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Since the demonstration of RNA interference (RNAi) in mammalian

cells, considerable research and financial effort has gone towards

implementing RNAi as a viable therapeutic platform. RNAi is, without

doubt, the most promising strategy for the treatment of human genetic

disorders. Because many of the targets proposed for RNAi therapy

require chronic treatment, researchers agree that the emphasis must

now be placed on the safe and long-term application of RNAi drugs to

reap the benefits at last.
RNA interference (RNAi) represents a powerful and versatile gene silencing process in which

double-stranded RNA (dsRNA) triggers the sequence-specific cleavage of mRNA transcripts. An

explosion of research that followed its discovery in Caenorhabditis elegans in 1998 [1] has

recently resulted in RNAi-based protocols for analysis of gene function and therapeutic

applications in humans [2,3]. Following pioneering research in plants [4,5] and nematodes

[1,6], RNAi was demonstrated in mammalian cells in 2001 by Tuschl and colleagues, who were

the first to apply short interfering RNAs (siRNAs) to guide the sequence-specific suppression of

gene expression [7,8]. In theory, every gene is amenable to RNAi-based silencing, and therefore

these key papers have led to a surge of excitement among researchers in the medical field. For

about a decade now, the quest for efficient RNAi therapeutics to treat a wide variety of

pathologies has been ongoing and has already made remarkable progress, but we must

emphasize that further improvements are still needed to pave the way for RNAi to develop

into a viable therapeutic approach.

Obviously, the translation of RNAi into a broadly applicable therapeutic platform needs

appropriate pharmaceutical considerations at different levels in clinical drug development

(e.g. siRNA design [9,10] and siRNA formulation [11]). In straightforward terms, it can be stated

that the most efficient delivery of the most potent siRNA is expected to result in maximal

suppression of a target gene.
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To extrapolate RNAi from bench to bedside, it is imperative to

consider not only the gene knockdown intensity but also the

dynamics of gene silencing [12]. On the one hand, precise control

over the duration of RNAi gene knockdown can provide new

information on complex cellular pathways implying interactions

between multiple genes, without having to rely on more elaborate

transgene technologies. On the other hand, from a therapeutic

point of view, being the main focus of this review, it may be

relevant to silence a pathogenic gene for a longer period of time, to

improve the clinical outcome. Prolonging the gene silencing effect

of a specific siRNA formulation may be beneficial for chronic

patient adherence if the administration frequency in the dosing

schedule could be significantly scaled down.

Although many in vivo studies have already highlighted the

enormous therapeutic potential of RNAi therapeutic strategies

[13], recent studies have shown unintended off-target effects

(OTEs), activation of immune and inflammatory pathways and

perturbation of endogenous cellular pathways by small dsRNA

drugs. Especially when placing the emphasis on long-term treat-

ment of chronic diseases, toxicity issues become increasingly

important and should be dealt with accordingly. At present, few

data are available on the long-term toxicity of RNAi triggers but

appropriate attention should be paid to these issues in the context

of prolonging RNAi silencing.

In this review, we will primarily focus on important remarks and

strategies in the light of prolonged RNAi gene silencing for ther-
FIGURE 1

Cellular mechanism of RNA interference (RNAi), mediated by short interfering RNAs

stranded RNA (dsRNA) by the Dicer endoribonuclease into siRNAs. These siRNAs are

only maintains one strand (antisense strand or guide strand) while Ago2, the cataly
strand in active RISC* then recognizes complementary target sites to direct mRNA c

fragments is carried out by intracellular ribonucleases as a result of the lack of a
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apeutic purposes. In the different sections we attempt to describe

several topics from the available literature on RNAi that are of

particular relevance to the central theme of this review.

Intrinsic RNAi gene silencing efficiency and longevity
Since the discovery of RNAi, researchers have revealed the basic

steps of the RNAi pathway, but many crucial aspects remain to be

unveiled. The RNAi effector molecules, termed siRNAs, are RNA

duplexes �21–25 nucleotides (nt) in length (Figure 1). These small

RNA fragments are defined as the products of longer dsRNA

processing by an RNase III type enzyme, called Dicer. Once intro-

duced in the cell’s cytoplasm, siRNAs are incorporated into a

protein complex termed RISC (RNA induced silencing complex)

that contains the Argonaute 2 (Ago2) endonuclease [14]. Only one

strand of the RNA duplex is retained inside the RISC, which is the

antisense strand or guide strand. Subsequently, the activated RISC

(RISC*) uses the guide strand to bind to the complementary region

on the target mRNA, followed by Ago2-directed transcript cleavage

(also called ‘slicing’) opposite the phosphate linkage between bases

10 and 11 with respect to the 50 end of the guide strand [15]. The

cleavage fragments are then further degraded by cellular RNases.

Our current knowledge of the RNAi pathway is sufficient to

recognize the intrinsic gene silencing potential of RNAi. The fact

that siRNAs employ endogenous cellular machinery is imperative

in this regard. siRNA-activated RISC (RISC*) is defined as a multi-

ple-turnover enzyme that follows Michaelis–Menten kinetics.
(siRNAs). The natural RNAi pathway is initiated by the cleavage of long double-

subsequently incorporated into RISC (RNA induced silencing complex). RISC

tic unit of RISC, cleaves the passenger strand (sense strand). The siRNA guide
leavage, which is again catalyzed by Ago2. Further degradation of the mRNA

50-cap and a poly(A) tail.
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Once the mRNA target is cleaved, RISC* is recycled in the RNAi

pathway to identify and destroy other mRNAs. This implies that a

single enzyme complex can bind and cleave multiple mRNA

transcripts [16]. Moreover, RISC can provide additional intracel-

lular stability to the siRNA guide strand and protect it against an

armada of single-strand-specific RNases. The entrapment of siRNA

into RISC and its catalytic action are key parameters explaining the

inherent gene silencing efficiency.

When siRNAs are not incorporated into RISC, their double-

stranded nature makes them more resistant to intracellular degra-

dation. In contrast to single-stranded RNA, duplex siRNA has the

structural advantage of being better protected against ubiquitous

single-strand-specific nucleases. This feature makes duplex siRNA

significantly more stable intracellularly, which can already be

observed over a short time scale [17]. This inherent stability also

has to be taken into account especially when comparing the gene

silencing efficiency and duration of siRNAs and unmodified anti-

sense oligonucleotides; the latter being rapidly degraded in the cell

cytoplasm [18].

Efforts with the aim of improving siRNA potency led to the

development of longer siRNAs (25–27mers) that show superior

silencing efficiency at certain target sites when compared with the

conventional 21mers directed against the same region in the

mRNA transcript [10,19,20]. With these types of duplexes, max-

imal inhibition and longer gene silencing persistence was observed

at concentrations lower than those required for conventional

21mer siRNAs [10,19,20]. The improved RNAi silencing is thought

to originate from their recognition and cleavage by Dicer (hence

the annotation Dicer substrate RNAs or DisRNAs), which could

facilitate their incorporation into RISC (Figure 1) because Dicer is

believed to participate in the early steps of RISC assembly [21].

Nature holds several examples of convenient RNAi amplifica-

tion mechanisms, for example in nematodes and plants. One of

the known amplification mechanisms is ‘systemic spreading’ of

the RNAi silencing effect. This effect is attributed to a dsRNA

receptor, denoted as SID-1 in C. elegans, responsible for passive

dsRNA translocation over the cell membrane and intercellular

dsRNA transport between neighbouring cells [22,23]. The lack

of gene silencing when incubating mammalian cells with ‘naked’

(i.e. unformulated) siRNA makes it likely that, in most mammalian

cell types, normal levels of SID-1 homologue expression can be

neglected [24,25]. A recent study, however, conducted by Wol-

frum et al. revealed that SID-1 is at least partially responsible for the

in vitro hepatocellular uptake of lipophilic siRNAs when they are

incorporated in lipoprotein complexes such as HDL and LDL (high

and low density lipoprotein, respectively) [26]. Specific RNAi

silencing of SID-1 expression in HepG2 cells and blocking of

extracellular SID-1 epitopes with SID-1 antibodies seemed to

decrease the cellular internalization and subsequent silencing

effect of lipophilic siRNAs targeted against apolipoprotein B (apoB)

[26].

Plants, fungi and worms contain an endogenous RNA depen-

dent RNA polymerase (RdRP) that produces secondary dsRNAs

from an mRNA transcript targeted by a primary siRNA. The result-

ing dsRNA can again be recognized and cleaved by Dicer, increas-

ing the intracellular siRNA concentration. Through this

amplification process a small amount of ‘initiator’ dsRNA can lead

to persistent gene silencing [27–29]. As mammalian cells most
probably lack RNA-dependent polymerase activity, one must rely

on alternative strategies to achieve prolonged gene silencing

[27,30,31].

Stable RNAi gene silencing
21mer siRNAs, mimicking Dicer cleavage products, can be chemi-

cally synthesized and introduced into the target cell (Figure 1), but

they can also be produced intracellularly from short hairpin RNA

(shRNA) precursors that can be continuously expressed from RNA-

polymerase-driven expression cassettes (Figure 2) [32,33]. shRNAs

are structurally and functionally related to pre-microRNAs, inter-

mediates in the biogenesis of endogenously encoded microRNAs

(miRNAs). miRNAs constitute a highly conserved class of small

RNAs that mediate RNAi mainly through translational inhibition

[34,35]. As Figure 2 illustrates, the first step in the production of

miRNA occurs in the cell nucleus, where long primary transcripts

(called pri-miRNA) are expressed from endogenous genetic regions

and processed by Drosha (a RNAse III enzyme) into �60–70 nt

hairpins with imperfect complementarities in their stems [36].

These precursor miRNAs (pre-miRNAs) are shuttled from the

nucleus into the cytoplasm through the Exportin-5/Ran-GTP het-

erodimer complex [37]. In the cytosol, Dicer processes pre-miRNA

into mature �22 nt miRNA duplexes that interact with RISC to

modulate transcriptome expression [38]. Mammalian miRNAs,

which tend to contain mismatches with the target mRNA, most

often mediate gene silencing through translational suppression

rather than transcript slicing, although the latter has also been

described. It is believed that the binding of activated miRISC* to

the target mRNA sequesters the latter from the translational

machinery through confinement in cytoplasmic foci, called proces-

sing bodies (P bodies), thereby preventing protein synthesis [39].

In analogy with miRNA biogenesis, the intracellular processing

of shRNAs originates in the cell nucleus, where Exportin-5 is

responsible for its nuclear export [40]. In the cytoplasm, these

shRNAs are again cleaved by Dicer to yield the active 21mer siRNAs

[32]. In correspondence with Dicer substrate RNAs (DisRNAs),

plasmid vectors can be designed to produce shRNAs (29 nt stem,

4 nt loop) with higher RNAi potency over smaller hairpin RNAs

(19 nt stem, 4 nt loop) owing to improved Dicer recognition and

RISC incorporation [41]. However, in a recent report by Li et al., it

was shown that, in the context of a 9 nt loop, the shRNA with a

19 nt stem outperformed the longer 29 nt shRNA [42]. The expla-

nation for this discrepancy again lies in the ability of the shRNA to

be recognized by Dicer. Indeed, whereas shRNAs with a 19 nt stem

and a 4 nt loop bypass Dicer cleavage, increasing the loop length to

9 nt also turns shRNAs with a 19 nt stem into Dicer substrates

[42,43]. Building on our increased understanding of miRNA pro-

cessing, second-generation shRNAs were developed (called shRNA-

mir) [44]. In contrast to first-generation shRNA that elicit

structural analogy with pre-miRNA, shRNAmir are transcribed as

pri-miRNA. Their design is founded on the human miRNA, miR-

30, of which the stem is replaced with an RNA sequence of interest.

The advantage of shRNAmir over shRNA lies in their recognition

and processing by both Drosha (nucleoplasm) and Dicer (cyto-

plasm), leading to a more efficient intracellular production of

mature siRNAs and increased knockdown efficiency [45].

Important in the context of this review is to note that, compared

with synthetic siRNAs that induce a transient knockdown, plasmid
www.drugdiscoverytoday.com 919
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FIGURE 2

Overview of themicroRNA (miRNA) pathway, leading to modulation of gene expression by translational repression. Pri-miRNA primary transcripts are processed in

the nucleoplasm by the RNase III enzyme Drosha. The resulting pre-miRNA is shuttled to the cytoplasm by Exportin-5/Ran-GTP, where it is recognized and cleaved
by Dicer to form mature miRNAs. On their turn, miRNAs are incorporated into RISC, which only retains one strand (most probably with the help of a helicase),

thereby allowing the complex to bind to a (partially) complementary region in the mRNA. It is believed that the targeted transcripts are sequestered to

cytoplasmic foci (P bodies) that are inaccessible to the translational machinery.
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vector based interference shows better potential for long-term

gene silencing [46]. To establish stable RNAi gene silencing in

cultured cells, researchers mostly appeal to viral expression vec-

tors [32]. Lentiviral vectors allow genomic insertion of the shRNA

expressing transgene, while adenoviral and adeno-associated

viral vectors (AAVs) show less successful integration and viral

DNA remains largely episomal [47]. Genomic integration of

shRNA expression cassettes per definition results in stable

RNAi-mediated gene silencing because the target gene remains

silenced as long as transcription of siRNA precursors proceeds.

This RNAi gene therapy approach can be of interest to study loss-

of-function phenotypes following prolonged knockdown of a

target gene and for long-term treatment of chronic diseases

(e.g. viral infections such as hepatitis B [48] and hepatitis C),

thereby easing the treatment schedule and improving patient

comfort. However, in a clinical setting, the use of synthetic

siRNAs for transient RNAi gene silencing may be advantageous

over continuous shRNA/siRNA production as the dosing schedule
920 www.drugdiscoverytoday.com
(and consequently also the resulting intracellular siRNA concen-

trations) in a therapeutic regimen can be more easily adapted in

relation to therapeutic needs [49]. Additionally, transgenes that

are stably integrated in the host genome can be silenced rapidly by

histone modifications and hypermethylation of CpG islands in

the promoter region. Instead of achieving long-term transgene

expression, this chromatin silencing will result in a gradual

extinction of transgene activity [50].

Recently, Grimm and colleagues disclosed that continuous

expression of high intracellular levels of shRNA could result in

long-term toxicity in mice [51]. The observed fatal side effects were

primarily ascribed to saturation of Exportin-5, leading to inter-

ference with nuclear export of miRNA precursors and miRNA

function [40].

Possible solutions to overcome these toxicity issues are (a)

lowering the initial viral load and (b) implementing vector devel-

opment with inducible or tissue-specific promoters that allow

more feasible control over intracellular shRNA concentration
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and may improve the activity/toxicity ratio [51–53]. In a mouse

model of hyperbilirubinemia, it was shown that the adenoviral

production of shRNAs could silence Abcc2 function (ATP-binding

cassette multidrug resistance protein 2), involved in liver bilirubin

transport, for up to three weeks. This effect did not seem to

correlate with changes in the level of endogenous (precursors

of) miRNAs [54].

Nonetheless, it is striking to conclude that the improved RNAi

gene silencing of dsRNAs can have a toxic flip side, by taking

advantage of the natural miRNA pathway in an earlier stage. In this

regard, synthetic 21mer siRNAs that function further downstream

in the RNAi pathway are the better and safer choice because they

bypass Dicer cleavage and do not require nuclear export for their

activity [40,55]. When synthetic siRNAs are employed, however,

vigilance is still required, as an intracellular excess of siRNA may

possibly interfere with RISC availability, which can also induce

competition with cellular miRNAs [55–58]. A recent report,

describing potent and specific knockdown of hepatocyte-specific

genes in mice and hamsters after systemic delivery of lipid-for-

mulated siRNAs, also demonstrated that the treatment schedule

did not influence either miRNA biogenesis or miRNA function

[59]. As our knowledge on miRNAs expands, we will be able to

better assess any possible cellular disturbances as a result of siRNA/

shRNA treatment. Quantitative data on the total number of cel-

lular protein molecules involved in the RNAi pathway and the

number of siRNA molecules needed inside a cell for a sufficient

silencing effect could be very helpful towards optimization of

siRNA therapy without the aforementioned toxicity issues [57].

Another concern that has been raised against the use of (non-

integrating) viral vectors is their immunogenicity, especially when

long-term use is deemed necessary (e.g. adenoviruses, AAVs)

[3,46]. Furthermore, random genomic insertion of a transgene

(e.g. with integrating lentiviral vectors) coincides with the risk

of hazardous in vivo viral recombination and insertional mutagen-

esis [60,61]. Although at present viruses are still the most efficient

gene delivery vectors, the combination of these adverse effects

could eventually favour a non-viral approach. Meanwhile, non-

viral strategies have also been explored extensively for intracellular

shRNA production [46]. siRNA expression plasmids can be intro-

duced in the target cell by complexing with cationic lipids and

polymers or by physical methods like electroporation and micro-

injection. Unfortunately, the nuclear import of the plasmid DNA

(pDNA) vector remains the predominant bottleneck in the gene

delivery process [62], thereby giving preference to synthetic siR-

NAs that function mainly in the cell cytoplasm. Non-dividing cells

are especially difficult to transfect with non-viral vectors, since

insufficient amounts of the pDNA can reach the nucleus in the

absence of cell division during which the nuclear barrier is tem-

porarily disassembled [63].

Perspectives on the delivery of siRNA: biological
barriers
Although it is generally said that chemically synthesized siRNAs

are promising therapeutic candidates for the treatment of various

genetic pathologies, their in vivo drug-like properties are regarded

as very unfavourable. Before siRNAs can reach the desired intra-

cellular location, many extracellular and intracellular barriers have

to be overcome (Figure 3) [24]. Obviously, the efficiency with
which siRNAs can bypass these obstacles will have major implica-

tions on the extent and duration of gene silencing and, subse-

quently, on the determination of a clinically relevant dosing

interval. Several concepts and strategies have been proposed to

improve the siRNA pharmacokinetics and eventually their ther-

apeutic performance.

The extracellular compartment: focus on chemical modification
and siRNA formulation
It is well known that siRNAs are rapidly degraded in the extra-

cellular environment. When naked siRNA is injected intrave-

nously it is recognized and cleaved by RNase A type nucleases

[64], limiting the serum half-life to <30 min. Therefore, much

effort has been undertaken to modify siRNA therapeutics chemi-

cally, in order to reduce their susceptibility to serum RNases

[10,65,66]. Chemical modifications include RNA backbone mod-

ifications [e.g. phosphorothioates (PS) and boranophosphates], 20

ribose modifications and terminal 30 and 50 modifications, among

others [67]. Initially, some concerns were raised with regard to the

possible diminished efficacy of chemically modified siRNAs,

owing to interference with RISC incorporation, activation and/

or recycling. Since then, however, elaborate research in this field

has proved that chemically modified siRNA can also efficiently

lower mRNA levels through a sequence-specific RNAi-dependent

pathway and that some modifications even show enhanced gene

silencing compared with the unmodified counterpart [68,69].

An important consideration to make is whether or not chemical

modifications, with the aim of improving the extracellular siRNA

stability, are promising in light of prolonging the knockdown of a

target gene. One could expect chemically modified siRNAs to have

a higher bioavailability because they stay intact for a longer period

of time in the blood circulation, thereby also improving the

intensity and duration of the RNAi gene silencing effect. Unex-

pectedly, Layzer et al. were not able to demonstrate a stronger

silencing or persistence of silencing for stabilized 20 fluoro pyr-

imidine siRNAs over the unmodified 20 OH siRNAs after hydro-

dynamic tail vein injection [70]. Most probably, sufficiently high

concentrations of both siRNAs can reach the intracellular target

site after hydrodynamic injection and can exert an effect before

nuclease digestion becomes prominent. In contrast to these find-

ings, a modified siRNA duplex, targeted against hepatitis B virus

(HBV) RNA and where all ribose 20 OHs were substituted, was

shown to be more efficient in decreasing HBV DNA and HBV

surface antigen serum levels when compared with non-modified

siRNA [66]. In the same report, hydrodynamic injection was used

to co-deliver the siRNA and a replication competent HBV vector.

Surprisingly, the difference in activity between modified and

unmodified siRNA was only significant at the high-dose level

and almost absent at lower doses [66]. When in vivo siRNA degra-

dation by nucleases is the main limiting factor, one would expect

to observe the opposite trend. This also indicates that factors other

than increased nuclease resistance have to be taken into account

when working with chemically modified siRNAs.

Besides degradation by RNases, the short in vivo half-life of

siRNAs is also influenced by their rapid renal clearance. Since

siRNAs are highly hydrophilic (�40 negatively charged phosphate

groups per siRNA molecule) and have a molecular weight

(�14 kDa) far below the cut-off for glomerular filtration
www.drugdiscoverytoday.com 921
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FIGURE 3

Overview of biological barriers for siRNA therapy following intravenous (i.v.) injection. For in vivo application, siRNAs can be formulated into nanosized carriers that

should fulfil some basic requirements. They should be large enough to circumvent renal clearance, but small enough to be able to cross the capillary endothelium

and accumulate in the target tissue. Moreover, the siRNA carrier has to be able to evade uptake by the mononuclear phagocyte system. Once the carrier has
reached the target cell, it needs to deliver the siRNA to the cytoplasm. This usually involves cellular uptake through endocytosis, followed by escape from the

endosome and carrier disassembly in the cytosol. ECM, extracellular matrix; NPC, nuclear pore complex; TGS, transcriptional gene silencing.
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(�60 kDa), one can expect renal clearance to be eminent.

Although RNase digestion can be slowed down by chemically

modifying the nucleic acid backbone, renal clearance seems to

be the rate-limiting factor governing the in vivo half-life of siRNAs

[57,71].

Some chemical modifications (e.g. phosphorothioate internu-

cleotide linkages or 40 thio ribonucleotides) can increase the

circulatory half-life of siRNA by promoting interaction with serum

proteins [67]. A more convenient strategy to modulate and

improve the siRNA biodistribution is the more dramatic alteration

of siRNA structure by conjugation to small molecular weight

moieties [67,72,73]. Interesting examples are the coupling of

siRNA to heavy-chain antibody Fab fragments [74] or lipidic

moieties like cholesterol, bile acids and long-chain fatty acids

[26,75]. Lipophilic siRNAs seem to incorporate selectively in lipo-

protein particles that are rich in phospholipids and cholesterol

(mainly HDL and LDL). These lipophilic siRNA–lipoprotein com-

plexes are able to improve siRNA biodistribution by evading renal

clearance and promoting cellular uptake through HDL and LDL
922 www.drugdiscoverytoday.com
lipoprotein receptors [26]. Chimeric peptide–siRNA complexes

have recently been shown to protect mice against infection with

Japanese encephalitis virus by delivering their siRNA payload into

the brain after intravenous injection [76]. Intriguingly, the major-

ity of the siRNA-treated mice survived for over four weeks, while all

animals in the control group died within 10 days. Rozema et al.

recently introduced a novel polymer based siRNA-conjugate strat-

egy (termed dynamic polyconjugates) for in vivo hepatocytic tar-

geting. These conjugates (�10 nm in size) consist of a reversibly

shielded membrane-destabilizing polycation, containing a cleava-

ble targeting ligand, to which siRNA is linked through an intra-

cellularly reducible disulfide bond. Effective knockdown of two

endogenous hepatic genes apoB and peroxisome proliferators

activated receptor alpha (ppara) was demonstrated in wild-type

mice following low pressure i.v. injection [77].

Another convenient way to circumvent renal clearance is by the

incorporation of siRNA into gene silencing complexes that are

large enough to evade glomerular filtration, thereby improving

siRNA pharmacokinetics and biodistribution. Paying proper atten-
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tion to the ‘packaging’ of siRNAs can lead to constructs where the

siRNA molecules are shielded from circulating RNases and desta-

bilizing blood components, eliminating the need for chemical

modification [78–80]. Many inventive siRNA formulations have

already shown to improve the in vivo potency of siRNAs drama-

tically [3,11,57,72,81–83]. A textbook case underlining the impor-

tance of siRNA formulation is given by Morrissey et al. When

administering unformulated backbone stabilized anti-HBV siRNAs

through hydrodynamic tail vein injection an effective inhibition

of HBV replication could be achieved, albeit at a dramatically high

dosing regimen of three daily doses of 30 mg/kg [66]. However,

formulating the therapeutic siRNAs into stable nucleic acid lipid

particles (SNALPs) of �140 nm in size, these investigators suc-

ceeded in achieving a significant and long-term reduction of

HBV activity by three daily injections of 3 mg/kg/d siRNA followed

by a weekly administered maintenance dose for up to six weeks

[84]. A more recent report, using SNALP technology to deliver anti-

ApoB siRNA in cynomolgus monkeys, describes marked reduction

in plasma ApoB protein levels for as long as 11 days after a single

i.v. injection (2.5 mg/kg) [85]. Mark Davis’ group formulated

siRNAs in cationic cyclodextrin containing polycations (CDPs)

that can be equipped with targeting ligands, for example, trans-

ferrin for delivery to tumour cells overexpressing the transferrin

receptor. The systemic delivery of these targeted siRNA nanopar-

ticles, twice weekly for >4 weeks resulted in long-term inhibition

of tumour cell engraftment and tumour growth in a murine

therapeutic model for metastatic Ewing’s sarcoma [86]. Interest-

ingly, the long-term inhibition was only observed for the formula-

tion where the surface was modified with transferrin moieties and

no positive outcome was demonstrated for the non-targeted for-

mulation. This targeted nanoparticle delivery system also has been

evaluated recently in non-human primates [87].

The intracellular compartment: focus on chemical modification
and cellular dilution
Besides improvements at the extracellular level, also the intracel-

lular behaviour of chemically modified siRNAs may play a pivotal

part in improving the RNAi gene silencing potency and duration.

Some reports ascribe a prolonged gene silencing effect in cell

cultures to the use of stabilized siRNA duplexes that show higher

resistance towards nuclease attack, suggesting that intracellular

degradation of siRNA can indeed be partially responsible for

transient RNAi gene silencing [88–90]. An interesting recent report

by Takabatake et al. demonstrates the dependence of RNAi gene

silencing duration on the tissue expression level of eri-1 (enhanced

RNAi-1) nuclease [91]. eri-1 can be regarded as a type of siRNAse,

which has been discovered in C. elegans mutants [92]. Preliminary

experiments in EGFP transgenic rats revealed that a single admin-

istration of siEGFP into the kidney resulted in the reduction of

EGFP expression for up to two weeks, while the transfection of

siEGFP into muscle tissue silenced EGFP for up to 90 days. The

authors hypothesize that the higher eri-1 expression level in the

kidney when compared with muscle could be responsible for

higher intracellular siRNA degradation and decreased RNAi long-

evity. They propose that blocking eri-1 expression or applying eri-

1-resistant siRNAs can result in more sustained gene silencing [91].

siRNAs modified with 20 fluoro pyrimidines have shown

increased persistence in luciferase silencing over unmodified siR-
NAs in cells transiently transfected with a luciferase reporter vector

[89]. However, assessment of luciferase silencing with the same

type of modified siRNAs, in a cell line stably transfected with the

luciferase reporter gene, did not reveal a significant difference in

the duration of gene silencing [70]. As explained by Layzer et al.,

when trying to investigate gene silencing in cell culture on a

longer time scale it is preferred to approximate in vivo conditions

as much as possible by using cell culture models that stably express

the transgene of interest [70]. It was questioned recently whether

simultaneous transfection of an exogenous gene and the siRNA is

suitable to quantify RNAi [93].

Fisher et al. investigated the influence of modest altritol (6-

carbon sugar) modifications on siRNA stability and gene silencing

persistence [94]. Although partially modified siRNAs did not show

increased nuclease resistance compared with wild-type siRNA, the

authors did observe enhanced duration in MDR-1 gene silencing,

resulting in more durable suppression of p-glycoprotein expres-

sion. These data underscore the fact that, at the cellular level,

factors other than mere siRNA stability, like cellular uptake and/or

recognition by RNAi machinery, have to be taken into account.

Liao and Wang reported on 20-O-(2,4-dinitrophenyl) modifica-

tions that serve to enhance siRNA lipophilicity [69]. These che-

mical adjustments facilitate the intracellular siRNA penetration

and improve the siRNA stability that resulted in a stronger inhibi-

tion of insulin-like growth factor receptor expression, relative to

unmodified siRNA directed against the same target sequence.

Interestingly, it seems that in fast dividing cell lines gene

silencing is limited by intracellular dilution of siRNA (and acti-

vated RISC) owing to cell division. As a result, in vitro gene

silencing usually lasts for only �4–7 days [49]. In slowly dividing

and non-dividing cells the siRNA stability is supposed to be the

main limiting factor for prolonged gene silencing as the intracel-

lular siRNA half-life is expected to be shorter than the cell division

time [49]. Intracellular persistence of active siRNA has already

been shown to maintain target gene inhibition for several weeks

in different types of (non-dividing) primary cells [49,95–98]. In

these papers it was assumed that the stability of the RNAi effect is

representative of the physical stability of the intracellular siRNA

trigger. Unfortunately, in most reports this assumption was not

experimentally evaluated. Song et al., who did perform a Northern

blot analysis for siRNA integrity, suggested that intracellular

siRNA survival requires the active production of the target mRNA

transcript [95]. Also, Maliyekkel et al. reported on more stable

gene silencing following transient shRNA induction in growth-

arrested non-cycling cells [96]. However, in contrast to other

reports on long-lasting RNAi in non-dividing cells [95], the phe-

notypic RNAi activity did not coincide with the intracellular

siRNA decay as analyzed by an RNase protection assay. Two

possible explanations for this discrepancy were suggested. Firstly,

it is conceivable that the RNAi phenotype is mainly governed by

the fraction of siRNA associated with RISC*. As already mentioned

previously, it can be expected that incorporation of the guide

strand in the RISC* complex provides extra protection against

degradation. In this case, quantifying total intracellular siRNA

does not represent the effective intracellular RNAi potential.

Secondly, it was proposed that transcriptional silencing of the

target gene could be held responsible for the increased silencing

duration (see below).
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Recent in vitro and in vivo data on non-modified and nuclease-

stabilized siRNA duplexes have shown that evading nuclease

attack by chemically modifying siRNAs does not significantly

prolong the duration of gene silencing once the siRNA has reached

the cytosol of the target cells [99].

The contradictory findings on the (supposed) advantages of

nuclease-stabilized siRNAs described in this section unfortunately

hinder drawing clear conclusions in this regard. Nonetheless,

although the benefits of nuclease-resistant siRNAs inside the cell

cytoplasm still remain questionable, chemical modifications have

proved to be a very useful approach to abrogate off-target effects

and unwanted stimulation of the mammalian immune system

[100–103]. Several native siRNA sequences are known to induce a

toll-like receptor (TLR)-mediated immune response through endo-

somal TLR7/8 recognition [104,105]. Cytoplasmic receptors such

as PKR (dsRNA-binding protein kinase receptor), and the RNA

helicases RIG-1 (retinoic acid-inducible gene-I) and MDA-5 (mel-

anoma differentiation-associated protein-5), are considered to

recognize certain structural RNA characteristics, other than

nucleotide sequence [103]. RIG-1, for instance, is activated by

uncapped 50 triphosphate RNA and blunt-ended siRNAs

[103,106]. Mitigation of immune response is possible by designing

siRNAs devoid of immunostimulatory sequence motifs and by

paying proper attention to dsRNA physical structure. The most

robust approach, however, is the selective incorporation of mod-

ified nucleotides (e.g. 20 OMe) to avoid immune receptor activa-

tion [103,107]. Kleinman et al. showed recently that 21 nt or

longer siRNAs inhibited choroidal neovascularization (CNV) in

mice in a sequence-independent and target-independent manner.

The inhibition resulted from the cell-surface binding of TLR3 by

generic siRNAs [108]. Modifying the siRNA duplex to minimize

TLR3 activation could reduce any consequential undesired effect

and enhance target specificity. Therefore, chemical modifications

can certainly help to optimize siRNA design towards minimal in

vivo toxicity and maximal siRNA tolerance.

RNAi-induced silencing at the transcriptional level
The majority of reports in literature dealing with mammalian

RNAi gene silencing describe siRNA-directed cleavage and destruc-

tion of cytoplasmic mRNA transcripts, termed post-transcriptional

gene silencing (PTGS). Although it was first believed that siRNA

only functions in the cell cytoplasm [109], several reports studied

three different siRNA functions in the cell nucleus: RNAi [110];

transcriptional gene silencing (TGS) [111] and antigene RNAs

(agRNAs) [112]. To obtain an effect at the transcriptional level,

the siRNA molecules need to be taken up by the nucleus. The exact

mechanism by which siRNAs are transported through the nuclear

pore complex (NPC) still needs to be clarified. In principle, siRNA

molecules are small enough to diffuse passively through the NPCs

to reach the nucleoplasm.

The RNAi nuclear function was demonstrated by siRNA-

mediated degradation of 7SK snRNA [110]—an abundant, well-

characterized RNA that has a highly defined structure and speci-

fically localizes in the nucleus [113–115]. Furthermore, it was

shown that several siRNAs formed a functional RISC in the nucleus

that cleaved the target RNA with high efficiency [110]. Although

the cited reports describe RNAi action occurring in the cell

nucleus, they still encompass a PTGS process, for which essentially
924 www.drugdiscoverytoday.com
the same basic rules apply as discussed for cytosolic RNAi (see

section above).

TGS was first observed when doubly transformed tobacco plants

exhibited a suppressed phenotype of a transgene caused by a

methylation process [116]. This RNA-dependent DNA methylation

(RdDM) seemed to be induced by RNA sequences identical to

genomic promoter regions, leading to TGS [117–121]. While the

exact molecular mechanisms of RdDM are unknown, it is likely to

involve cytosine methylation, histone modification and chroma-

tin remodelling.

Several recent independent reports also showed the induction

of RdDM by siRNAs in mammalian cells, although in this case

silencing required the simultaneous use of multiple siRNAs [122–

124]. siRNA-mediated TGS in mammalian cells appears to be the

result of the siRNA-directed histon H3K9 and H3K27 methylation

at the targeted promoter [125], although subsequent DNA methy-

lation has also been observed [126].

To suppress the production of a range of viruses in vitro by

targeting structural and accessory genes, the duration of the

PTGS effect is known to be rather limited (i.e. in HIV-1 varying

from four to seven days [127]). Prolonging HIV-1 silencing up to

14–25 days was achieved using adeno-associated or lentiviral

vectors; however, the efficacy of HIV-1 treatment based on a

PTGS approach is potentially further limited because HIV-1 is

known to adapt to environmental pressure, and rapid selection

of siRNA escape mutants has been described in vitro [128]. For

this reason, Suzuki et al. made use of TGS as another approach to

prolong the suppressive effect of siRNA that would be less

susceptible to the adaptability of HIV-1 [129]. A prolonged effect

can be expected because it has been shown that, regardless of the

exact mechanisms, RdDM is long lasting and can be passed on

across generations in plant systems [130–132] and in C. elegans in

the absence of the original RNAi trigger [133]. Therefore, epige-

netic modifications through the use of promoter-specific siRNAs

could be an interesting method of achieving a more robust gene

silencing effect, although it has been suggested that this prob-

ably needs a constitutive expression of promoter-directed siRNA/

shRNA.

A third example of nuclear siRNA function implies the inhibi-

tion of gene expression by antigene RNAs (agRNAs), complemen-

tary to transcription start sites within human chromosomal DNA

[112]. In contrast to TGS, no methylation of DNA was required, but

the silencing was accompanied by dimethylation of Lys9 in his-

tone H3 (H3K9) [134,135]. AgRNA treatment was further shown to

be dependent on Argonaute-1 (AGO1) and Argonaute-2 (AGO2)

activity [136]. Potent inhibition of multiple genes suggests that

agRNAs may represent a natural mechanism for controlling tran-

scription, which will be valuable for applications of silencing gene

expression. The relation of this silencing process to prolonged

gene silencing still remains unclear. In addition, two papers

recently demonstrated that synthetic agRNAs could also potently

activate gene expression in human cancer cell lines by 10 to 20-

fold [137,138].

Presently there is sufficient evidence to suggest that TGS could

be applied in future therapeutic protocols where prolonged gene

silencing is desired. The exact mechanism of TGS should first be

unravelled in more detail to be able to translate this gene silencing

strategy into a viable clinical application.
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FIGURE 4

Effect of siRNA dose frequency on the duration of luciferase knockdown by

siRNA in non-dividing fibroblasts that stably express the luciferase gene. (a)
Experimental results obtained with Oligofectamine formulated siRNA,
directed against pGL3 luciferase. Squares, 100 nM (day 0); diamonds, 100 nM

(day 0) + 10 nM (day 4); triangles, 100 nM (day 0) + 100 nM (day 4). (b)
Luciferase knockdown following siRNA transfection, as predicted by

mathematical modelling. Reprinted and modified with permission from
Bartlett and Davis [49]. � Oxford University Press 2006.
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Mathematical modelling to describe RNAi gene
silencing kinetics
A broad spectrum of variable parameters can be defined that may

influence the outcome of RNAi gene silencing and the knockdown

duration. These parameters are situated on three distinct levels: (i)

the siRNA delivery formulation; (ii) the intracellular RNAi pathway

and (iii) the envisioned target.

At the level of siRNA delivery one must keep in mind that in vivo

the tissue distribution and pharmacokinetics of the siRNA formu-

lation (e.g. siRNA containing nanoparticles) will have a major

impact on the RNAi effect in the target cells, as discussed earlier.

Because the siRNA targets are located intracellularly, not only the

biodistribution in the extracellular space but also the different

steps in intracellular trafficking have to be considered. Important

processes like the cellular uptake mechanism, the confinement of

siRNA carrier to cytosolic vesicles and siRNA release from its carrier

will influence the RNAi effect (Figure 3). For example, several

studies have shown that the ability of siRNA or siRNA carrier

complexes to escape from the endosomal compartment can be

a limiting step in their gene silencing efficiency [139,140].

Obviously, RNAi-specific parameters such as intracellular siRNA

stability, RISC activation and siRNA–RISC–mRNA complex

kinetics have to be accounted for. The importance of RISC* recy-

cling in the RNAi pathway towards siRNA gene silencing potency

and the potential influence of siRNA chemical modification was

emphasized earlier.

Last but not least, the turnover of the intracellular mRNA

transcript and target protein stability should be carefully consid-

ered. If the protein half-life extends over several days, even effi-

cient knockdown of intracellular mRNA levels after a single siRNA

dose may fail in altering the cellular phenotype owing to residual

amounts of the stable protein. The rate of cell division is impera-

tive for the duration of gene silencing in a transient RNAi approach

because it determines how transient the RNAi effect really is. In

this regard, the targeted cell type and the envisioned therapeutic

outcome are of great importance. If a single administration of

siRNA is effective in blocking tumour cell growth, this inherently

implies a prolonged effect since the intracellular siRNA dilution

due to cell division can be disregarded [141].

A detailed knowledge of the impact of all the parameters listed

above, in relation to RNAi gene silencing kinetics, could expedite

the design of therapeutic siRNA strategies. Predictive mathema-

tical models, illuminating the key factors that govern the duration

of gene silencing, could be helpful instruments in the setup of

siRNA treatment regimens. Several reports that describe mathe-

matical equations to gain more insight into the RNAi silencing

pathway are available in the literature [142,143]. Raab and Ste-

phanopoulos studied the impact of the siRNA concentration and

the time of siRNA transfection relative to reporter plasmid co-

transfection in mouse hepatoma cells [12]. Their model could be

used to select the appropriate time of siRNA transfection in func-

tion of gene induction. Moment analysis was used by Takahashi

et al. to evaluate the time course of endogenous protein expression

in function of siRNA concentration [144]. Likewise, an interesting

report by Arciero et al. describes mathematical modelling as a tool

to predict tumour-immune evasion and to study the impact of

siRNA administration directed against the immune suppressive

cytokine TGF-b on tumour growth [145].
Bartlett and Davis were the first to construct a mathematical

model incorporating parameters that govern the in vivo siRNA

delivery process, such as biodistribution of the siRNA carrier and

intracellular trafficking (vector unpackaging and endosomal

escape), to study the kinetics of siRNA-mediated gene silencing

[49]. Model calculations were also applied to define a dosing

schedule, consisting of repeated siRNA injections, which results

in persistent gene silencing, dependent on the half-life of the

target protein and the target cell division rate. An illustrative

example for non-dividing fibroblast is given in Figure 4. The same

authors further employed their mathematical model in several in

vitro and in vivo gene silencing studies performed with targeted

siRNA nanoparticles based on cationized cyclodextrin, to provide

information that could aid in designing more effective siRNA

delivery strategies [141,146].
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When considering different siRNA delivery strategies, also note

that it could be of interest to incorporate the delivery kinetics of

siRNA from its formulation into predictive mathematical models,

as the amount of siRNA delivered into the cytoplasm in function of

time can be a determining factor towards the eventual therapeutic

outcome and the intracellular toxicity.

Time controlled intracellular release of siRNA
‘More may not always be better’, it was sharply put by Marsden in a

recent edition of New England Journal of Medicine [147], and can be

regarded as a basic toxicological paradigm. In theory every sub-

stance is potentially harmful when exceeding a certain concen-

tration level or exposure time. This is also true for siRNA

therapeutics, judging by the concentration dependency of

adverse effects such as off-target silencing, induction of immune

response and saturation of the endogenous RNAi pathway

[58,103]. This obviously stresses that it is imperative to work with

the most potent siRNA designs at the lowest concentration pos-

sible. Keeping this in mind, one cannot overemphasize the need

for rigorous control over the intracellular siRNA/shRNA concen-

trations.

To regulate the number of active siRNA molecules in the cell

cytosol, one could consider the use of conditional shRNA expres-

sion from plasmid expression cassettes delivered in the target

cells by viral or non-viral carriers. However, the regulation of

intracellular siRNA concentrations becomes more complex in

the case of (non-viral) synthetic siRNA delivery where mostly

(electrostatic) complexes between siRNA and (cationic) polymers

(polyplexes) or (cationic) lipids (lipoplexes) are applied to the

cells. With these polyplexes and lipoplexes a transient RNAi

effect lasting for less than one week is generally observed. For
FIGURE 5

Long-term gene silencing with biodegradable poly-b-amino esters (PbAEs) in HU

transfected with (a) PbAE1:siRNA and (b) PbAE2:siRNA complexes containing siRN
structure of both cationic polymers is depicted. It is hypothesized that the slower de

compared with the more labile PbAE1 polymer. Adapted with permission from re
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many of these formulations, one can expect that upon escape

from the endosome, they provide a burst release of siRNA in the

cytoplasm. The released siRNA is subsequently prone to dilution

through cell division and (possibly) intracellular degradation,

leading to a transient gene silencing. In theory, time-controlled

release of siRNA in the cell cytoplasm could be interesting to

maintain intracellular siRNA concentrations for a longer period

of time above the minimal threshold required for efficient gene

silencing, without flooding the cell cytoplasm with uncom-

plexed (naked) siRNAs. Controlling the amount of siRNA that

is released in the cytosol could therefore result in a prolonged

RNAi effect.

To achieve this goal, there is a need for delivery vehicles that

exhibit tailored time-controlled siRNA delivery. Our group

recently published on cationic biodegradable poly-b-amino esters

(PbAEs) that are able to form nanosized electrostatic complexes

with the negatively charged siRNA (Figure 5). Following endocy-

tosis of the polyplexes, the hydrolytic degradation of the cationic

polymer is believed to increase the osmotic pressure inside the

endosomal vesicles owing to an accumulation of its degradation

products [148]. When exceeding a crucial pressure threshold, this

eventually leads to endosomal rupture. It is hypothesized that the

polymer degradation rate and the number of polyplexes residing

in a single endosome will govern the kinetics of the rise in osmotic

pressure over the endosomal membrane. Therefore, not all endo-

somes are expected to rupture at the same time. In this way a more

gradual siRNA release into the cell cytoplasm is expected in func-

tion of polymer degradation, thereby altering gene silencing

kinetics (Figure 5).

In a comparable approach, our group is also involved in the

design of biodegradable siRNA impregnated gel beads (microgels),
H-7 hepatoma cells that stably express the luciferase gene. The cells are

A targeting the pGL3 luciferase gene in different molar ratios. The chemical
gradation rate of PbAE2 results in amore sustained gene silencing effect when

ference [148]. Copyright John Wiley & Sons, Ltd 2008.
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which elicit time-controlled release of the incorporated siRNA

governed by the hydrolysis of the hydrogel crosslinks [149].

Depending on the hydrogel characteristics, the siRNA release time

can be tailored from hours over days to several weeks. As such gels

can be taken up by target cells they could serve as intracellular

siRNA depots slowly disintegrating and releasing the entrapped

siRNA.

Owing to the high gene silencing potential of siRNAs, only a

small number of active siRNAs per cell (�several hundreds) are

needed for activity. Veldhoen et al. provided a detailed quantita-

tive analysis of cellularly internalized siRNA through a liquid

hybridization protocol [150]. Combining these data with the

observed RNAi effect revealed that, for a half maximal silencing,

�104 siRNA molecules were necessary in case of a cell penetrating

peptide (CPP) assisted transfection and only�300 were required in

the case of transfection with lipofectamineTM 2000 [150]. This

indicates that the amount of siRNA molecules that become avail-

able for biological activity may depend strongly on the delivery

agent. Data on the minimal number of siRNA molecules needed to

trigger a sufficient RNAi effect and knowledge on the kinetics of

the RNAi effect in relation to the intracellular siRNA concentration

are very important when attempting to achieve a long-term max-

imal inhibitory effect.

We emphasized that a number of crucial parameters need to be

considered for an understanding of the RNAi gene silencing

kinetics. Similarly, an optimal controlled siRNA release depends

on the cell type and the target gene. For instance, it should be

clear that the optimal siRNA release profile to achieve a more

sustained gene silencing will differ significantly for slowly

dividing, fast dividing and non-dividing cells. The expression

level of the target gene will also greatly influence the amount

of siRNA needed inside the cell cytoplasm for maximal gene

silencing.

Combinatorial approach in RNAi therapy
Because siRNAs/shRNAs can be developed to target viral transcripts

in a sequence-specific manner, RNAi could prove to be the next

best thing to block viral replication [151]. Unfortunately, many

reports have mentioned drug resistance through induced viral

mutagenesis under pressure of RNAi monotherapy [128,151–

153]. The perplexing viral genetic flexibility could also entail

the emergence of genetically encoded viral RNAi suppressors

[154]. Despite the great potential of RNAi for antiviral therapy,

the issues raised above complicate the achievement of a persistent

viral suppression using RNAi monotherapies. Even highly active

anti-retroviral therapy (HAART), where a cocktail of three or more

antiretroviral drugs is used, cannot eradicate viral replication and

only delays disease progression. Moreover, HAART is notorious for

the induction of severe toxicity, putting up an extra barrier for

efficient therapy [155].

In correlation with HAART, a novel RNAi approach was put

forward, called combinatorial RNAi or coRNAi [153]. This multi-

plex approach involves the concerted action of different siRNA/

shRNA effectors, directed against multiple viral sequences.

Although the majority of antiviral RNAi studies focus on the

targeting of viral transcripts, some studies have also been devoted

to suppressing the expression of cellular genes that are of key

importance in the viral life cycle.
The primary goal of coRNAi is therefore to minimize the emer-

gence of viral escape mutants in order to maintain a long-term

antiviral effect. To give an example, it was shown for HIV-1 that, in

response to a single shRNA inhibitor, mutations inside and even

outside the RNAi target sequence provided an escape route for the

virus eventually nullifying the antiviral effect [156]. A combina-

torial strategy applying multiple shRNAs, expressed from a single

lentiviral vector and targeting a different region in the HIV-1

genome, increased the viral inhibitory activity. It seemed that a

double expression vector also provided a more durable viral inhi-

bition. Comparable observations are presented in literature for

Coxsackievirus B3 [157] and SARS-associated coronavirus, where a

clear synergistic antiviral effect was obtained through combina-

tion of siRNAs targeting different functional genes in the corona-

viral genome [158]. Currently, the concept of coRNAi also includes

combining RNAi triggers with non-RNAi-based suppressors of gene

expression [159] or even anti-viral proteins [160]. For instance, a

multiplex strategy resulting in long-term HIV-1 inhibition in

primary cells was reported using a triple combination of an

anti-HIV shRNA, a hammerhead ribozyme targeted against the

HIV co-receptor chemokine receptor 5 (CCR5) and a RNA decoy of

HIV-TAR [159].

It would be beyond the scope of this review to discuss the

plethora of reports available in the literature with regard to com-

binatorial RNAi. Recently, an excellent review solely devoted to

this topic has been published by Kay and Grimm [153]. We would

like to refer the reader to this review (and references herein) for a

comprehensive overview of the different strategies already

explored for coRNAi therapy.

In the latter paper [153], the authors focus mainly on the antiviral

potential of coRNAi. Nevertheless, RNAi can be regarded as a broad

therapeutic platform that can be additionally deployed in other

challenging-to-treat human pathologies, such as metabolic disor-

ders and cancer, where a combinatorial approach could be a ther-

apeutic asset in the context of achieving long-term silencing. Recent

reports established a synergistic effect of an RNAi trigger especially

when combined with conventional low molecular weight che-

motherapeutics. Takei et al. employed an effective siRNA against

midkine (MK) together with low (and essentially non-toxic) doses of

paclitaxel in human prostate cancer xenografts and found that

paclitaxel significantly augmented the antitumour effect of MK-

siRNA [161]. In this way, tumour growth inhibition could be main-

tained for several weeks without the need to switch to higher (and

most probably toxic) doses of paclitaxel. Unfortunately, the in vivo

administration of the siRNA-atelocollagen formulation used in that

report was restricted to intratumoural injection. The same synergis-

tic phenomenon, however, was found for an intravenously admini-

strated targeted nanoparticle formulation of anti-EGFR siRNA, in

combination with intraperitoneal cisplatin, in a human lung cancer

xenograft model. In contrast to monotherapy with targeted nano-

particles containing anti-EGFR siRNA, which only partially reduced

tumour growth, the combination of the targeted siRNA-nanopar-

ticles with cisplatin completely inhibited tumour proliferation for

�1 week [162]. A third and earlier report describes the packaging of

siRNA into neutral liposomal vesicles for the targeting of the tyr-

osine kinase receptor EphA2 oncogene, which is overexpressed in

ovarian cancer. When liposomal anti-EphA2 siRNA was adminis-

tered in addition to paclitaxel, a significant reduction in tumour
www.drugdiscoverytoday.com 927
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application, we would like to refer the reader to Behlke [13].
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growth was observed when compared with paclitaxel in combina-

tion with non-silencing siRNA [163]. The same neutral liposomal

formulation was applied to target focal adhesion kinase (FAK) and,

again, a synergistic effect could be obtained when combining

therapeutic siRNA with conventional chemotherapeutics such as

docetaxel and cisplatin [164].

Altogether, the studies cited in this section exemplify the

tremendous potential of coRNAi in the battle against various

challenging therapeutic targets in human disease. A particular

advantage when combining different RNAi effectors (with or

without alternative therapeutics) is the maximization of the

silencing effect, both acute and long-term. Needless to say that

the safety concerns that have been raised for RNAi monotherapy

also hold true for coRNAi. Multiplexing several siRNA/shRNA

triggers could even augment the risks inherently linked to RNAi,

such as off-targeting, immunostimulation and competition with

endogenous miRNAs. Following co-administration of different

types of RNAi drugs, they can even compete with each other for

the (limited) amount of cellular RNAi proteins, thereby dimin-

ishing each other’s efficacy [55,165]. By contrast, combining

RNAi effectors with other non-RNAi-based therapeutics may

allow lowering the dosing of both drugs. In this way, coRNAi

can still profit from the synergistic effect along with the benefit of

reduced toxicity.

Conclusions
Advances in biotechnology have led to the emergence of many

macromolecular drugs, such as peptides, proteins and nucleic

acids. Researchers have been trying ever since to improve the

therapeutic outcome of this new spectrum of drugs using different

strategies related to the drug itself or the formulation needed to

deliver the drug in vivo. RNA interference has the advantage of

being able to profit from lessons learned during preclinical devel-

opment of antisense oligonucleotides (AONs) and ribozymes

[166]. After several decades of research on AONs, leading experts

of the industrial and academic laboratories still have to acknowl-

edge that inventive engineering strategies to improve the design of

siRNAs/shRNAs, and to optimize their in vivo delivery, are still

needed to turn the therapeutic promise of RNAi into clinical

reality.

The clinical application of siRNA will call for repeated (often

intravenous) administration, so it is desirable to aim for a durable

effect to lengthen treatment intervals. Direct application of syn-

thetic siRNAs has the disadvantage that the RNAi effect is tran-

sient, mainly owing to intracellular dilution of active siRNA

dependent on the cell division rate. To maintain a sufficient

silencing of the target gene expression over a prolonged period

of time, different strategies have been proposed. Paying proper

attention to their practical implication should eventually lead to a

maximal RNAi effect, both in terms of magnitude and duration.

siRNA duplexes can be designed and modified to optimally exploit

the endogenous RNAi pathway in order to increase their gene

silencing potency. Pursuing optimal siRNA design will lead to

siRNA drug candidates with lower IC50 values that should enable

effective medical treatment at lower doses. Incorporation of che-

mically modified nucleotides into the siRNA sequence has proven

to enhance their half-life in the bloodstream by protecting them

against nuclease activity. It is, however, conceivable that the
928 www.drugdiscoverytoday.com
application of naked (i.e. unformulated or non-conjugated) siR-

NAs will be mainly limited to confined target sites after local

administration, such as the eye or the respiratory tract

[165,167,168].

Advances in materials science increased chances of designing

new nucleic acid delivery concepts. The nano revolution led to the

development of intelligent nanodevices, which should enable

extrapolating drug delivery from the laboratory to a real in vivo

situation. Multifunctional delivery vehicles and siRNA conjuga-

tion strategies offer many advantages for the systemic application

of siRNA because they are usually equipped with targeting ligands

and carry stabilizing hydrophilic polymers to avoid aggregation in

the bloodstream and prevent non-specific uptake by the reticulo-

endothelial cells [169]. Moreover, delivery vehicles are often mod-

ified to improve the intracellular trafficking (e.g. endosomal

escape) that can lead to increased intracellular bioavailability.

Including all these factors in carrier design should enhance the

percentage of the administered siRNA dose that reaches the target

site after systemic delivery. The ultimate goal is to define the

appropriate dosing schedule for a given siRNA formulation to

maintain the desired therapeutic outcome. Model predictions

can aid in recognizing the main factors that govern the duration

of the siRNA effect in order to adjust the siRNA dose and frequency

of administration accordingly. This can provide researchers with

general meaningful insights on systemic siRNA delivery that may

apply to a variety of siRNA carriers.

Depending on the pathological target, a more sustained gene

silencing than readily achievable with synthetic siRNA may be

advisable. For this purpose researchers seek solace in the intracel-

lular shRNA production from plasmid or viral vectors. Although

much progress has been made in the development of viral gene

therapy vectors, there are still important safety concerns that

remain troublesome [170]. Moreover, little information is avail-

able on the adverse effects that are linked to sustained shRNA

expression in vivo.

Most probably, a safe and long-term application of RNAi drugs

will require rigorous spatiotemporal control over the intracellular

siRNA/shRNA concentrations. Smart nanodevices for controlled

intracellular siRNA delivery or smart plasmids for controllable

shRNA expression may fulfil some of the necessary requirements.

Extra information is detailed in Box 1.

http://www.clinicaltrials.gov/
http://www.sirna.com/
http://www.alnylam.com/
http://www.quarkpharma.com/
http://www.opko.com/
http://www.allergan.com/
http://www.allerganclinicaltrials.com/
http://www.calandopharma.com/
http://www.merck.com/
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