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EDITORIAL INTRODUCTION

On March 13, 2014, some of the world’s leading biological 
science researchers will converge on Cork, Ireland, to discuss the 
synthetic biology future. Defined loosely as a trans-disciplinary 
field at the intersection of science and engineering,1 the genesis 
of synthetic biology can be traced to two milestone papers, pub-
lished back-to-back in the same January 2000 issue of Nature,2,3 
detailing the design and construction of the first synthetic gene 
networks. The first synthetic biological oscillator (“repressila-
tor”) and bistable gene regulatory network (“toggle switch”) 
demonstrated, for the first time, that engineering principles 
could be successfully applied to biological systems—engineering 
the biological equivalents of electronic memory storage and time-
keeping. Over the past 14 years, this approach has been applied 
to the synthetic engineering of increasingly more complex genetic 
switches,4-8 memory elements,9,10 and oscillators,11-14 as well as 
other electronics-inspired genetic devices15-17 up to, and includ-
ing, synthetic life itself.18,19

Although arguably one of the hottest emerging areas of bio-
logical science research,20 the origins of synthetic biology can 
be traced as far back as 1961 to a paper by Mono and Jacob21 
on telenomic mechanisms in cellular metabolism. This seminal 
paper described the circuit-like connectivity of biological parts, 
a discussion which spawned several studies on the application of 
electrical circuitry analogies22,23 and mathematical models24-27 to 
biological systems. Indeed, from these humble beginnings, each 
successive decade has helped shape the evolution of the field, pro-
viding the material and tools necessary to design and assemble 
biomolecular parts,28-30 whole entities,19,31,32 and in some cases, 
entire consortia.33,34

The discovery in 1970 of the first Type II restriction enzyme 
by Hamilton Smith35 (providing the molecular scalpels neces-
sary to cut DNA at specific sites), coupled with Herb Boyer and 
Stanley Cohn’s experimentation on recombinant plasmids,36 
made it possible to clone genes from one organism (or species) 
and express them in another.37 This marked the birth of recom-
binant DNA technology and with it the golden age of molecular 
biology. By the 1980s molecular biology had spawned the bio-
technology industry, facilitated by Diamond vs. Chakrabarty, 
447 US 303 (1980), a landmark ruling by the US Supreme 
Court, which, for the first time, afforded genetic engineers the 
same protections for their inventions enjoyed by conventional 

engineers. The Supreme Court case was heard on March 17, 
1980 and decided on June 16, 1980. The patent was granted 
by the US patent office on March 31, 1981, providing Ananda 
Chakrabarty (an Associate Editor of Bioengineered) with the first 
patent on a genetically engineered organism,38 a Pseudomonas 
strain capable of breaking down crude oil, a biological invention 
with obvious applications in large scale oil spill cleanup.39 The 
remainder of the 1980s saw the continued growth and develop-
ment of the biopharmaceutical industry, punctuated with large 
scale heterologous production of recombinant human protein 
therapeutics,40 most notably insulin—DNA technology’s first 
drug.41 But where does our definition of biotechnology end and 
synthetic biology begin? For Serrano,42 the introduction of exog-
enous genes to a host organism for the production of new com-
pounds is more synthetic biology than biotechnology. I disagree 
with this assertion; for me, synthetic biology involves the use 
of wholly synthetic constructs (not previously seen in nature). 
Applying this logic to the insulin example—simply expressing 
human insulin (e.g., Humulin) against an Escherichia coli back-
ground—represents classic biotechnology.43 Infergin (interferon 
alfacon-1), on the other hand—a wholly synthetic type-I inter-
feron generated from the consensus sequence of several natural 
interferon α subtypes44—is truly a product of synthetic biology.

The 1990s marked the beginning of the “-omics” era,45 the 
defining moment of which was the initiation of the human 
genome project46,47 and, laterally, the emergence of metagenom-
ics48—the genomic view of an entire environmental niche, e.g., 
the human microbiome.49,50 In addition to facilitating advance-
ments in so-called wet lab technologies (e.g., large scale DNA 
sequence and synthesis), the resulting sequence information led 
to biology’s “big data” revolution and with it, the era of in silico 
biology.51 Thus, the 2000s marked biology’s silicon age, punc-
tuated by the development of bioinformatics52 and systems biol-
ogy.53 Again, distinctions must be drawn between systems biology 
and synthetic biology; while both disciplines consider modeling 
and simulation as important tools, systems biology is focused on 
understanding biological systems, while synthetic biology aims 
to engineer new and improved functions.

Therefore, although synthetic biology truly represents a new 
field—officially emerging in 2004 with the appearance of its 
own dedicated Wikipedia page54 and the first synthetic biology 
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conference55—its origins, as I have outlined above, can be traced 
back more than 50 years.

So what of the next 50 years? The possibilities are endless: 
new pharmaceuticals, biologically produced (“green”) fuels, as 
well as new drugs and vaccines against emerging microbial dis-
eases, are all in the pipeline.56 However, while many of these high 
impact discoveries are likely to come from dedicated research 
centers, such as the J Craig Venter Institute (named for another 
of our Associate Editors), there exists a counter culture, a new 
and emerging group of independent researchers who are mak-
ing synthetic biology their own. These self-styled biohackers 
(or biopunks) apply the computer hacker ethos to the biologi-
cal sciences, advocating open access to genetic information and 
manipulation. This new era of DIY biology57 originally evolved 
as a non-institutional pursuit with practitioners—many of whom 
having little or no formal training—operating out of garages or 
modified kitchens.58,59 However, increasingly more organized 
groups have begun to emerge, including Genspace,60 a non-
profit organization dedicated to promoting citizen science.61 In 
2010, Genspace formed the world’s first community-based bio-
technology laboratory, a biosafety level one facility located in 
Brooklyn, NY. Operating on a monthly subscription basis, the 
lab offers hands-on courses to the public and encourages scien-
tific entrepreneurship, particularly in the synthetic biology arena 
(or SynBio in the biohacker vernacular). Although the first, the 
Genspace laboratory is no longer unique; in the US alone, there 
are dozens of community biolabs or “hackerspaces” that cooper-
ate among themselves and a loose international confederation of 
biohackers called DIYBio,62 which at the time of writing lists 20 
organized DIY groups in North America, 16 in Europe, and two 
each in Asia and Oceania. Many of these DIYbio practitioners 
actively collaborate and compete in the iGEM63 (International 
Genetically Engineered Machine) competition, a worldwide syn-
thetic biology competition open to undergraduate university stu-
dents, high school students, and entrepreneurs.

Despite experiencing exponential growth following its earliest 
inception in a Cambridge, MA, pub in 2008, two of the major 
impediments to the continued development of the DIYbio move-
ment are funding (more specifically, the lack thereof), and contin-
ued public fears relating to biosafety and biosecurity.64 However, 
even these obstacles are being gradually eroded. Locked out of 
traditional funding mechanisms, many of the early adopters have 
turned to crowdsourcing platforms65-67 to achieve their goals. 
Indeed, using this approach, Biocurious, a DIYbio group based in 
Sunnyvale, CA, raised more than $35 000 (from 239 Kickstarter 
pledges) to establish their own laboratory, or hackerspace. Other 
groups have progressed even further, successfully tapping conven-
tional funding streams, including the Welcome Trust, which funds 
Madlab (Manchester, UK) and the FP7 EU project, StudioLab, 
which funds Biologigaragen (Copenhagen, Denmark).

Biosafety and/or security on the other hand remains a sticky 
wicket, encompassing not only the DIYbio movement but all ama-
teur biology and the democratization of science in general.64 By 
establishing hackerspaces that are properly insured and exhibiting 
documented adherence to safety regulations, DIYbio groups like 
Biocurios in the US and La Paillasse in Europe (Paris, France) are 

leading the way in creating safe, secure, and regulated labs for their 
practitioners. Indeed, DIYbio.org co-founder Jason Bobe believes 
that, in addition to creating secure work spaces, the DIYbio and 
iGEM communities combined are best placed to establish a col-
lective code of ethics, enabling global governance of the citi-
zen science culture.64 In the summer of 2011, the international 
DIYbio community organized congresses in the US and Europe 
to establish a collective code of ethics for the community. The 
following year, DIYbio.org established a “question and answer” 
platform on biosafety,68 a free service that allows amateurs to sub-
mit questions to professional biosafety experts. While all of the 
above go some way toward easing public concern and facilitating 
social legitimacy, regulatory and safety issues still remain the most 
significant barrier to the continued evolution of the movement.

In addition to funding and policy issues, of most concern (at 
least for now) is the gap between what is possible in the average 
hackerspace vs. what is achievable in a typical professional or aca-
demic laboratory. With some notable exceptions—such as the La 
Paillasse bioink project, a non-toxic biodegradable alternative to 
modern ink—DIY SynBio wetware outputs fall far short of even 
the most pedestrian of academic labs. One obvious explanation 
for this is a lack of specialist equipment; while most academic 
labs are stocked with name brand apparatus and laboratory con-
sumables, biohackers make do with what they have (or in most 
cases have not). Necessity being the mother of invention, some of 
these hardware innovations and inventions ironically represent 
the communities’ first tangible successes. The DremelFuge, for 
example, developed by Cork-based DIYbio practitioner Cathal 
Garvey, is a simple component that turns an ordinary Dremel 
rotary-tool into a lab-quality centrifuge.69 More sophisticated 
devices include Amplino,70 an inexpensive, portable PCR diag-
nostic system capable of detecting malaria in less than 40 min 
from a single drop of blood.

Thus, while the DIYbio movement is unlikely, at least in the 
short-term, to contribute significantly to our fundamental under-
standing of biological processes,71 disruptive technologies like 
Amplino have the potential to significantly impact global health 
improvement, particularly in developing countries where access 
to expensive and delicate diagnostic equipment is a significant 
limitation.72 While some use these early successes to argue that 
the stage is set for the “bioscience version of Apple or Google 
to be born in a dormitory room or garage,”73 I for one feel that 
the DIYbio movement is unlikely to morph into a version of the 
establishment that it currently eschews. For me, the future is 
more likely to be one of cooperation rather than assimilation. To 
borrow from the computer jargon which has come to synonymize 
the field, today’s biohackers are tomorrow’s “bioApp” developers, 
no longer a subversive group to be feared and derided, but an 
essential component of biology’s future development.74

True to this assertion, the Cork SynBio meeting aims to 
bring amateurs, academics, and professionals together in a spirit 
of collaboration—home to Ireland’s first DIYbio group,75 two 
leading third-level institutions (CIT76 and UCC77), and play-
ing host to 14 of the world’s top 15 pharmaceutical companies, 
Cork is the perfect location from which to frame The Synthetic  
Biology Future.
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