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Data-driven intelligent prognostic health management (PHM) systems have been widely investigated in the area of defective
bearing signals. ,ese systems can provide precise information on condition monitoring and diagnosis. However, existing PHM
systems cannot identify the accurate degradation trend and the current fault types simultaneously. Given that different fault types
have various effects on themechanical system, the correspondingmaintenance strategies also vary.,en, choosing the appropriate
maintenance strategy according to the future fault type can reduce the maintenance cost of the equipment operation. ,erefore, a
multifeature information health index (MIHI)must be developed to trace various bearing degradation trends with various types of
faults simultaneously.,is paper reports a new quasi-orthogonal sparse project algorithm that can mutually convert the degraded
processing feature vector sets (such as spectrum) for each type of fault to orthogonal approximate spatial straight lines. ,e
algorithm builds a MIHI through the spectrum of current state measured points. ,e MIHI is then transformed by a quasi-
orthogonal sparse project algorithm to trace the various bearing degradation trends and recognize the fault type simultaneously.
,e case study of bearing degradation data demonstrates that this approach is effective in assessing the various degradation trends
of different fault types.

1. Introduction

With the progress of science and technology, building an
effective intelligent prognostic health management (PHM)
system has become necessary for some critical components.
Engineers deploy various types of sensors to detect the
health conditions of a single component. However, how to
deal with sensor information effectively and thus assist the
intelligent health management of equipment are yet to be
extensively researched. Remaining useful life (RUL) esti-
mation is one of the key factors in asset condition-based
maintenance, prognostics, and health management [1]. ,e
basic principle of RUL estimation is how to construct the
health index [2]. An appropriate health index can effectively
improve the accuracy of RUL prediction. To detect the
incipient faults and offer effective information to the RUL

estimation and prognostics model, the health index plays an
important role as a bridge connecting the sensor measured
signal with the assets’ health condition prognostics. Some
statistical indicators, such as root mean square (RMS) and
the kurtosis of the measured vibration signal [3], are used to
indicate the assets’ conditions for RUL estimation and
prognostics. Moreover, some studies utilize time-frequency
features, such as waveform entropy [4]. Many dimension-
ality reduction methods have been favored by researchers,
for example, kernel principal component analysis is used in
[5] and isometric feature mapping is used in [6]. In recent
studies, researchers have developed some effective statistical
indicators, i.e., using multiscale fuzzy entropy [7], Kull-
back–Leibler divergence combined with Gaussian process
regression [8], and a neural network to conduct a health
index to monitor the equipment condition directly [9, 10].
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,e above health index building methods are used in
prognostics, and they mostly map the information from
various sensor signals or feature extractors into an indicator
full of information. ,is process is called data fusion, which
has three categories: feature-level fusion, decision-level fu-
sion, and data-level fusion [11]. Feature-level fusion
methods rely on prior knowledge of the degradation
mechanism and physical models to analyse the input data.
Goebel [12] utilized a feature-level fusion model that con-
sisted of principal component analysis, filtering, smoothing,
normalization, and log-transformation methods to feed
information to the RUL estimation model and predict the
breakage of paper webs in a paper-making machine at the
wet end. Ma [13] reported a multiple-view feature fusion to
predict lithium-ion battery RUL. Decision-level methods
fuse high-level decisions made based on individual sensor
data and do not rely on raw signal feature extraction. Niu
et al. [14] combined the advantages of wavelet analysis on
transient signals and decision-level fusion techniques to
improve the accuracy of fault diagnosis. Wei [15] proposed a
decision-level data fusion method to map the individual
sensor signal into reliable data to improve the ability of the
quality control system in additive manufacturing and RUL
estimation of aircraft engines.

In contrast to feature- and decision-level fusion
methods that focus on the physical meaning, data-level
fusion methods pay attention to mining the embedding
feature suitable to the task from the raw data. In RUL
prediction and condition monitoring fields, data-level
fusion methods always build the health index based on
some properties that the researchers hope can improve the
RUL estimation ability. Data-level data fusion methods
are suitable for dealing with complex system situations
because these systems hardly build an effective model to
fuse various signals, but data-level can monitor the ma-
chinery system state according to the requirements of
monitoring task, which has a stronger versatility. In
summary, the data-level fusion method is concentrated on
the property of required tasks. Some scholars have focused
on investigations of properties on the health index. Two
properties of the health index are proposed by Liu [16].
First, it must have good monotonicity; second, the vari-
ance of the failure threshold of multiple experiments must
be minimized. Chehade [17] proposed another proposi-
tion: separability. ,ey thought the greater the difference
of the health index between two observations, the more
validated and reliable the health index. In [2], the de-
velopment of the health index focused on monotonicity
and separability, and it converted the transform matrix
solving the problem to a convex optimization process. Yan
[18] focused on locating informative frequency bands,
determining the optimal fault frequency band for health
indicating. Some researchers combined the health index
building with statistical analysis. For example, Kim [19]
proposed a linear multisensor information fusion method
to build a health index and derive the best linear unbiased
estimator of the fusion coefficients. At the same time,
some researchers studied the methods based on the
Kalman filter to fuse the sensor signals (e.g., Markov

model [20]). To deal with the sensor selection problem
from the multiple sensors situation, Liu [21] studied the
perspective of the quality of the signal provided by sensors
and proposed a signal-to-noise ratiometric method to
combine various sensor signals, develop a health index,
and monitor asset degradation. However, from the cur-
rent study of bearing health condition monitoring, the
sparsity used in building a health index is rarely con-
sidered. ,e lack of sparse terms leads to overfitting and
reduces the generalization ability of the health index. In
data-driven model building, the sparse penalty term is also
used to make models have additional reusability and avoid
overfitting. Sparse models built via lasso (L1-normaliza-
tion) can achieve interpretable feature selection [22], and
lasso has been widely investigated in the fields of biology
and medicine. For some features with adjacent relevance,
the fused lasso is proposed to make feature weights sparse
and smooth [23].

Given that the high-dimensional feature is difficult to
calculate and observe, some scholars use the health index to
monitor equipment’s operating condition intuitively and
conduct prognostic health management. ,e degradation
trend of different types of faults varies. Meanwhile, infor-
mation on the current faults’ evolution direction can also
further improve the accuracy of RUL estimation. ,erefore,
this study aims to provide amethod for constructing a health
index that can indicate various fault type degradation trends
from the fusion of the features at the same time. ,e
contributions of this study can be summarized as follows:

(1) ,is work proposes an orthogonal proposition of
developing a health index. ,is proposition focuses
on expanding the discrepancy of different fault type
degradations, which is the basic idea of the multi-
feature information health index (MIHI).

(2) ,e MIHI uses a quasi-orthogonal sparse projection
algorithm to convert the spectral features of the
current measurement point into a low-dimensional
vector. ,is low-dimensional vector can simulta-
neously represent the bearing degradation trend of
multiple types of faults.

(3) ,e weight sparse and the weight difference sparse
are added to MIHI to build an objection function
and improve the general applicability.

(4) ,e optimization problem expression of the pro-
posed quasi-orthogonal sparse project algorithm is a
nonconvex function with constraint.,e fast-solving
algorithm based on iteration is given.

2. Proposed Quasi-Orthogonal Sparse
Project Algorithm

In this section, a quasi-orthogonal sparse project algorithm
is developed to transfer the spectrum feature to a low-di-
mensions’ vector health index for bearing degradation
monitoring. To efficiently trace various fault type degra-
dation trends, the project algorithm should satisfy the five
properties:
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Property 1. Monotonicity: once an initial fault occurs, the
trend of the degradation signals should be monotonic [16].

Property 2. Sensitivity: the health index should be sensitive
to bearing components that generate abnormal defects, that
is, the health index can separate the normal and abnormal
health conditions of bearings [24].

Property 3. Orthogonality: to indicate the various types of
bearing fault effectively, the health index is built as a vector,
and the size of the health index vector should be the same as
the number of the fault types. To avoid confusion of the fault
types in the health index, each dimension of the health index
should be orthogonal.

Property 4. Weight sparsity: to prevent overfitting, the
weight of the features with low correlation to Properties 1–3
should be small. We also hope that the weights of these
features can be set as 0 to achieve feature selection.

Property 5. Weight difference sparsity: under rotating
machinery operating conditions with load, working fre-
quency has some small fluctuations (especially, bearing ball
pass frequency). ,e weights’ difference sparsity helps the
projection matrix to become more flexible and deal with the
fluctuating frequencies. ,e principle of MIHI is extracting
the spectrum characteristics, which can track the degrada-
tion trend and distinguish different fault types from deg-
radation datasets of various faults. Given that the bearing
fault impulse signal is a pseudocyclization signal (the period
of impulse random fluctuates around a mean value), the
characteristic frequency of the fault fluctuates in a small

interval. ,e fused lasso sparse term makes HIMI’s weight
matrix focus on the frequency band around the mean
characteristic frequency rather than the signal characteristic
frequency. Hence, this term can prevent overfitting.

In summary, the quasi-orthogonal sparse project algo-
rithm for building a sparse multi-information feature health
index is expected to detect bearing fault types and evaluate
the bearing degradation process monotonically and sensi-
tively at the same time. ,e proposed quasi-orthogonal
project algorithm is based on the traditional linear fitting
method, and the equation is defined as follows:

HIΜΙi � W × f i, (1)

whereW ∈ Rk×m is the projection matrix, m denotes the size
of the spectrum feature f i of the ith observation, k is the fault
type number, and HIΜΙi ∈ Rk×1. Figure 1 shows the ex-
ample of equation (1).

To deal with various fault type monitoring tasks, the
proposed algorithm needs different types of fault degrada-
tion datasets as prior knowledge. We denote the jth fault
type degradation data as Fj ∈ Rm×nj , where nj denotes the
number of observation epochs of the jth fault type degra-
dation. We also denote the ith observation epoch feature
vector of the jth fault type degradation data as fj,i.

In addition, the projection matrix can be denoted as
W � [wT

1 ,wT
2 , . . . ,wT

k ]T, and the weights in this projection
matrix W need to be calculated row by row. ,e solving
process of the jth row of the projection matrix wj can be
described as an optimization problem, and the formula of
this optimization is provided as follows:

maximize
wj

D
2
sensitive wj􏼐 􏼑 − D

2
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2
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m
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􏼌􏼌􏼌􏼌􏼌
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⎪⎩

⎫⎪⎬

⎪⎭
, (2)

where α is defined to balance sensitivity and monotonicity
(corresponding to Property 1 and 2), β is the sparsity penalty
parameter (corresponding to Property 4), and c is the weight
difference sparsity penalty parameter (corresponding to
Property 5). μj denotes the mean vector of the normal state
observation matrix Nj � [fj,1, fj,2, . . . , fj,nnor

], and nnor is the
number of the first few observation epochs (generally, the
bearing signals can be assumed as normal signals in the first
few observation epochs), and nnor corresponds to Property 3.

,en, D2
sensitive(wj) can be calculated by

D
2
sensitive wj􏼐 􏼑 � 􏽘

nj

i�1
wj × fj,i − μj􏼐 􏼑

�����

�����
2

2
. (3)

To ensure that the health index can sensitively monitor
the abnormal condition, D2

sensitive(wj) needs to be as large as
possible.

D2
monotonousness(wj) corresponds to Property 1. To reduce

computational complexity, health index monotonicity relies
on D2

sensitive(wj) and D2
monotonousness(wj). D2

monotonousness(wj)

is used to evaluate the stability of the different health indexes
of two adjacent observation epochs, and it can be calculated
by

D
2
monotonousness wj􏼐 􏼑 � 􏽘

nj

i�2
wj × fj,i − fj,i−1􏼐 􏼑

�����

�����
2

2
, (4)

where D2
monotonousness(wj) can only assess the stability but not

the monotonicity of the health index. However, enlarging
D2

sensitive(wj) and shrinking D2
monotonousness(wj) simulta-

neously can effectively approximate the realization of
monotonicity. To achieve orthogonality, we need to reduce
the health index difference between the other fault type data
and the current fault type health state. D2

orthogonality(wj) is
calculated by
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, (5)

where D2
orthogonality(wj) assesses the health index value dif-

ference of other fault types of degradation data with the jth
fault type normal condition data. To realize orthogonality,
D2

orthogonality(wj) needs to be as small as possible.

To reduce computation complexity, D2
sensitive(wj),

D2
monotonousness(wj), and D2

orthogonality(wj) are simplified as
follows:

D
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(6)

D
2
monotonousness wj􏼐 􏼑 � wj × 􏽘
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(7)
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Figure 1: Illustrative example for building MIHI from a spectrum.
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Substituting equations (6)–(8) into equation (2), refer-
ring to the calculation from Fisher’s discriminant ratio, and
then rewriting equation (2), we obtain

maximize
wj

wjS
j

sensitivew
T
j − βj 􏽘

m
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,

subject towjS
j

subjectw
T
j ≤ 1,

(9)

where Sj

subject � Sj

orthogonality + α2Sj
monotonousness. 􏽣σj,q gives

more penalty to the features that cause MIHI monotonicity
and orthogonality showing fluctuations.
􏽢σj � ( 􏽣σj,1, 􏽣σj,2, . . . , 􏽣σj,m) is calculated by the following
formula:

􏽣σj,q � std Oj(:, q)􏼐 􏼑 + α2 × std Pj(:, q)􏼐 􏼑, (10)

where Oj � [F1, F2, . . . ,Fj−1,Νj, Fj+1, . . . , Fk] and
Pj � [fj,2 − fj,1, fj,2 − fj,1, . . . , fj,nj

− fj,nj−1]. Moreover, in
equation (9), βj � β‖S−1/2

subjectSsensitiveS
−1/2
subject‖ and

cj � c‖S−1/2
subjectSsensitiveS

−1/2
subject‖, where ‖.‖ indicates the largest

eigenvalue.
Lastly, according to the health index of jth fault type

value changing trend is positive or negative, multiplying 1 or
-1 withwj to ensure the health index has an increasing trend.

3. Solving Process

3.1. Weight Matrix Solving. Figure 2 shows the solving
flowchart of the proposed quasi-orthogonal sparse project
algorithm. First, the historical data of various types of faults
are reprocessed, transferring all observation signals to the
spectrum feature [F1, F2, . . . , Fk]. Second, the parameters α,
β, c, and nnor are set, and each row of the weight matrixW is
solved in turns.

3.2. Solution Detail of the Weight Vector. In this section, the
solution of equation (10) is provided. In general, equation (9)
cannot be solved using tools from convex optimization.
According to [25], we need to use a minimization-maxi-
mization algorithm to rewrite it. ,e first step is to construct
an iterative from equation (9):

minimize
d

dSj
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From the result d
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of equation (11), we can obtain
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���������
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⌢
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,e second step is to build a transfer matrix

R ∈ R(m− 1)×m:
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Substituting equation (12) into equation (11), we obtain

minimize
d

dSj

subjectd
T

− 2dSj

sensitive w(h)
􏼐 􏼑

T
+ βj 􏽢σj ∘ d

�����
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� b,

(13)

where ∘ denotes Hadamard product. ,en, the aug-
mented Lagrange function of equation (13) is built as
follows:
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where A � Q ×
��
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√
, Q and G satisfy Sj

subject � QTGQ, G is a
diagonal matrix, and c � w(h−1)

j × Sj

sensitive × inv(A). By us-
ing the linearized alternating directionmethod [26], iterative

augmented Lagrange function equation (14) can be rewritten
as three subequations:
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l> ρ(ATA + ηRTR). Using a soft-threshold algorithm can
obtain the closed-form solution of equation (15):
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−
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η
􏼠 􏼡,

cj
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􏼠 􏼡􏼠 􏼡,
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� e(z)

− η R d(z+1)
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T
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)
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Figure 2: Solving weight matrix of the quasi-orthogonal project algorithm.
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where shrinkage(v1, v2)≜ sign(v1) · max 0, |v1| − v2􏼈 􏼉.
Following the above deduction, the solving process of

equation (9) can be summarized as follows (Algorithm 1):

4. Case Study

4.1. Data of Illustrative Example. In this illustrative example,
the bearing run-to-failure data are studied. Bearing fault
datasets have three types: inner race fault, cage, and outer
race fault. ,e run-to-failure data from XJTU are measured
under the condition of 11 kN load, 2250 rpm speed, and
25.6 kHz sampling frequency. ,e data files that come from
bearing 2_1, bearing 2_3, and bearing 2_5 in reference.
Table 1 is used to calculate the weight matrix.

In each observation epoch, the length of the signal that
the sensor collected is more than 20000; thus, the size of the
spectrum generated via FFT transform can be more than
10000. To reduce computational complexity, in this case,
FFT only generates 512 dimensions’ spectrums as the quasi-
orthogonal sparse project algorithm input data.

4.2. Results and Analysis. Figure 3 shows the performance
degradation assessment of MIHI for the different bearing
fault monitoring. Here, the balance parameter α is set to 1,
nnor is set to 10, β is 2e−4, and c � 2e−5. ,e blue line denotes
the condition monitoring health index of the inner race
fault, the red line represents the cage fault monitoring, and
the green color is the degradation trend of the outer race
fault. To facilitate the observation, the MIHI value of each
fault type monitor curve will minus the average of the first 50
files’ MIHI value.

Figure 4 shows time-domain features that can indicate
an occurrence of an incipient-bearing fault. To monitor the
bearing health state, some time-domain features are used to
quantify the bearing run-to-failure data, such as standard
deviation and kurtosis. In Figure 4, we use the dataset
bearing 2_5 to illustrate the superiority of the MIHI for
bearing health monitoring. However, the time-domain
features do not have monotonic trending, which is not
beneficial to the assessment of bearing degradation per-
formance and prognostics. Meanwhile, the MIHI moni-
toring curve not only has a strong monotonic trending line
but also can indicate an incipient-bearing fault.

To illustrate further the advantages of the proposed
method, the natural variability of the proposed MIHI and
how it is used for fault detection and incipient fault diagnosis
are also provided. First, the MIHI at observation epochs
1–50 in a normal stage is used as a historical normal dataset.
Second, whether the normal state dataset obeys the Gaussian
distribution is checked. At a significance level of 5%, the
MIHI normal state datasets from bearings 2_1, 2_3, and 2_5
all satisfy the normal distribution conditions. ,erefore, the
Gaussian distribution assumption of the normal stage is
accepted. Lastly, the three-sigma rule is used to detect a
bearing abnormality, and the statistical threshold can be
used as an early warning baseline for fault detection and
beginning of degradation assessment.

,e proposed MIHI monitoring curve family and its
corresponding incipient fault threshold are plotted in Fig-
ure 5. Combined with the statistical threshold, the proposed
MIHI can realize bearing incipient fault diagnosis and
continuous detection of the bearing degradation process.

4.3.HyperparameterAnalysis. ,emain hyperparameters of
the proposed algorithm α, β, c, and nnor measure mono-
tonicity, orthogonality, weight sparsity, and weight differ-
ence sparsity. ,ese four hyperparameters are empirically
chosen. In this section, the hyperparameter selection sug-
gestion and the hyperparameters’ effect on the final HIMI
are studied.

First, a function is built to evaluate the MIHI condition
monitoring curve’s monotonicity:

Monotonicity � 􏽘
k

j�1

􏽐
nj

i�2 sign HIMIji,j − HIMIji,j􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

nj − 1
, (17)

where HIMIji,j means the jth value of ith observation
HIMIj

i ∈ R
k×1, which is calculated byHIMIj

i � W × fj,i. ,e
larger the value of monotonicity, the better monotonicity the
MIHI curve has.

Second, to indicate the orthogonality of the MIHI, a
formula is utilized to calculate orthogonality:

Orthogonality � 􏽘
k

j�1

􏽐
k
u�1std HIMIj

u,:􏼐 􏼑 − std HIMIj

j,:􏼐 􏼑

max HIMIj
j,:􏼐 􏼑 − min HIMIj

j,:􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
,

(18)

where HIMIj ∈ Rk×nj , which is calculated by
HIMIj � W × [fj,1, fj,2, . . . , fj,nj

], and HIMIj
j,: denotes the

jth row ofHIMIj.,e smaller the value of orthogonality, the
better orthogonality the MIHI curve family has.

In this illustrative example, the final fault type number is
3 (inner race, cage, and outer race); thus, k � 3. Assume that
the first fault degradation dataset is bearing 2_1 in Table 1
and consists of 491 files; thus, n1 � 491. ,e spectrum from
the first file’s signal in bearings 2_1, 2_3, and 2_5 is f1,1, f2,1,
and f3,1, respectively. Our experiments show that even
though the hyperparameter nnor(nnor � 10) is set as a small
value, the quasi-orthogonal sparse project algorithm can still
help the MIHI curve family to obtain good orthogonality.
For the rest of this section, the hyperparameter nnor selection
is not studied.

,e resulting heatmap of monotonicity is shown in
Figure 6, and that of orthogonality is shown in Figure 7. We
study four α values, i.e., 0, 0.4, 1, and 2. In each heatmap, we
study eight β and c values, which make up 64 combinations.
Figures 6 and 7 not only indicate the hyperparameters’ (α, β,
and c) effect on the monotonicity and orthogonality of the
MIHI monitoring curve family but also offer the selection
reference of hyperparameters α, β, and c.

,e hyperparameter α decides the MIHI monitoring
curve’s monotonicity. As shown in Figure 6, the bigger the
parameter α, the more monotonic the MIHI monitoring
curve is. However, Figure 7 indicates that the big α causes the
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MIHI monitoring curve family’s orthogonality to decrease.
Moreover, from all the heatmaps in Figures 6 and 7, α � 1.

When prerequirement Properties 1–3 of the HIMI curve
family are met, the sparser the weight matrixW is, the better
overfitting is avoided. ,e heatmaps in Figures 6 and 7 show
that β should be smaller than 0.0002 and c/β should be
smaller than 0.1; otherwise, the weight matrix W is too
sparse to map the spectrum features into aMIHI monitoring

curve family, which has good monotonicity and
orthogonality.

When the quasi-orthogonal sparse project algorithm
only focuses on the first three properties: monotonicity,
sensitivity, and orthogonality (β and c � 0), the MIHI
monitoring curve family has the best monotonicity and
orthogonality. However, the weight matrix is severely
overfitted. ,e degradation process of bearing 2_3 is used to

Input Sj

sensitive, S
j

subject, 􏽢σj, βj, cj, and let w(1)
j be the maximum eigenvector of inv(Sj

subject) × Sj

sensitive.
For h � 1, 2, . . . until convergence (‖w(h)

j − w(h−1)
j ‖2/max(1, ‖w(h)

j ‖2)< 0.0001)

Set η> 0, l> ρ(ATA + ηRTR), d(1) � 0, e(1) � 0, d(1) � w(h)
j

For z � 1, 2, . . . until convergence (‖d(z) − d(z− 1)‖2/max(0, ‖d(z)‖2)< 0.0001):
Let d(z+1), b(z+1), e(z+1) be the solution of equation (16).

End. Let w(h+1)
j � d

⌢

/
���������

d
⌢

Sj

subjectd
⌢T

􏽲

.
End. Let wj � w(h)

j .

ALGORITHM 1: Algorithm 1.

Table 1: Detail of the illustrative example.

Condition Bearing no. Time duration Number of measurement files Final fault
Speed: 37.5Hz Bearing 2_1 8 h 11min 491 Inner race
Load: 11 kN Bearing 2_3 8 h 53min 533 Cage

Bearing 2_5 5 h 39min 339 Outer rage
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Figure 3: Results of degradation monitoring and weight of the component. (a) Inner race fault. (b) Cage fault. (c) Outer race fault.
(d) Weight matrix (blue inner race, red cage, and yellow outer race).
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Figure 5: Bearing health state monitoring with proposed MIHI. (a) Inner race fault degradation. (b) Cage fault degradation. (c) Outer race
fault degradation.
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Figure 6: Monotonicity heatmap of hyperparameters α, β, and c. (a) α � 0, (b) α � 0.5, (c) α � 1, and (d) α � 2.
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Figure 7: Orthogonality heatmap of hyperparameters α, β, and c. (a) α � 0, (b) α � 0.5, (c) α � 1, and (d) α � 2.
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illustrate the effect of hyperparameters β and c in Figure 8.
Compared with the MIHI curve family when
β � 2e−4 and c � 2e−5, as shown in Figure 8(b), the mono-
tonicity and orthogonality of the MIHI curve family when
β and c � 0are stronger (Figure 8(a)), and the weight matrix
fits all spectrum components. However, bearing fault
characteristic information is not distributed in all frequency
bands, and the weight matrix should only focus on the

spectrum components related to the fault.,e weight matrix
calculated when β and c � 0 also fits with substantial noise,
thus reducing the generality of MIHI. As shown in
Figure 8(c), if the weight matrix is too sparse, then the MIHI
monitoring curve family cannot satisfy Properties 1, 2, and 3.
,us, we recommend using hyperparameter heatmaps to
select suitable hyperparameters when applying the proposed
method.
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Figure 8: MIHI example of hyperparameters’ change; the hypermeters α � 1 and nnor � 10 are the same, but β and c are different;
(a) β � 0 and c � 0. (b) β � 2e−4 and c � 2e−5. (c) β � 5e−4 and c � 5e−3.
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5. Conclusions

,is study proposed a method of building a MIHI to trace
the various bearing degradation trends with various types
of faults. ,e proposed method is a linear transform
algorithm that maps high-dimensional observation fea-
tures into low-dimension MIHI, indicating the bearing’s
various fault type degradation trends at the same time.
Meanwhile, inspired by the orthogonal vector, we pro-
posed utilizing orthogonality to develop the health index
of bearing degradation trend monitoring. ,is algorithm
also introduces weight sparsity and weight difference
sparsity to avoid overfitting. ,e proposed algorithm has
explicit and simple mathematical expressions, and the
process of calculation does not rely on the complex op-
timization algorithm. ,erefore, the method is suitable to
deal with situations that have high-dimensional obser-
vation features.

Nomenclature

k: Number of fault types
m: ,e dimension of the

spectrum feature
α: MIHI balance parameter
β: MIHI sparsity penalty

parameter
c: MIHI weight difference

sparsity penalty parameter
nnor: Number of the epoch of

bearing normal state
η: Lagrangian penalty

parameter when solving
l: Approximation parameter

when solving
wj,q: j − row and q − column

value of W
W ∈ Rk×m: Project matrix of MIHI
wj ∈ R1×m: j row of W
Fj ∈ Rm×nj : Spectrum feature matrix of

jth fault type degradation
process data

fj,i ∈ Rm×1: Spectrum feature of jth fault
type ith observation epoch

Nj ∈ Rm×nnor : Normal state observation
matrix of jth fault type

μj ∈ Rm×1: Mean vector of Nj
􏽢σj ∈ R1×m: Project matrix j − row’s

feature penalty vector
A ∈ Rm×m, b ∈ R1×(m−1),
c ∈ Rm×1, d ∈ R1×m,
e ∈ R1×(m−1), Q ∈ Rm×m,
G ∈ Rm×m:

Intermediate variables in
solving process
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