
Bias reduction and inference for electronic health record data

under selection and phenotype misclassification: three case

studies

Lauren J. Beesley∗1 and Bhramar Mukherjee1

1University of Michigan, Department of Biostatistics
*Corresponding Author: lbeesley@umich.edu

Abstract

Electronic Health Records (EHR) are not designed for population-based research, but
they provide access to longitudinal health information for many individuals. Many statistical
methods have been proposed to account for selection bias, missing data, phenotyping errors,
or other problems that arise in EHR data analysis. However, addressing multiple sources of
bias simultaneously is challenging. Recently, we developed a methodological framework (R
package, SAMBA) for jointly handling both selection bias and phenotype misclassification in
the EHR setting that leverages external data sources. These methods assume factors related
to selection and misclassification are fully observed, but these factors may be poorly under-
stood and partially observed in practice. As a follow-up to the methodological work, we
explore how these methods perform for three real-world case studies. In all three examples,
we use individual patient-level data collected through the University of Michigan Health
System and various external population-based data sources. In case study (a), we explore
the impact of these methods on estimated associations between gender and cancer diagnosis.
In case study (b), we compare corrected associations between previously identified genetic
loci and age-related macular degeneration with gold standard external estimates. In case
study (c), we evaluate these methods for modeling the association of COVID-19 outcomes
and potential risk factors. These case studies illustrate how to utilize diverse auxiliary in-
formation to achieve less biased inference in EHR-based research.

Keywords: COVID-19, electronic health records, inverse probability weighting, Michigan Ge-
nomics Initiative, NHANES, non-probability sampling, poststratification, SEER, test negative
designs

1 Introduction

Electronic health record (EHR) databases allow researchers to study a wide array of diseases
across patients’ entire course of medical care. However, use of observational databases such as
EHR for health research presents many practical challenges that can negatively impact internal
validity and external generalizability of resulting inference. Some issues include poorly mea-
sured variables, missing data, confounding, and limited information about patient recruitment
mechanisms. Analytical and design-based strategies for addressing these data limitations are
key to obtaining high-quality inference based on EHR data.

Researchers often are interested in using EHR data to relate a binary disease phenotype D
to a set of predictors, Z, and to generalize results to a defined external target population. Two
common sources of bias in these analyses are (1) lack of representativeness (selection bias) and
(2) misclassification of EHR-derived disease phenotypes (information bias). Many researchers
have addressed these two issues individually in the EHR setting (e.g. Haneuse and Daniels,
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2016; Huang et al., 2018; Sinnott et al., 2014). However, these works do not address how to ac-
count for both sources of bias in a single data analysis. Recently, Beesley and Mukherjee (2020)
proposed novel strategies for addressing these two sources of bias simultaneously. The work by
Beesley and Mukherjee has several new features. Misclassification probabilities are allowed to
vary across patients, and population summary statistics and internal data (e.g., patient visit
patterns) are combined to address misclassification. External summary statistics or data are
then used to address selection bias through weighting.

Beesley and Mukherjee (2020) demonstrates good bias reduction and inferential performance
of these methods when variables related to selection (collectively, denoted W ) and phenotype
misclassification (denoted X) are known and observed. In reality, drivers of selection and mis-
classification may not be known, and known drivers may not always be observed (e.g., income,
residential information, access to health care). Additionally, these methods rely on access to
high-equality external data (or summary statistics) on D and W from the target population
(or a probability sample). The availability of such external data will depend on the target
population. External individual-level data may present additional challenges such as missing
data, or we may have access to marginal distributions of variables for the target population but
not their joint distribution. Our ability to correct bias will naturally be limited by the data
and external information we have available. Implementation of these methods in messy real-
life data analysis is not trivial, and good performance is not guaranteed by proven theoretical
results. It is of interest, therefore, to explore how these methods perform for some real-world
inferential problems and to provide a general road map for researchers interested in applying
these methods in their own data analyses.

In this paper, we explore how the methods proposed in Beesley and Mukherjee (2020) can be
applied in practical EHR data analysis through three case studies. In doing so, we demonstrate
the potential for bias reduction in practice and highlight some limitations. We first consider
data from the Michigan Genomics Initiative (MGI), a longitudinal EHR and genotype-linked
biorepository within The University of Michigan health system. In case study (a), we examine
the relationship between cancer diagnosis and gender, accounting for the strong enrichment
of cancer patients due to ascertainment mechanisms in MGI. This case study addresses bias
by leveraging cancer prevalences by age from SEER (Surveillance, Epidemiology, and End Re-
sults program by the National Cancer Institute), age distributions from the US Census, and
individual-level data from NHANES (National Health and Nutrition Examination Survey by
the US Centers for Disease Control and Prevention [CDC]). In case study (b), we consider the
relationship between age-related macular degeneration (AMD) and several genetic loci iden-
tified by a large population-based genome-wide association study, and summary statistics for
disease prevalence by age from the US CDC are used for bias reduction. Comparative gold
standard results from International AMD Genomics Consortium data are available for bench-
marking different bias reduction approaches. In case study (c), we apply these methods to the
setting of risk factor identification for COVID-19 outcomes using data from all primary care
patients tested for SARS-CoV-2 viral infection via RT-PCR at Michigan Medicine. Unlike case
studies (a) and (b), we do not expect test sensitivity to vary across patients. A random sample
of untested Michigan Medicine controls are used to construct weights to account for prioritized
and selective testing. We compare the performance of weighting and design-based methods for
evaluating and addressing selection bias due to viral testing protocols.

In Section 2, we introduce the two observational databases with individual-level EHR data
used for our analysis. Section 3 provides an overview of the bias-correction strategies pro-
posed in Beesley and Mukherjee (2020). In Sections 4-6, we apply these methods to obtain
corrected point estimates and standard errors for the three examples. We conclude with a dis-
cussion in Section 7. Through these case studies, our goal is to illustrate a new and valuable
set of tools in the EHR data analysis toolkit and highlight important considerations to facilitate
implementation.

2

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 23, 2020. ; https://doi.org/10.1101/2020.12.21.20248644doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.21.20248644
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 Introducing the case studies and data sources

2.1 The Michigan Genomics Initiative (MGI)

The Michigan Genomics Initiative (MGI) is an EHR-linked biorepository within Michigan
Medicine containing over 75,000 patients with matched genotype and phenotype information
(Fritsche et al., 2018). Time-stamped ICD (International Classification of Disease) diagnosis
data are available for each patient. A rich ecosystem of additional information is available for
each patient, including lifestyle and behavioral risk factors, lab and medication data, geocoded
residential information, socioeconomic metrics, and other patient-level, census tract-level, and
provider-level characteristics.

We want to use MGI data to study the association between disease status D and predictors
Z and generalize to the target US adult population. The process by which data are accumu-
lated and the systematic differences between MGI patients and our target population must be
considered to achieve this goal. Figure A.1 provides a visualization of mechanisms by which
patients are included in MGI. Patients are recruited among perioperative patients seen at Michi-
gan Medicine, with targeted recruitment primarily through the Department of Anesthesiology.
This naturally results in strong enrichment for diseases associated with surgical intervention,
such as cancer.

We illustrate how we can address this lack of representativeness relative to the US adult
population through two case studies. Case study (a) explores the relationship between gender
and cancer diagnosis. Given the strong enrichment for cancer in MGI, the method for handling
selection bias for this case study may have a strong impact on resulting inference. In case study
(b), we investigate the relationship between age-related macular degeneration (AMD) diagnosis
and 43 genetic loci previously identified as risk factors for AMD. We expect AMD diagnosis to
weakly associated with inclusion in MGI after adjusting for age and other comorbidities, and the
method for handling selection bias may be less impactful. These case studies are summarized
in Table 1.

In these two case studies, we consider a subset of 40,101 unrelated MGI participants (enrolled
2012-2019) who are of recent European ancestry. We first characterize some differences between
this MGI dataset and our target population, the US adult population. For case study (b), we
restrict our target population to US adults aged 50+. Using these data, we define observed dis-
ease variables for several phenotypes of interest (cancer, macular degeneration, coronary artery
disease, and diabetes) based on whether or not patients received particular diagnosis codes dur-
ing follow-up in the Michigan Medicine EHR. Table A.1 provides descriptives for the patients
used in our analysis and compares these in parallel to available summary statistics related to
demographics and disease rates from the US adult population. Table A.2 details the sources
used to obtain these population summary statistics. We also provide descriptives for adults
interviewed and examined for NHANES in 2017-2018, which represents a probability sample
from the US adult population. We generally find that MGI patients tend to be older and have
a greater burden of disease compared to patients in NHANES and the US adult population.
This is expected in a hospital-based perioperative cohort. In modeling disease risk, therefore,
we need to carefully address potential relationships between patient characteristics (W ) and
inclusion in MGI if we want to generalize results to the US adult population.

We will address selection bias by leveraging external summary statistics and also some
individual-level data from NHANES. Since not all people in the US adult population are el-
igible for inclusion in MGI, we need to make implicit assumptions about transportability in
adjusted disease associations (D|Z) between the MGI source and US adult populations (see
Figure A.1 for a visualization). However, we do not require distributions of other patient
characteristics (Z, variables related to selection, or variables related to misclassification) to be
the same between these populations, so key factors such as age and racial composition can vary
between the source and target populations.
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We are also concerned about the potential for bias due to misclassification in our EHR-
derived phenotypes. Of the MGI patients considered, nearly 10% of patients were seen for less
than 6 months and nearly 9% were seen for fewer than 10 visits. We may have little confidence
in saying a person does not have a given disease if they were seen for very few visits or a very
short window of time. Instead, we may have just missed the disease. Therefore, misclassification
of our derived phenotypes is a strong concern, particularly given the short follow-up and small
number of visits for some MGI patients.

2.2 COVID-19 Cohort in University of Michigan Health System

In case study (c), we consider data for 16,228 people tested or externally diagnosed with SARS-
CoV-2 viral infection and seen at Michigan Medicine between March 10th and July 28th, 2020.
We also have a data for a simple random sample of 30,000 untested Michigan Medicine patients.
Data on race, age, body mass index (BMI), smoking status, etc. are available. Additionally,
geocoded residential information was combined with US Census data to construct neighborhood-
level socioeconomic factor variables. Detailed definitions for these various patient-level and
neighborhood-level factors are provided elsewhere (Gu et al., 2020). We focus our attention to
the 9154 tested/diagnosed patients and 4618 untested patients who received prior primary care
at Michigan Medicine. We choose to focus on primary care patients due to the comparatively
large amount of risk factor missingness for non-primary care patients.

Our interest is in modeling the relationship between true SARS-CoV-2 infection status (D)
and patient characteristics (Z) among primary care patients in Michigan Medicine. It is well-
known that currently used SARS-CoV-2 viral tests are imperfect, with up to 30% of infected
patients receiving a false negative result (Woloshin et al., 2020). Additionally, tested patients
are expected to be strongly enriched for certain respiratory and flu-like symptoms, and who gets
tested may depend on other patient characteristics such as occupation (essential workers tested
more often) given limited test accessibility (Allen et al., 2020). Table B.1 provides a comparison
between tested and untested Michigan Medicine primary care patients. Tested patients tend
to be older with more comorbidities. Limitations in available data include lack of reliable
COVID-related symptom data for untested patients and unavailability of occupational data for
all patients. Given the data available, we want to explore how the handling of misclassification
and testing impacts estimated associations between patient characteristics and infection status.

3 Brief overview of methods

For the sake of completeness, we briefly summarize some of the key ingredient models and meth-
ods presented in Beesley and Mukherjee (2020). We refer the reader to Beesley and Mukherjee
(2020) for additional details. Let binary D represent a patient’s true disease status and suppose
we are interested in the relationship between D and person-level information, Z. We call this
the disease model. Let D∗ denote the EHR-derived disease phenotype, which we will assume is
binary. D∗ is a potentially misclassified version of D with corresponding sensitivity and speci-
ficity. In this paper, we will assume specificity = 1, so D∗ is misclassified only through missed
diseases. We call the mechanism generating D∗ given D = 1 the sensitivity model and let X
denote patient and provider-level predictors related to sensitivity. For example, X may contain
factors such as patient age, length of follow-up, and number of hospital visits. We suppose we
model both D|Z and D∗|X,D = 1 using logistic regressions as follows:

Disease model : logit(P (D = 1|Z; θ)) = θ0 + θZZ (Eq. 1 )

Sensitivity model : logit(P (D∗ = 1|D = 1, S = 1, X;β)) = β0 + βXX

where S is an indicator denoting inclusion in the EHR database.
Our interest is in using the EHR data analysis to make inference about some defined target
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population. For example, we might define our target population as the US adult population
between ages 50-65. This population may differ from our source population (e.g. people in the
catchment area of the health system) (see Figure A.1 for an illustration). We will assume that
inference about D|Z is transportable between the source and target populations (Dahabreh and
Hernán, 2019). In order to make a link between our EHR sample and our target population of
interest but without loss of generality, we view our target population as if it were the source
population and define a corresponding selection model describing inclusion in our EHR (S =
1) as a function of D and additional covariates (W ), which is defined relative to the target
population.

Under these modeling assumptions, Beesley and Mukherjee (2020) observes that

log

[
P (D∗ = 1|Z, S = 1)

c(Z)− P (D∗ = 1|Z, S = 1)

]
= θ0 + θZZ + log [r(Z)]

where c(Z) and r(Z) are defined as follows;

ctrue(X) = expit (β0 + βXX) (Eq. 2 )

c(Z) =

∫
ctrue(X)f(X†|Z,D = 1, S = 1)dX†

r(Z) =

∫
P (S = 1|D = 1,W ;φ)f(W †|Z,D = 1)dW †∫
P (S = 1|D = 0,W ;φ)f(W †|Z,D = 0)dW †

and where X† and W † represent the elements in X and W not included in Z, respectively. The
term c(Z) represents sensitivity as a function of Z, and r(Z) is sampling ratio as a function
of Z and relates to the enrichment of disease in the EHR data as a function of Z. These two
terms will rarely be known in practice, and Beesley and Mukherjee (2020) proposes a multi-
step strategy for estimating disease model parameters accounting for unknown c(Z) and r(Z)
as illustrated in Figure 1. We summarize these steps as follows:
• Step 1©: Fix marginal sampling ratio, r̃ = P (S = 1|D = 1)/P (S = 1|D = 0). We can obtain
a rough sense of r̃ using the equation in Figure 1.
• Step 2©: Estimate sensitivity. If c(Z) is a constant, we can estimate sensitivity c̃ using method
2a in Figure 1. Otherwise, we directly estimate parameter β in the sensitivity model to obtain
ctrue(X) = expit(β0 + βXX), the sensitivity as a function of X (via method 2b). We then
approximate c(Z) with estimated ctrue(X).
• Step 3©: Estimate weights ω for selection bias adjustment. We consider two strategies based
on the kind of information that is available in the target population. When we have individual-
level data for D and W in a probability sample from the target population, we can estimate
inverse probability of selection weights. When we have summary statistics of D and W available
for the target population (and ideally, their joint distribution), we can obtain poststratification
weights. In practice, W may not be available, and we will use what elements of W are available
in an effort to reduce selection bias. Figure 1 provides strategies for approximating ω correcting
for phenotype misclassification (substituting estimated sensitivity ctrue(X) or c̃ in the formula
for ω). For comparison later on, we will also obtain uncorrected weights that ignore phenotype
misclassification. These weights are calculated by setting sensitivity to 1 in the formula for ω.
• Step 4©: Estimate disease model parameter θZ . Figure 1 describes three strategies for esti-
mating θZ under different assumptions. When sensitivity c(Z) is constant in Z, we can apply
a simple method involving approximating the distribution of D∗|Z (method 4a). Two other
strategies include maximization of the weighted observed data log-likelihood (method 4b) and
estimation using a non-logistic link function given estimated sensitivity (method 4c).
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4 Case study (a): association between cancer and gender using
MGI

Suppose we are interested in the relationship between cancer (D) and gender (Z) in the US
adult target population. MGI is strongly enriched for cancer diagnosis (53% in MGI vs a
lifetime risk of 39.5% for US adults [SEER 2017]), and factors such as age, BMI, and smok-
ing status (some of which are related to gender) are expected to be related both to cancer
diagnosis and selection into MGI through other comorbidities. Therefore, there is a strong
potential for bias due to patient selection, and the bias-adjusted results may be highly sensi-
tive to the adjustment method. We expect the impact of misclassification to be comparatively
small, since cancer history may be more routinely recorded/reported than other phenotypes.
The association between cancer and gender is a convenient estimand since the direction of the
association is well-understood. SEER data indicate lower lifetime cancer risk (any site, available
at https://seer.cancer.gov/csr/previous.html) among women relative to men, with cor-
responding log-odds ratios of -0.24 (2008-2010), -0.19 (2010-2012), -0.08 (2012-2014), and -0.07
(2014-2016). This known result provides us with the opportunity to benchmark different bias
reduction strategies based on the direction of the resulting cancer-gender association estimates.

In addressing potential bias due to selection and misclassification in this example, we follow
the four-step procedure outlined in Figure 1 and Section 3. Table 1 provides a detailed char-
acterization of the various assumptions made and data used in this analysis. Here, we describe
how each of these estimation steps is carried out, incorporating external summary statistics
from SEER and individual-level data from NHANES.

Step 1©: First, we specify a value for the marginal sampling ratio, r̃ = P (S=1|D=1)
P (S=1|D=0) , which

we can view as a kind of tuning parameter roughly capturing the (unknown) degree of cancer
enrichment in the study sample relative to the target population. We can use observed rela-
tionships in the data and known disease prevalence in the target population to explore plausible
values of r̃ using the equation in Figure 1 as shown in Figure C.1. To capture many po-
tential scenarios for r̃ compatible with the data, we perform our analysis multiple times using
the following fixed values of r̃: 1, 2, 5, 10, 25, 50, and 100. At the extremes, 1 corresponds to
no outcome enrichment in the EHR sample, and 100 corresponds to very strong enrichment,
with the probability of being included in the study sample being 100x for patients with cancer
compared to patients without cancer.

Step 2©: Fixing r̃, we then estimate the sensitivity with which the EHR-derived cancer
phenotype D∗ captures the true cancer status D as a function of patient factors. We define
sensitivity model covariates (X) to include age, the length of EHR follow-up in years, and the
log-number of doctor’s visits per follow-up year. In order to perform this estimation, we use
method 2b in Figure 1, which requires us to specify P (D = 1|X) from the target population.
We do not know this relationship, but we do have SEER summary statistics for the relation-
ship between age and cancer prevalence. We use these summary statistics to approximate
P (D = 1|X) as well as we can. For some values of r̃ incompatible with the data, the method
in Figure 1 will provide no solution, and we focus our attention on values of r̃ with estimable
ctrue(X).

Figure 2a shows the distributions of estimated ctrue(X) in MGI. Median sensitivity esti-
mates for the cancer phenotype are between 0.90 for r̃ = 25 to 0.66 for r̃ = 100. Estimated
sensitivities are somewhat variable across different choices of r̃ and P (D = 1|X) (not known),
indicating a need to consider several possible values when the magnitude of the sensitivity esti-
mates themselves are of primary interest. Previous work suggests that the downstream impact
of choices for r̃ and P (D = 1|X) on estimated disease model parameters, however, is often small
(Beesley and Mukherjee, 2020). Figure C.3 provides the estimates of β associated with X in
the sensitivity model. We estimate higher sensitivity with longer follow-up (years) in the EHR
(log-odds ratio: 0.10, 95% CI [0.09, 0.12]) and more visits per follow-up time (log-odds ratio:
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0.92, 95% CI [0.85, 1.00]).
Step 3©: We consider two different strategies to account for selection bias given fixed sen-

sitivity estimates. In the first strategy, we use summary statistics from SEER, the US Cen-
sus, and the US CDC to construct poststratification weights. In the second strategy, we use
publicly-available data from the NHANES (2017-2018) to construct inverse probability of selec-
tion weights. In constructing these weights, our goal is to account for some of the systematic
differences between patients in MGI and patients in the US adult population. In Table A.1,
we demonstrate that MGI is enriched for patients with more comorbidities (e.g. diagnosis of
coronary artery disease [CAD] or diabetes), and MGI patients tend to be older than the av-
erage adult in the US. This information is incorporated into our adjustment for selection bias
(included in W ). In this section, we provide details on how these weights were estimated.

Pulling summary statistics from various sources as in Table A.2, we first define three va-
rieties of poststratification weights. Since the joint distribution of various disease diagnoses
given age is not readily available for the target population, we incorporate multiple disease
diagnoses assuming independence given age. First, we define weights estimated ignoring the
cancer outcome as follows:

ω0 ∝
f(Diabetes|Age)f(CAD|Age)f(Age)

f(Diabetes|Age, S = 1)f(CAD|Age, S = 1)f(Age|S = 1)
(Eq. 3 )

where “Diabetes”, for example, corresponds to an indicator for whether the patient received a
diabetes diagnosis. The distributions in the numerator are obtained using population summary
statistics, and distributions in the denominator are estimated using MGI data. We then incorpo-
rate cancer diagnosis into the weight estimation while correcting for phenotype misclassification
as follows:

ω ∝ [sens× P (D = 1|Age)]D
∗

[1− sens× P (D = 1|Age)]1−D
∗

[P (D∗ = 1|Age, S = 1)]D
∗

[1− P (D∗ = 1|Age, S = 1)]1−D
∗ × ω0 (Eq. 4 )

where sens is estimated sensitivity (c̃ or ctrue(X)). We substitute population summary statis-
tics (numerator) and MGI estimates (denominator) to obtain these weights. For comparison,
we also obtain weights ignoring misclassification by setting sens = 1.

To compare weights estimated using different external data sources, we also obtain inverse
probability of selection weights using individual-level data from NHANES, incorporating ad-
ditional information about smoking status and body mass index (BMI). Let Sext = 1 refer
to inclusion in NHANES and S = 1 refer to inclusion in our MGI data. We will assume no
patients are included in both databases. We first estimate weights ignoring the cancer outcome
as follows:

ω0 ∝
1− P (S = 1|Age,Diabetes,CAD,BMI,Smoking, Sext = 1 or S = 1)

P (S = 1|Age,Diabetes,CAD,BMI,Smoking, Sext = 1 or S = 1)

× 1

P (Sext = 1|Age,Diabetes,CAD,BMI,Smoking,Race)
(Eq. 5 )

The first term accounts for differences between MGI and NHANES and is estimated using logis-
tic regression modeling in the combined MGI and NHANES data. The second term accounts for
differences between NHANES and the US adult population. Since NHANES selection weights
are provided (but not the selection models themselves), we model NHANES selection using beta
regression on the inverted NHANES selection weights (Elliot, 2009). These logistic and beta
regression estimates are provided in Table C.1.

To obtain weights that incorporate cancer diagnosis and also account for phenotype mis-
classification, we multiply ω0 from Eq. 5 by the following:

[sens× P (D = 1|Age,BMI,Smoking)]D
∗

[1− sens× P (D = 1|Age,BMI,Smoking)]1−D
∗

[P (D∗ = 1|Age,BMI,Smoking, S = 1)]D
∗

[1− P (D∗ = 1|Age,BMI,Smoking, S = 1)]1−D
∗ .

7

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 23, 2020. ; https://doi.org/10.1101/2020.12.21.20248644doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.21.20248644
http://creativecommons.org/licenses/by-nc-nd/4.0/


We obtain population P (D = 1|Age,BMI,Smoking) by fitting a regression model in the NHANES
data weighted using the NHANES sample weights. For comparison, we again obtain weights
that do not correct for misclassification by setting sens = 1.

Estimated poststratification weights and NHANES-based inverse probability of selection
weights (after scaling to sum to the number of patients in MGI) are shown for r̃ = 25 in Figure
2b. Other values of r̃ are similar. We can see substantial differences in the distribution of
weights that do and do not incorporate the cancer outcome. Additionally, weights obtained
using NHANES and using SEER/US Census summary statistics tend to be fairly similar in
terms of their overall distributions. Weights obtained using these two methods, however, can
sometimes differ substantially within individual patients.

Step 4©: Given estimated sensitivity and selection weights, we apply the methods in Fig-
ure 1 to estimate the association between cancer and gender (reference = male). Results are
shown in Figure 3 and Table C.2. Uncorrected analysis results in an estimated log odds ratio
of -0.07 (95% CI -0.11, -0.03). When we account for misclassification but not selection using
different methods (4a-c in Figure 1), we see little qualitative differences in point estimates
across methods. This may be due to the fairly high estimated sensitivities for the EHR-derived
cancer outcome. Additionally, it may be reasonable to assume that gender (Z) is indepen-
dent of X given D, so sensitivity c(Z) may be viewed as constant in Z. Assumptions for all
three misclassification adjustment methods are satisfied in that case. Interestingly, estimated
confidence intervals are narrower for the non-logistic link method (patient-varying sensitivity,
interval width: 0.091) than for the approximation method (marginal sensitivity, interval width:
0.122) when we only account for misclassification. This small efficiency gain comes from incor-
porating covariates X related to D into sensitivity estimation.

We see large differences in the estimated log-odds ratios when we use different selection
weights to account for selection bias. In particular, weights excluding the cancer diagnosis
outcome produce point estimates in entirely the “wrong” direction (e.g. a log-odds ratio of
0.09, 95% CI: [0.05,0.15]), reflecting the strong need to incorporate the direct impact of cancer
diagnosis on selection when specifying the weights. When we incorporate the cancer outcome
in constructing the weights, the resulting point estimates are in the “right” direction (indicat-
ing lower rates of cancer diagnosis in women compared to men) for both the NHANES and
poststratification weighting strategies (e.g. -0.10, 95% CI: [-0.14,-0.05] for NHANES IPW and
-0.15, 95% CI: [-0.20,-0.10] for poststratification under approximation method). Additionally,
we obtain narrower confidence intervals when we account for selection bias using weights that
incorporate the outcome relative to weights that do not incorporate the outcome (e.g. widths
0.108 vs 0.096 for poststratification weighting without misclassification adjustment). In this ex-
ample, we see little impact of correcting for phenotype misclassification in weight development,
perhaps due to the high estimated sensitivities for the cancer phenotype. The estimated log
odds ratios differ somewhat for weights obtained using poststratification vs. NHANES, where
poststratification produced stronger cancer-gender associations. This result serves as a caution-
ary tale against ignoring the outcome when estimating selection bias adjustment weights when
the outcome is strongly related to selection. Additionally, we get somewhat different results
when selection is addressed using different external data sources, and researchers may want to
compare results using several different sources in practice.

5 Case study (b): association between macular degeneration
and genetic loci using MGI

We now estimate associations between previously identified genetic loci and age-related macular
degeneration (AMD) diagnosis using MGI data, adjusting for other patient factors such as age
at last visit, gender, and principal components of the genotype data. We define our target popu-
lation as the US adult population aged 50+ (Table 1). AMD is weakly enriched in MGI relative
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to adults aged 50+ in the US population (Figure A.2), and we may expect individual genetic
loci in Z to be at most weakly associated with selection. Therefore, we may be less concerned
with handling of selection bias in this example compared to case study (a). Additionally, we
hypothesize that underreporting of disease may be a bigger challenge for case study (b), since
we may expect many patients are treated for AMD through local health care providers, and
consequently a large number of AMD diagnoses may be missed in the Michigan Medicine EHR.
These missed diagnoses may strongly impact estimation of genetic associations. In this second
example, we focus on 43 independent genetic loci identified with small p-values (<5x10−8) in a
genome-wide association study of over 16,000 advanced AMD cases and 18,000 controls using
International AMD Genomics Consortium (IAMDGC) data (Fritsche et al., 2016). Across these
43 loci, MGI and IAMDGC GWAS log-odds ratio point estimates have a Lin’s concordance cor-
relation coefficient (CCC) of only 0.55, and uncorrected MGI point estimates generally tend
to be closer to the null compared to the IAMDGC estimates (Figure C.5). The “winner’s
curse” resulting in inflated IAMDGC point estimates explains some differences, but bias due
to selection and misclassification in MGI may also contribute. Below, we apply our methods to
explore the extent to which systematic differences in GWAS results between these two studies
may be corrected by addressing phenotype misclassification and potential selection bias.

Step 1©: As with case study (a), we perform our analysis in Steps 2-4 across different values
of the tuning parameter, r̃, between 1 and 100.

Step 2©: Fixing r̃, we estimate sensitivity as a function of patient-level covariates using the
same method as in case study (a). Results are shown in Figure 2a. Sensitivity of the macular
degeneration phenotype is estimated to be generally much lower than in case study (a) across
all values of r̃, with median sensitivity ranging between 0.38 for r̃ = 10 and 0.06 for r̃ = 100.
Higher sensitivities for the cancer phenotype may be related to a more complete disease his-
tory for cancer diagnoses relative to macular degeneration diagnoses as entered into the EHR
through diagnosis codes.

Step 3©: We use summary statistics from SEER, the US Census, and the US CDC to con-
struct poststratification weights. For this outcome, we define weights as if the target population
were all US adults. Our analysis then uses data and weights from only the MGI patients aged
50+, with weights re-scaled to sum to the number of patients aged 50+ in MGI. We obtain
three varieties of poststratification weights for the AMD outcome. First, we define weights ω0

ignoring the AMD outcome as in Eq. 3 except this time we also incorporate the association
between cancer diagnosis and age into both the numerator and denominator. We include cancer
diagnosis in the weight definition to account for the strong association between cancer diagnosis
and inclusion in MGI, but we do not account for misclassification of the cancer phenotype for
this analysis. We then define weights that incorporate the AMD outcome using Eq. 4 , where
this time D and D∗ correspond to the AMD outcome and sens is either the estimated sensitivity
(correcting for misclassification) or sens = 1 (ignoring misclassification). Resulting weights are
shown in Figure 2b for r̃ = 25. Other values of r̃ are similar. Unlike case study (a), weights
that do and do not incorporate the AMD outcome tend to have similar distributions, reflecting
a comparatively small impact of AMD on the probability of inclusion in MGI.

Step 4©: We then apply the methods in Figure 1 to obtain bias-corrected point estimates
relating macular degeneration diagnosis to 43 genetic loci in MGI. The differences between
IAMDGC and MGI point estimates across loci are characterized using three metrics: (i) aver-
age absolute difference across 43 pairs of estimates, (ii) Lin’s concordance correlation, and (iii)
the average absolute percent difference between the MGI and the IAMDGC estimate, relative to
the IAMDGC estimate (denoted MAPE; mean absolute percentage error). We also present the
average estimated MGI standard errors relative to IAMDGC. Results for the best-performing
methods are summarized in Table 4a. Results for other methods can be found in Table C.3.
We present results using r̃ = 25, but other r̃ values with estimable sensitivity (10, 50, 100) are
similar. When we correct for selection or misclassification, Lin’s concordance correlation mea-
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sure increases from 0.55 (uncorrected) to 0.68 (corrected). Correcting for both misclassification
and selection bias did not produce additional improvement for this metric (Lin’s of 0.70). Anal-
yses that accounted for selection (with or without misclassification bias adjustment) resulted
in increased (worse) MAPE relative to uncorrected analysis (range 0.87-1.21 vs. uncorrected
MAPE of 0.84). Unweighted analyses accounting for misclassification but not selection pro-
duced similar or better MAPE compared to uncorrected analysis. All bias-correction strategies
shown in Table 4a result in point estimates that are closer to IAMDGC point estimates than
in uncorrected analysis on average. Overall, the method approximating the D∗|Z distribution
with no selection bias adjustment performs the best among the methods considered in terms
of similarity between bias-corrected estimates and IAMDGC estimates. Since selection seems
to be at most weakly associated with AMD diagnosis, it is not surprising that methods with-
out selection adjustment generally perform well. Analyses incorporating selection weights had
larger standard errors without much gain in terms of bias adjustment, suggesting that selection
weighting did not improve inference.

Table 4b compares the ranked p-values for each of the 43 genetic loci after bias adjustment
to the ranking in IAMDGC. Among the top 5 associations in IAMDGC, the majority are also
identified as top associations in MGI. P-values produced by bias correction methods accounting
only for misclassification but not selection (no weighting) tend to produce p-values very close
or even identical to uncorrected analysis. In Beesley and Mukherjee (2020), we demonstrate
that p-values from the non-logistic link function method (ignoring selection) will only differ
substantially from uncorrected analysis when X†, representing the factors driving sensitivity
not adjusted-for in the disease model, is associated with Z given D. We may be less concerned
about the impact of misclassification on p-values when these terms are at most weakly associated
(as in this case study). Once selection bias adjustment is incorporated, however, the resulting
p-values are impacted, as seen in Table 4b. In general, selection may often be ignorable when
estimating associations with genetic loci. However, we recommend comparing analyses with
and without weighting in settings when selection may be more strongly related to Z.

6 Case study (c): accounting for selective and imperfect diag-
nostic testing for modeling COVID-19 susceptibility

We consider data for 9154 Michigan Medicine primary care patients tested for SARS-CoV-2
virus or externally diagnosed with COVID-19. We are interested in estimating the adjusted
association between infection and race/ethnicity, accounting for potential misclassification of
viral test results and the lack of representativeness of the tested patients relative to our Michi-
gan Medicine target population. The association between race and confirmed viral infection is
complicated to evaluate, since race could be related to rates of testing and/or infection rates.
A careful approach is needed to tease apart associations with race using the available data on
who was tested and who tested positive. For this analysis, we roughly group race/ethnicity into
three categories: non-Hispanic White (NHW), non-Hispanic African American (NHAA), and
Hispanic/multi-racial/other.

We first consider the question of misclassification of RT-PCR viral tests. Unlike case studies
(a) and (b), misclassification corresponds to results of a diagnostic assay and is not expected
to be related to patient-level factors. Recent research provides insight into plausible values
for sensitivity and specificity of these test results, where specificity is generally very high (we
will assume specificity = 1) and sensitivity is believed to be between roughly 0.70 and 0.90
(Woloshin et al., 2020). In the setting where sensitivity is a constant, we can apply the method
4a in Figure 1 to account for imperfect test sensitivity. We note that the multiplicative con-
stant, c̃[1−p∗]

c̃−p∗ will be close to 1 unless p∗, which represents the theoretical test positive rate in
the population, is large. If the population disease rate is low (say, <5%), the impact of imper-
fect test sensitivity will be small. Assuming a low population infection rate, we can ignore the
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outcome misclassification and instead focus our attention on correcting potential selection bias.
Estimation addressing both sources of bias produces very similar results (not shown).

We use data from a simple random sample of 4618 untested Michigan Medicine primary care
patients to construct weights for selection bias adjustment. Unlike the previous case studies,
we have individual-level data that is representative of the target population, and we can di-
rectly model differences between the tested patients and the target population. For simplicity,
we will assume that testing (so, S) is independent of true infection status (D) given available
covariates (W ), where W includes patient-level factors of age, number of comorbidities (e.g.
liver disease, kidney disease), gender, race, smoking status, BMI and neighborhood-level factors
of population density and neighborhood disadvantage index. Since testing practices changed
substantially across calendar time, we model testing separately for tests from March 10th-31st
(quarter Q1) and from April 1st-July 28th (quarters Q2 and Q3). Details about weight estima-
tion including handling of missing data can be found in Section D. Parameters in the models
for testing associated with race/ethnicity are shown in Figure 5. We estimate higher rates of
testing among NHAA patients relative to NHW patients in quarter 1 (when testing capacity was
limited), and we see no difference in adjusted testing rates between people with Hispanic/Other
race/ethnicity and NHW patients. In quarters 2 and 3 (when testing capacity became less
limited), the testing rates by race change, with NHW patients having similar testing rates to
NHAA patients but higher testing rates than people identifying as Hispanic/other/multi-racial.

After estimating weights to (at least partially) account for testing/selection bias, we esti-
mate disease model parameters by fitting weighted logistic regression models for receipt of a
positive vs. negative test within the tested cohort, where predictors Z include race, age, number
of comorbidities (e.g. liver disease, kidney disease), neighborhood disadvantage index, gender,
and population density. Figure 5 shows the resulting point estimates for race. Other model
parameters are shown in Figure D.2. We generally see little difference between weighted and
unweighted analysis. We find that NHAA patients tend to have higher rates of viral infection
compared to NHW patients (weighted log-odds ratio 1.23, 95% CI: [1.02, 1.45]) as do people
with Hispanic/other race (0.55, 95% CI: [0.29, 0.80]). These estimated associations are qual-
itatively similar to those reported in other recent studies, including Allen et al. (2020) and
Chadeau-Hyam et al. (2020).

Weights for selection bias adjustment were estimated accounting for patient factors such as
age, BMI, and comorbidities, but conspicuously missing from our models for testing is infor-
mation about COVID-19-related symptoms (e.g. cough, fever) or patient occupation, which
were unavailable for some or all patients in our study. Since symptoms and occupation are
strongly related to testing rates (particularly for tests early in 2020), we may question how well
these weights can account for potential selection bias. Instead, we might appeal to design-based
approaches to evaluate the potential impact of testing on disease model estimates. When we
model test positivity among tested patients, we are treating patients that test negative as con-
trols. This strategy is known as a “test-negative” design Vandenbroucke and Pearce (2019).
One limitation of this approach is that patients who test negative were tested for a reason;
they may have other respiratory symptoms, work an essential job requiring testing, or be at
greater risk of adverse coronavirus-related outcomes, and these people will likely not represent
the target population (Allen et al., 2020). In the literature for test-negative designs, researchers
evaluate the potential for bias due to lack of representativeness by comparing analysis results
to associations between test positive patients or test negative patients and untested population
controls. Figure 5 provides estimated associations between race and positive or negative test
status using untested Michigan Medicine patients as controls. NHAA race was associated with
a higher rate of positive test results (log-odds ratio 1.28, 95% CI: [1.04, 1.53]) but not nega-
tive test results (log-odds ratio -0.07, 95% CI: [-0.21, 0.08]) compared to the untested patients,
supporting that NHAA patients may have higher infection rates. This analysis provides an
example where design-based strategies may provide better tools for evaluating and correcting
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for the impact of testing relative to weighting strategies when high-quality data on important
determinants of testing are unavailable.

Researchers may often be interested in modeling post-diagnosis outcomes such as hospital-
ization or ICU admission among patients testing positive for viral infection. We may often
be less concerned about the potential impact of selection bias and misclassification when we
are studying post-diagnosis outcomes, since these comparisons would often condition on having
tested positive. We demonstrate this phenomenon in Figure D.3, where we apply the weights
obtained previously to a model for hospitalization among people testing positive. Weighted and
unweighted estimates are very similar. We find that NHAA test-positive patients tend to have
higher rates of hospitalization compared to NHW test-positive patients (weighted log-odds ratio
0.86, 95% CI: [0.27, 1.46]) as do people with Hispanic/other race (0.86, 95% CI: [0.18, 1.53]).
These estimated associations are consistent with those reported in Gu et al. (2020).

7 Discussion

Many statistical challenges arise in the analysis of electronic health record (EHR) data, including
limitations in data quality (i.e., measurement error, missing data, etc.), lack of representative-
ness (i.e., who is in the study?), and generalizability (i.e., what do results say about my target
population?). In Beesley and Mukherjee (2020), we proposed a suite of statistical tools for ad-
dressing measurement error and selection bias in disease modeling using EHR data. That work
demonstrated good performance of the proposed methods when key factors related to selection
and measurement error are observed, but these driving factors may be unknown or only par-
tially measured in practice. In this paper, we explore how these statistical bias-correction and
inference strategies perform in real-world data analysis through three EHR data analysis case
studies. We emphasize that the goal of unbiased estimation in EHR data analysis is unrealistic
given limitations in data availability and many competing sources of bias. Instead, our goal in
implementing these methods is to produce less biased inference.

In the first two case studies, we consider data from the Michigan Genomics Initiative, a
longitudinal EHR-linked biorepository effort within Michigan Medicine. For both of these case
studies, comparative gold standard disease associations were used to benchmark the perfor-
mance of various bias reduction strategies. In case study (a), bias-corrected point estimates
for the association between cancer and gender were consistent with associations reported by
SEER as long as the cancer outcome was incorporated into development of selection weights.
In case study (b), these bias reduction methods resulted in point estimates closer on average to
previously identified associations than uncorrected analysis (Fritsche et al., 2016). These case
studies demonstrate that the bias correction and inference strategies from Beesley and Mukher-
jee (2020) may be useful for reducing bias in EHR-based studies even when factors related to
selection and misclassification are not well-understood or fully measured. Additionally, these
examples highlight the need to tailor the statistical approach to the problem at hand and illus-
trate settings where disease model inference can be sensitive to our strategy for handling bias
adjustment.

In the third case study, we explore the very timely and important challenge of risk factor
evaluation for SARS-CoV-2 viral infection. When modeling viral infections using test-negative
patients as controls, we may not expect misclassification to appreciably impact absolute logis-
tic regression parameter estimates unless the true rate of disease is substantial (e.g. >5%).
Instead, we suggest researchers should focus on accounting for potential bias due to enhanced
testing in certain patient populations, which could have a stronger impact on disease model
parameters. This example highlights a setting where design-based strategies for evaluating and
addressing selection biases may outperform weighting strategies when high-quality data on key
factors related to selection/testing in untested patients are unavailable.

This work provides a roadmap for practical implementation of the methods for handling
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phenotype misclassification and selection bias in EHR data analysis proposed in Beesley and
Mukherjee (2020). These methods are summarized in Figure 1, and Steps 2 and 4 can be eas-
ily implemented in R using package SAMBA available at https://cran.r-project.org/web/
packages/SAMBA/index.html. These methods rely on an assumed logistic regression structure
for the distribution of D∗ given D = 1 and covariates X. When potential X has large dimension,
penalization methods could be incorporated to aid in estimation of β. Estimation of weights for
selection bias adjustment (Step 3) presents a harder problem, and several strategies for estimat-
ing these weights are highlighted in Figure 1. When external individual-level data from the tar-
get population are available, inclusion in the EHR sample (i.e., P (S = 1|W,S = 1 or Sext = 1))
can be directly modeled. In case studies (a) and (c), we use logistic regression to model this
selection probability in the merged internal and external datasets, but more sophisticated mod-
eling strategies, penalization, etc. can also be used to estimate these probabilities and construct
selection weights. Additional strategies for handling multi-stage sampling, overlapping EHR and
external probability samples, and use of probability samples from a different target population
can be found in Beesley and Mukherjee (2020).
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Table 1: Descriptions of three case studies

Case study (a):
Cancer and Gender

Case study (b):
Age-Related Macular

Degeneration and SNPs

Case study (c):
SARS-CoV-2 Infection and

Race

Internal Data
Michigan Genomics

Initiative
Michigan Genomics Initiative

patients aged 50+

Michigan Medicine primary
care patients with viral

SARS-CoV-2 test or external
diagnosis

Target
Population

All adults in US US adults aged 50+
Michigan Medicine primary

care patients

n 40101 27834 9154

D presence of cancer presence of AMD true SARS-CoV-2 positivity

D∗ receipt of cancer code
receipt of macular degeneration

code
positivity of first SARS-CoV-2

test or external diagnosis

Z gender
genotype (0/1/2) for 43 SNPs,
age, genotype PCs 1-4, gender,

batch

race, age, comorbidities,
disadvantage index

Cases, (% of n) 21345 (53.2%) 1666 (6.0%) 710 (7.8%)

Sensitivity
Model (X)

age, number of visits, length
of follow-up

age, number of visits, length of
follow-up

none (assume constant
sensitivity)

Selection Model
(W and D)

age, cancer diagnosis,
diabetes diagnosis, coronary

artery disease diagnosis,
smoking, body mass index

age, AMD diagnosis, cancer
diagnosis, diabetes diagnosis,

coronary artery disease diagnosis

comorbidity index, age, gender,
race, smoking, disadvantage

index, body mass index,
population density

External Data
US 2000 Census, SEER

1975-2018, NHANES
2017-182

US 2000 Census, NIH National
Eye Institute 20102

simple random sample of
untested Michigan Medicine

patients2

Gold Standard
θZ

US SEER2 prevalences IAMDGC GWAS3 none

Assumptions1
X† related to D given Z
X† may be indep. of Z

given D

X† may be indep. of D given Z
X† may be indep. of Z given D

sensitivity constant in Z

1 X† refers to the factors in X (sensitivity model) not included in Z (disease model). In case study (a), X† = X.
In case study (b), X† = number of visits and length of follow-up. In case study (c), sensitivity is assumed to be
constant and X is empty.
2 Details can be found in Table A.2.
3 International Age-Related Macular Degeneration Genomics Consortium
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Figure 1: Flowchart of sensitivity and disease model parameter estimation methods 1 2

Fix marginal sampling ratio, r̃

r̃ = P (D∗=1|S=1)
c̃−P (D∗=1|S=1)

1−P (D=1)
P (D=1) , c̃ ∈ (0, 1)

Estimate marginal sensitivity, c̃

c̃ = P (D∗=1|S=1)
P (D=1|S=1)

P (D = 1|S = 1) = r̃P (D=1)
r̃P (D=1)+P (D=0)

Estimate sensitivity, ctrue(X)

Fit the following regression model:

log
(

P (D∗=1|X,S=1)
P (D=1|X,S=1)−P (D∗=1|X,S=1)

)
= β0+βXX

P (D = 1|X,S = 1) ≈ r̃P (D=1|X)
r̃P (D=1|X)+P (D=0|X)

Estimate IPW/poststratification weights, ω
Poststratification

(summary statistics)
Inverse probability of selection

(external data, Sext = 1)

ω0 ∝ f(W )
f(W |S=1)

ω0 ∝ p11+p01
p11+p10

1
P (Sext=1|W )

pjk = P (S = j, Sext = k|W,S = 1 or Sext = 1)

ω ∝ f(D∗|W )
f(D∗|W,S=1) × ω0 with P (D∗|W ) = sensitivity ∗ P (D = 1|W )

Estimate disease model parameters, θ

Approximate D∗|Z method

Disease
model

estimation

θ̂Z ≈ θ̂ucZ
c̃(1−p∗)
c̃−p∗

θucZ : ω-weighted log-odds ratio
p∗: ω-weighted mean of D∗

Assume X ⊥ Z|D

Observed data log-likelihood method

Disease
model

estimation

Maximize with respect to θ and β:
∑
ωD∗log (K)+ω(1−D∗)log (1−K)

where K = eβ0+βXX

1+eβ0+βXX
eθ0+θZZ

1+eθ0+θZZ

fixing β0 = logit(c̃)

Assume X† ⊥ Z|D or X† ⊥ D|Z

Non-logistic link method

Disease
model

estimation

Fit ω-weighted regression model: log
(

P (D∗=1|Z)
c(Z)−P (D∗=1|Z)

)
= θ0 + θZZ

When c(Z) unknown, approximate with estimated ctrue(X).

Assume X† ⊥ Z|D or X† ⊥ D|Z (neither if c(Z) known)

P (D = 1) P (D = 1|X)

(sk
ip

if
r̃

=
1)

- or -

1

2a 2b

3

4a 4b

4c

2

1 Notation:
X†: predictors in X (sensitivity model) not included in Z (disease model)
c(Z): sensitivity ctrue(X) integrated over the distribution of X† given D = 1 and Z.
Sext: indicator of inclusion in external probability sample for selection bias adjustment, if available

2 For Step 3© inverse probability of selection weighting, we set p11 = 0 if there are no subjects included
in both the internal and external datasets. pjk can be estimated using logistic (no overlap) or multinomial
logistic (overlap) regression in the merged internal and external data. When only sampling weights are available
for the external dataset, P (Sext = 1|W ) can be estimated using beta regression as proposed in Elliot (2009).
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Figure 2: Estimated sensitivities and selection adjustment weights [Case studies (a) and (b)]1

(a) Estimated sensitivities
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1 Corrected weights using r̃ = 25 are shown. All weights were trimmed at 10. Horizontal black lines correspond
to the 25th, 50th, and 75th quantiles

Figure 3: Cancer-gender log-odds ratio after applying proposed selection weighting and mis-
classification adjustment methods (reference = male) [Case study (a)]1
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1 Results using a marginal sampling ratio of 25 are shown. Results for sampling ratios of 50 and 100 are similar.
The horizontal shaded region corresponds to the range of SEER estimates using data between 2008 and 2016.
“Approx. D∗|Z”, “Non-logistic Link”, and “Obs. Log-Lik.” correspond to methods 4a, 4c, and 4b in Figure 1,
respectively. The log-odds ratio estimate is printed near each plotted confidence interval.
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Figure 4: Bias-adjusted AMD log-odds ratios across 43 genetic loci and corresponding p-values
[Case study (b)]1

(a) Log-odds ratio summary metrics across 43 genetic loci
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MAPE
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Approx. D∗|Z method 0.29 0.67 0.81 3.3
Approx. D∗|Z method +
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1 For Approx. D∗|Z [method 4a] and Non-logistic link function [method 4c] strategies, sensitivity is estimated
assuming r̃ = 25. Methods with weighting used weights ignoring the AMD outcome. Bolded values indicate the
best performing methods.

Definitions: Average absolute deviation = average absolute difference between MGI and IAMDGC
point estimates (lower is better); Lin’s concordance correlation = estimated concordance between MGI and
IAMDGC point estimates (higher is better); MAPE (mean absolute percentage error) = average absolute
difference between 1 and the ratio of MGI and IAMDGC point estimates (lower is better); Avg. relative
standard error = ratio of standard errors for MGI and IAMDGC point estimates
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Figure 5: Associations between race and coronavirus testing and infection rates (reference =
Non-Hispanic White) [Case study (c)]1
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1 Parentheses in the legend labels correspond to the binary outcome comparison. For example, negative vs.
untested corresponds to a model for testing (yes/no) excluding test-positive patients. NHAA = Non-Hispanic
African American. Q1 corresponds to testing between March 10th and March 31st, 2020. Q2-Q3 corresponds to
testing between April 1st and July 28th, 2020. Weights adjusted for age, race, gender, number of comorbidities,
BMI, neighborhood disadvantage index, smoking status, and population density. The log-odds ratio estimate is
printed above each plotted confidence interval. Details about specification of Z and X can be found in Table 1.
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