggested for the extraction
of CNAs based on different principles, such as filtering (or
smoothing), segmentation, breakpoint-detection and call-
ing [9-16], taking into account one sample at a time [17].

Especially in cancer diseases, where mutations happen
very frequently, joint-analysis of aCGH samples could be
helpful to filter out unshared mutations among (at least
a subset of) samples. One of the first works applying this
approach was performed by Pique-Regi et al. [18] where
the authors extended their previous model [13] to the
“multi-sample” analysis. Following this scheme, many
other approaches were proposed usually extending the
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“one-by-one” criterion to a “multi-sample” application
[19-21] and in some cases extending this approach also
to the joint-normalization of data [22].

Moreover, some interesting recent results were ob-
tained by adopting statistical learning methods based on
regularization for a joint segmentation of many aCGH
profiles at once. Previous results [11, 23-25] obtained
following this method are based on total variation (7'V)
or fused lasso signal approximation.

In this context, we use E-FLLat (Enhanced Fused
Lasso Latent Feature Model) [26], a novel model for
aCGH segmentation, based on the minimization of func-
tional dictionary learning (DL) combining several penal-
ties tailored to the specificities of the data at hand. In
DL, the original signal (i.e., the aCGH sample) is approx-
imated by a linear weighted combination of the atoms
(i.e., a set of elementary alterations), which are the ele-
ments of a learned dictionary.

We assumed that each sample can be approximated by
a weighted combination of some of the identified atoms.
A simple example of this concept is shown in the Fig. 2
where the signal can be obtained as the weighted sum of
three elementary alterations (atoms). In the analysis of
the NB data, we first identified the atoms using E-FLLat;
then, we applied an inference method [27] to place the
atoms in a set of hierarchical structures (trees) that may
shed light on NB oncogenesis.

Thus, we used the aCGH data and a statistical inference
method based on dictionary learning to propose a Gen-
ome Instability Progressive (GIP) model of tumorigenesis
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Fig. 1 An aCGH signal before and after segmentation. An aCGH profile can be thought of as the concatenation of the log-ratio values ordered
by chromosomes and by chromosomal location. In the top plot, each black dot corresponds to a probe placed at a given chromosomal location
(x-axis) and with a corresponding estimated a log-ratio of the CNAs for the hybridized control and patient (y-axis). Probes are sorted according to their
chromosomal location, as example, from chromosome 1 to chromosome 4 and each dotted red line represents boundaries among chromosomes.
The bottom plot shows the same aCGH profile after segmentation. The thin black line is a piecewise constant signal obtained as a result of the
segmentation. The red dots indicate gain whereas the green dots correspond to probes where a loss occurred
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Fig. 2 A piecewise constant signal as weighted linear combination of atoms. The piecewise constant signal at the bottom of the figure can be
obtained by linearly combining a set of three elementary alterations (atoms). Each atom is multiplied by a weighting factor (coefficient) 3 and

for metastatic NB, which has one of the most aggressive
known pediatric cancer phenotypes.

Methods

Data description

We analyzed six publicly available datasets from the
GEO [28] for E-FLLat analysis (Table 1). We used a vari-
ation of the alignment algorithm of [29] consisting of
three steps: 1) mapping to the reference genome, 2) sig-
nal smoothing for noise reduction, and 3) alignment.

Data alignment and normalization

1. Mapping of the Human Genome (HG19): First, we
proceeded by mapping the probe sets on the HG19
[30]. The Agilent samples were mapped using
mapping files from UCSC (44 k and 105 k),
whereas the Nimblegen data were mapped using the
lift-over function available at UCSC>.

2. Normalization: For the Agilent platforms, we first
performed a check of the quality control (QC)

results, discarding those probes associated with a
poor QC value. For the normalization of all of the
data, we used CGHnormaliter [31]. Each input file
(sample) has a corresponding normalized output
containing information on the call, segmentation
and normalized log-ratio of all 22 autosomes. As the
output, the algorithm provides the CNAs estimated

for each unique probe set on the chip.
. Alignment: As opposed to Jong et al. [29], who

sampled each chromosome N times, we decided to
sample the chromosomal bands, excluding the
non-coding short arms 13p, 14p, 15p and 22p and
the sexual chromosomes. Each of the resulting 795
chromosomal bands was sampled N =10 times. For
each of the new virtual 7950 probes, we performed a
K-NN procedure that assigns an estimated expression
to the new virtual probe by considering K = 10 nearest
neighbors all belonging to the same chromosomal
band. K = 10 was the upper bound; therefore, we used
ten values at most to estimate the assigned expression.
Finally, also in contrast to Jong et al. [29], we excluded

Table 1 Description of aCGH data collected from public available datasets

“Platform BGEO code “GEO serie 9INB stage 45 9NB stage 4 “Total samples
AgilentCgh2x105k GPL4093 GSE25771 16 7 23
AgilentCgh4x44k GPL2873 GSE25771 GSE35953 10 39 49
AgilentCgh4x44k GPL2879 GSE25771 5 1 6
AgilentCgh4x44k GPL5477 GSE14109 GSE25771 GSE35953 17 73 90
AgilentCgh4x44k GPL11633 GSE26494 1 0 1
Nimblegen4x72k GPL8971 GSE26494 14 7 21

“Total Samples 63 127 190

2Platform type, PGPL file code from GEO, GEO series number, “number of Stage 4 and 45 neuroblastoma samples, samples number used in the analysis
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the z-score transformation, due to its drastic effect on
the signal mean. After the alignment and
normalization, the dataset was composed of 190 sam-
ples represented by 7950 probes. The chromosomal
bands contained 10 probes each.

E-FLLat: a dictionary learning-based approach for aCGH
segmentation

E-FLLat is a dictionary learning-based model for aCGH
segmentation [23]. We are given S samples (YS)lgSgs’
with y,€ RY. The aim of dictionary learning is to seek J
simple atoms () <;<; with 5; € R”, which may provide a
complete representation of all of the samples in the
sense that

J
Y= Z}ZIstﬁj Vs=1,..., S

for some vectors of coefficients 0, = (6;5)1 ;
Thus, the E-FLLat model is as follows:

s J 2 J
, 2
ming, g, Z ys_zeisﬁj + AZ| Bl |1
=1 =1 =1

J S )
Y TV (B) + Y161
j=1 s=1

5.t 0<0<Opge Vj=1,..,JV¥s=1,.., S

The weighted total variation TV, (ﬁi) = lL;wl

‘ﬁ, +1Aj_/’)l.j‘ is a generalized total variation due to the

presence of the weights w=(w);-;<;_,€R*" " This
modification is introduced to relax the constraint of
small jumps on the atoms at some points. In fact, we
imposed w; =0 at the boundaries between the chromo-
somes and at the chromosome centromeres. Elsewhere,
w; was set according to a position-dependent weighting
schema as in [32].

Post-processing and dictionary interpretation

After the segmentation process, the dictionary was post-
processed to set a level of detail that was sufficiently
general for the subsequent step of investigation. If one
probe was detected as altered by E-FLLat, the smallest
chromosomal band that contains that probe was consid-
ered as altered. Then, alterations occurring on adjacent
chromosomal bands were merged and considered as one
alteration occurring on the merged band.

Carcinogenesis tree reconstruction

Once the E-FLLat approach identified the atoms, we
used MTreeMix [27], a software package for learning
and using mixture models of oncogenic trees, to de-
scribe evolutionary processes that are characterized by
the ordered accumulation of permanent genetic changes.
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A tree is a hierarchical structure with one root node and a
well-ordered set of nodes. The elements composing the
tree are nodes and links. The depth of a node is the dis-
tance in links from the root node. The n-th level is defined
as the set of nodes with distance # from the root node.

Results

E-FLLat provides a new representation of the data in
terms of a set of atoms (dictionary) and matrix of coeffi-
cients ©. Each sample can be approximated by a sparse
linear combination of the atoms weighted by its corre-
sponding set of coefficients (columns of the © matrix).
Each atom is a unique element of the learned dictionary
and represents an elementary pattern of highly corre-
lated alterations that co-occur in the dataset. We separ-
ately applied E-FLLat to the stage 4S and 4 subsets,
represented by two matrices (63x7950-dimensional and
127x7950-dimensional, respectively).

The atoms for stage 4S and 4 are listed in Table 2. Each
atom is the set of relevant CNAs selected by E-FLLat and
post-processed as described above. The number of atoms
was chosen according to a principal component analysis
(PCA) analysis (see Additional file 1 Figure S1) and was
applied separately for stage 4S and stage 4 data matrices.
The PCA showed that 90 % of the covariance of stage 4S
samples can be explained using ] = 19 atoms, whereas | =
42 atoms are required for stage 4 samples. Therefore, we
chose ] = 16, which is sufficient to explain at least 70 % of
the data covariance in both cases.

Table 2 Atoms characterizing Stage 4S and stage 4 samples

Stage 4 s Stage 4
Atom Chromosome bands Chromosome bands
Al +2,+12 +2p223, +2p23
A2 +7,+17 +17q
A3 +6, +13 +2p24.3, +7q, +17q
A4 -21q, —4p +2p24, —-1p
A5 —14q +2p2, +12q
A6 -8p +17p, +1791
A7 +2p2, +7 +18
A8 —14q2 +2p
A9 —14q -3p
A10 +2p1, +2q, +7 +17p
AN —4,-10 +7
A12? - +12
A13 -3 +2p2
A14° - -
A15 2 -11q
A16° +12, +17q -

2Atom 12 is not associated with any relevant alteration for stage 4S,
A14 for both 4S and 4, A16 for stage 4
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Figure 3 shows the representation coefficients (O
matrix) for stage 4S and stage 4 samples, whose
atoms are listed in Table 2. As expected, the atoms
identified by E-FLLat highlight that stage 4S samples
are characterized by numerical alterations (Al, A2,
A3, All, A13, A15), whereas the stage 4 data mainly
show segmental aberrations. The only numerical alter-
ations in stage 4 tumors affected chromosomes 18
and 7 (atoms A7 and All).
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After the identification of the relevant atoms, the trees
were inferred using the MTreeMix algorithm. Each root
node in the trees is associated with the portion of pat-
terns described by the corresponding tree.

The hierarchical structures for stage 4S and 4 tumors
are depicted in Fig. 4. The stage 4S tree shows six events
(atoms) with probabilities that range from 0.81 to 0.99,
suggesting that they occur in most of the represented
samples. As expected at the first level the atoms are
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Fig. 3 Representation of © coefficients for stage 4S and stage 4 tumors. The stage 4S (a) and stage 4 (b) tumors are reported in the columns,
whereas the atoms are in the rows. Each sample is approximated by a linear combination of atoms weighted by the © coefficients. The atoms in
the © matrix are sorted according to their use in the sample representation, i.e, the most used atoms are in the top rows. The coefficients range
from 0 to 1, as indicated by the underlying color bar, and darker hues correspond to higher coefficient values
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Fig. 4 Oncogenetic Trees. The reconstructed atom tree for stage 4S (top) shows several initial events of which only one with sublevels.
Conversely, both stage 4 reconstructed atom trees (bottom) are marked branched (up to five sublevels) The root node R (yellow) is associated
with a weight corresponding to the portion of mutation patterns represented by the tree. The missing portion is associated with the random
mutations tree (data not shown). The edges are weighted according to the frequency of the corresponding mutation occurrence. Node color
codes: the red node is associated with chromosome gain, the green node is associated with chromosome loss, and the green and red node
indicates co-occurring loss and gain

characterized mainly by whole chromosome gains except
to the unbalanced gains at 17q and 2p or 2q.

Conversely, the high CNA complexity found in stage 4
tumors, requires two different trees to be properly repre-
sented. Notably each tree shows three atoms only at the
first level, where the unbalance gain of 17q is the most
common aberration occurring in two out of three nodes.

Discussion

Metastatic stage 4S and stage 4 NB tumors are charac-
terized by distinct genome profiles and clinical behavior.
In particular, the majority of stage 4 NB display several
structural CNAs that confer marked aggressiveness to

these tumors [5]. How these chromosome aberrations
are originated and how lead to transformation and car-
cinogenesis is still unclear, although experimental evi-
dence indicates that genomic instability can play a
critical role in the genesis of this tumor [7, 8].

Here, we propose the GIP model of carcinogenesis for
metastatic NBs. To create this model, we used E-FLLat,
a dictionary learning-based method that naturally groups
the most relevant alterations in elementary patterns and
sorts them according to how many times such patterns
occurred in the data. This behavior is a built-in property
of dictionary learning approaches, and in addition to be-
ing an advantage per se by providing a compact way of
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analyzing the coexisting alterations; it also eases the
computational burden of the subsequent tree inference
process. We used three different penalties that allowed
us to segment the signal incorporating the characteris-
tics of the aCGH data. Indeed, an aCGH signal is a step-
wise constant, and alterations may co-occur in different
chromosomes at the same time. We describe the E-
FLLat model, modifying some notations and illustrating
the rationale behind the chosen constraints. When deal-
ing with aCGH, TV, allows the treatment of signals gen-
erated by several chromosomes as a whole while still
guaranteeing an independent analysis for each chromo-
some, ensuring the capability of identifying concomitant
alterations occurring on different chromosomes. In the
E-FLLat model, coefficients are constrained to be posi-
tive and are bounded by 8,,,,=1. This constraint pre-
vents a cancellation effect in the representation of the
signal, leading to a simpler matrix of coefficients and a
matrix of atoms, which more clearly reveal the latent
patterns in the data. In this way, the interpretability of
the results is improved. For example, when losses and
gains occur within data at the same locus, the model se-
lects different atoms to describe them as different phe-
nomena. The coefficients are further penalized by the
term erﬂHﬂsH?, which induces sparsity in the set of
weights associated with each sample separately. This fea-
ture permitted the model to regulate how many different
atoms of each sample can be combined to reconstruct
the original signal. Then, we used the term Z’],:1||ﬁj||?,
which induces a structured sparsity in the columns of
the matrix of the atoms. Only inexact algorithms can
solve the minimization of the model in the E-FLLat
function. In our implementation, we use an alternating
proximal algorithm [26], which provides an approxima-
tion of the exact solution with a controlled error. The
choice of the regularization parameters (\, , 1) is deter-
mined according to the Bayesian Information Criterion
[33] that mitigates the problem of over-fitting by intro-
ducing a penalty term for the complexity of the model.
The choice of the number of atoms ] is made with a criter-
ion based on PCA [34]. PCA seeks to optimally represent
the data in terms of the minimal reconstruction error, ie.,
the mean-square-error between the representation and
the original data, hence projecting onto the first eigenvec-
tors of the covariance matrix of the inputs. We apply PCA
to the data matrix, identifying the minimum number of ei-
genvectors necessary to explain at least 70 % of the data
covariance. We chose this value as the number of atoms J.
Indeed, all of the state-of-the art tree inference methods
[27, 35] have prohibitively long lists of single alterations,
which is a very common scenario when dealing with com-
plex diseases such as NB tumors.

The idea is to establish a mixture model M of K trees
Ty with a maximum likelihood approach (22). In
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MTreeMix, the estimation of a single tree is based on
solving a maximum weight branching problem by a
combinatorial algorithm. The mixture model is fitted it-
eratively with an EM algorithm: in the E-step, the algo-
rithm assigns the data to the tree components and
estimates the missing data; in the M-step, it fits the trees
on the respective subsets. As input, MTreeMix considers
the list of events or atom patterns, i.e., the lists of atoms
used to reconstruct each sample. An event is an entry of
a binary J-dimensional vector displaying which atoms
are used by E-FLLat to reconstruct the corresponding
sample (entries 0 and 1 denote the absence and the pres-
ence of an atom). To obtain the atom pattern, we con-
sidered a binarized version of the coefficient matrix ©,
using a threshold that allowed us to discard the smallest
noisy coefficients due to the inexactness of the
minimization algorithm.

The al%?rithm then inferred a mixture M of trees Ty,:
M = ) . axTk, assuming that the data are generated
by more than one stochastic process. Each tree of the
mixture represents the probability distribution over the
2/ possible patterns (with ] atoms) associated with a set
of events, and it is defined by vertices (random binary
variables showing the occurrence of a single event) and
weights (representing the conditional probability be-
tween events). The sum of weights a; associated with
each tree sums to 1, including the random mutations
tree, a noisy tree associated with random mutations and
represented by a star (all atoms belong to the first level and
have a distance of one to the root node). Given a mixture
of trees M and an atom pattern associated with a sample x,
one can estimate how well the mixture represents such a
pattern by evaluating the likelihood of the pattern for each
tree in the mixture: L(x]M) = Y 1 L(x|Ty). The likeli-
hood L(x|T}) indicates how likely it is that the sample x be-
longs to the probability distribution defined by T}. It must
be noted that we used MTreeMix differently from the
method for which it was originally proposed. In particular,
the approach was designed for inferring the phylogenetic
trees of single mutations. In other words, the algorithm
can work on lists of single mutations. In our case, we used
the same approach to infer a hierarchical structure (tree) of
patterns of mutations, i.e., the atoms identified by E-FLLat.
Our model indicates that stage 4 NB tumors show more
complex CNA compared to the 4S genetic tree. This is
clearly indicated by the necessity to represent the onco-
genic tree of stage 4 tumors using 42 atoms (Additional file
2 Figure S2). Additionally, GIP model requires two differ-
ent oncogenic trees for stage 4 tumors compared to the
one identified for stage 4S tumors; in both cases, the
level of noise (associated with the random mutations
tree) is comparable (0.3 for stage 4S and 0.37 for stage
4), However both stage 4 oncogenetic trees are marked
diverged, up to five sublevels, explaining the greater
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variability and complexity of stage 4 NBs, also indicat-
ing their greater malignancy.

The increase of numerical CNAs observed in 4S tumors,
supports the chromosome endomitosis and abnormal mi-
tosis as triggering events for malignant transformation.
The endomitosis process [31] has been observed in a var-
iety of physiological processes such as during the embry-
onic development, where the cells, as a nutriment and
protection of the embryo, skip the cytokinesis step result-
ing in an increase of the ploidy [36]. The endomitosis
process has been also described in cancer cells [37].
Kaneko and Knudson [38] reported the occurrence of en-
domitosis in stage 4S cells. This process can generate
aneuploid cells that undergoing to clonal expansion con-
tribute to stage 4S tumor development. Because the ma-
jority of 4S tumors regress spontaneously, in the GIP
model we may speculate that 4S tumor cells, upon mitotic
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catastrophe, could undergo to apoptotic program to elim-
inate themselves, as initially proposed [39]. Another hy-
pothesis already described in the stage 4S regression [40]
indicates that the same polyploidy cells could differentiate
and then regress. The 4S differentiation/regression process
is further supported by our previous observation concern-
ing upregulation of several genes belonging morphogen-
esis and differentiation, in particular the stage 4S
overexpressed genes implicated in peripheral nervous sys-
tem development and in Ras-mediated cell death pro-
grams [8]. The endoreplication can further generate high
DNA instability, rendering the genome prone to structural
chromosome damage [41]. This situation leads to the co-
existence, inside the tumor cells, of both numerical and
structural CNAs, a condition often observed in stage 4
[6, 8]. Contrarily to stage 4S, the stage 4 cells accumu-
late several genetic aberrations conferring proliferative

~
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chromosome
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Fig. 5 Schematic representation of the Genome Instability Progressive model of metastatic Neuroblastoma. The GIP model suggests a common
ancestor for metastatic “stage 4S and 4 NBs", showing that a deregulated endomitosis, chromosome mis-segregation and abnormal mitosis in the
neural crest progenitors lead to aneuploid cells. This cell may generate “Stage 4S cell clone”, characterized mainly by numerical aberrations.
However the clone maintains the capacity to active cell death or differentiation programs as mechanism to escape the catastrophic mitosis.
Conversely the deregulated neural crest cells (NNC) may also generate “Stage 4 cell clone” with high genomic instability resulting in complex
chromosome rearrangements. Finally, in the GIP model chromosomal deletions are late events, resulting in increasing of genomic chaos and
progressive increase of genomic instability, with consequent tumor progression
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advantage and capacity to circumvent programmed cell
death [6]. Additionally, since in this high aggressive
tumor, the 17q gain is the most common aberrations as
the initial GIP event, we could also hypothesize that
this genomic imbalance represents the starting event
that force to the tumorigenesis of stage 4 NBs.

The structural chromosome gain often results in a
consequently overexpression of genes located within
these regions. Specifically several genes, mapping in the
long arm of chromosome 17, have been found overex-
pressed in NB. One of the most important gene within
this region, is Survivin (BIRC5) (17q25), that encodes
for an antiaptototic protein [42]. Survivin expression
has been found markedly upregulated in neuroblasto-
mas, and high level of expression also correlated with
poor prognosis [43, 44]. Similarity NME/NM23 nu-
cleoside diphosphate kinase 1 (NMEI) mapping in
17q21.3, has been also found overexpressed in some
NBs and the upregulation correlated with metastatic
disease [45].

It is interesting to note that in GIP model loss of chro-
mosomes occur in the late event of carcinogenesis. In
particular, stage 4S tumors show chromosome deletion
at different sub-levels of the atoms’ tree (second A5, A6;
third: A4, A9, A13 forth A8, A11). Notably, in stage 4S
genetic tree, only 1 out of 6 nodes displays diverse sub-
levels, with deletions mainly affecting the short arm of
chromosome 14. Loss of 14q has been already involved
in the NB initiation/progression [46] and may explain
why a small portion of 4S NBs develops toward a more
aggressive disease.

On the other hand, the stage 4 tree shows loss at 11q
that is not observed in stage 4S tumors, and this dele-
tion was present either in first (stage 4, left tree) and in
the second level (stage 4, right tree). Interestingly in
both stage 4 trees, 11q deletion is occurring before 3p
loss. This observation underlines the critical role of 11q
deletion in stage 4 tumors suggesting that structural
11q aberration confers tumor aggressiveness as conse-
quence of chromosome instability. Additionally, we also
observe 1p deletion at the secondary levels of stage 4
trees. Both these regions have been associated with an
unfavorable clinical outcome and older patients [47].
All above data are in agreement with Kaneko and
Knudson [38] that suggested how chromosome loss
may occur after endoreplication and demonstrate that
chromosome deletion is a late event linked to higher
aggressiveness.

Differently from chromosome gain, the chromosome
loss may produce breakage of gene sequence and dramat-
ically lack of the gene function. Chromosome 1p36 dele-
tion has been observed in approximately 36 % of primary
tumors and several studies indicate this region containing
more than one NB suppressor genes including Tumor
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Protein p73 (TP73) (1p36.32) [48], cyclin-dependent kin-
ase 11B (CDK11B) (1p36.33) [49], neuroblastoma 1, DAN
family BMP antagonist (NBL1) (1p36.13) [50] and paired
box 7 (Pax7) (1p36.13) [51]. In addition to chromosome
1p other regions such as 3p, 11q and 14q, frequently lost
in NB, were also identified to contain putative NB sup-
pressor genes. Specifically, RAS-association domain family
1 isoform A and (RASSFIA), mapping in 3p21.3, is a pro-
apototic RAS effector and plays a key role in the DNA
repair [52]. Cell adhesion molecule 1 (CADM1I) gene, in-
volved in the cell junction organization, was also reported
as a good candidate NB suppressor gene that can be dam-
aged by the deletion of the 11q23 region [53]. Lastly,
chromosome 14q23 deletion, was observed in about 22 %
of NB and this locus contains MYC associated factor X
(MAX) (14q23.3), that gives dimerization with MYCN
gene [54], one of the most important oncogene associated
with NB aggressiveness [55]. Lack of MAX repression
function by chromosome 14q gene deletion may allow the
overexpression of MYCN gene, as reported in aggressive
NB. In conclusion, as suggested by GIP model, the occur-
ring of chromosome 1p, 3p, 11q, and 14q deletions might
increasing the aggressiveness of the tumor by damaging
important NB suppressor genes.

Finally, because previous reports [7, 8] indicate that
chromosome damages accumulates with increasing pa-
tient age, we evaluated the correlation between CNAs
and patient age. We found a significant (p = 0.025) asso-
ciation between patient age and chromosome loss exclu-
sively for stage 4 (atoms Al5, A9; data not shown),
supporting the hypothesis that 3p and 11q chromosome
deletion accumulates in older patients.

Conclusions
In conclusion, we propose for the first time a model of
carcinogenesis for metastatic NB based on dictionary
learning. Our model suggests that an aberrant regula-
tion of the endomitosis could correlate to carcino-
genesis process of metastatic NB. Afterwards, the
polyploidy cells evolve in malignant clonal cell expan-
sion generating stage 4S or stage 4 NB, each of which is
characterized by distinct genomic features. The former
disease characterized by an increase of numerical
chromosome aberrations, is able to activate a cell death
or differentiation programs to escape the catastrophic
mitotic. Conversely, stage 4 NBs show several complex
chromosome rearrangements, where the chromosome
deletions occur as late event, resulting in an increase of
the genomic chaos and a progressive increase of
chromosome instability, with consequent rapid disease
progression (Fig. 5).

Future investigations of the NB carcinogenesis process
can address future therapies to re-regulate the malignant
cell cycle.



Masecchia et al. BMC Medical Genomics (2015) 8:57

Endnotes
'http://hgdownload.soe.ucsc.edu/goldenPath/hg19/

database/
*http://genome.ucsc.edu/cgi-bin/hgLiftOver.
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