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ARTICLE INFO ABSTRACT

Objectives: Athletes with sport-related concussions (SRC) often demonstrate deficits in postural stability. Lower
cerebral blood flow in frontal cortices has been documented in athletes with symptoms after SRC, however, it is
fNIRS unclear if functional brain oxygenation during postural control tasks is reduced in symptomatic athletes after
Postural control SRC in the same manner. We therefore compared brain oxygenation patterns in frontal cortices of symptomatic
Brain oxygenation and asymptomatic athletes with SRC during postural control tasks with the hypothesis that symptomatic athletes
Frontopolar cortex . . N . .

are characterized by reduced functional brain oxygenation during postural control.
Methods: 62 concussed athletes (n = 31 symptomatic, n = 31 asymptomatic) were investigated during four
postural control tasks with eyes closed versus eyes opened conditions and stable vs. unstable surface conditions.
Brain oxygenation was assessed using functional NearInfraRed Spectroscopy (fNIRS) on frontopolar cortices of
each hemisphere. Postural sway was measured by the analysis of ground reaction forces.
Results: Symptomatic athletes showed greater postural sway when compared to asymptomatic athletes during
postural control, particularly during closed eyes and/or unstable surface conditions. Changes of oxygenated
hemoglobin (AHbO,) within the left hemispheric frontopolar cortex were significantly reduced in symptomatic
athletes when compared to asymptomatic athletes during the eyes closed condition. A stepwise linear regression
analysis revealed that self-reported post-concussion symptoms such as headaches and sadness predict decreased
brain oxygenation during postural control with closed eyes.
Conclusion: Symptomatic athletes with increased postural sway are characterized by decreased frontopolar brain
oxygenation during postural control tasks, particularly during conditions with closed eyes. Because the fron-
topolar cortex showed to be involved in redistributing executive functions to novel task situations, we conclude
that athletes with post-concussion symptoms suffer from a deficit in coordinating postural adjustments to bal-
ance control tasks with reduced sensory input.

Keywords:
Sport-related concussions

1. Introduction

Although concussions (/mild Traumatic Brain Injuries mTBI) may
never be completely eliminated from sports, improved understanding of
post-concussion sequela on the health status is necessary to prevent
athletes from long-term impairments. Potential post-concussion health
deficits concern symptoms such as headaches, dizziness, memory pro-
blems, etc. that usually last for about a week (Guskiewicz et al., 2001).
However, long-term neuropsychological (Deb et al., 1998), psychiatric
(Finkbeiner et al., May) or physical impairments such as gait or posture
control (Howell et al., 2017; Ingersoll and Armstrong, 1992) have been
also reported after sport-related concussions (SRC).

Broglio and Puetz (2008) pointed out that there is a lack of
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published studies on postural control after concussions. The assumption
that balance decrements resolve within three to five days post-injury
(Guskiewicz, 2003; McCrea et al., 2003) is contrasted by studies that
report longer recovery times when more sensitive measurement devices
are being wused (Broglio and Puetz, 2008; Ingersoll and
Armstrong, 1992; Thompson et al., 4). In fact, Thompson et al. (2005)
measured postural instability in concussed subjects about three months
past the incident. Ingersoll and Armstrong (Ingersoll and
Armstrong, 1992) reported a greater distance of the center of pressure
of individuals with fewer postural corrections more than one year post-
concussion. Thus, the application of more sensitive measures of pos-
tural stability indicates that alterations of postural control after mTBI in
sports might present as a long-term impairment.
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Guskiewicz et al. (1997) reported that concussed athletes may suffer
from sensory interaction problems as they demonstrated decreased
stability during closed eyes conditions without any neuropsychological
deficits. The authors hypothesized that mTBI athletes are unable to
respond to altered environmental conditions and therefore select a
motor response based on wrong cues (Guskiewicz et al., 1997). How-
ever, no group differences were evident during tilted support surface
conditions (Guskiewicz et al., 1997). Thus, it remains unclear whether
concussions represent a sensory interaction problem that is related to
visual or tactile alterations. Further analyses showed that concussed
athletes demonstrate postural control deficits during altered visual
conditions (closed eyes) and during the combination of altered visual
and sensory (tilted support surface) conditions indicating that con-
cussed athletes are not using information from the vestibular and visual
systems effectively (Guskiewicz, 2003). However, studies that actually
provide data about the neuronal correlates of concussed athletes during
postural control performances are scarce (Helmich et al, 2016;
Thompson et al., 2005).

In concussed athletes who were already cleared for sport partici-
pation, the application of electroencephalography (EEG) revealed a
decrease in EEG power in all bandwidths especially during standing
postures (Thompson et al., 2005). The combination of postural control
measurements (force plate system) with functional NearInfraRed
Spectroscopy (fNIRS) imaging provided evidence that concussed in-
dividuals with persisting symptoms are characterized by decreased
brain oxygenation patterns in frontal cortices when compared to a
healthy control group during balance control (Helmich et al., 2016).
However, increased brain oxygenation patterns during the combina-
tional alteration of visual (eyes closed) and tactile (unstable surface)
manipulations were also observed in frontopolar cortices of concussed
individuals with persisting post-concussion symptoms and when com-
pared to asymptomatic athletes with mTBI and non-concussed controls
(Helmich et al., 2016). In fact, several studies reported contrasting re-
sults of increased (Helmich et al., 2016; McAllister et al., 2001) as well
as decreased functional brain activation in frontal cortices (Chen et al.,
2007; Helmich et al., 2015) of concussed individuals, particularly in the
frontopolar cortex (FPC) (Helmich et al., 2016; Chen et al., 2007;
Helmich et al., 2015). Thus, it remains unclear whether concussed
athletes are characterized by functional hyper- or hypoactivity in the
frontal cortex during postural control tasks. Resting-state analyses using
EEG showed that athletes with sport-related concussions are char-
acterized by decreased activity in the FPC that is additionally nega-
tively correlated to post-concussion symptoms (Virji-Babul et al., 2014).
Athletes reporting greater symptoms also showed lower frontal cerebral
blood flow following acute concussion (Churchill et al., 2017). Because
fNIRS showed to be a valid tool to investigate brain oxygenation pat-
terns during postural control tasks (Basso Moro et al, 2014;
Beurskens et al., 2014; Ferrari et al., 2014; Fujimoto et al., 2014;
Fujita et al., 2016; Helmich et al.,, 2016; Herold et al., 2017;
Huppert et al., 2013; Karim et al., 2013; Karim et al., 2012; Lin et al.,
2017; Mahoney et al., 2016; Mihara et al., 2008; Takakura et al., 2015;
Wang et al., 2016), particularly in the frontal cortex as this area is
modulated by task difficulty during postural control (Basso Moro et al.,
2014; Eckner et al., 2011; Guskiewicz et al., 1997; Howell et al., 2017),
we investigate in the present study the hypothesis that athletes with
mTBI and post-concussion symptoms show decreased brain oxygena-
tion patterns in the FPC during postural control tasks that are char-
acterized by reduced sensory information such as when balancing with
closed eyes.

2. Materials and methods
2.1. Participants

62 active athletes with a history of SRC (mean age: 25.7 = 5.3
years; 22 female, 40 male; average years of sports participation:
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Table 1
Participants (*significant differences between groups).

Asymptomatic Symptomatic athletes
athletes
Number of participants 31 31
Gender (female/male) 9/22 13/18
Age 244 + 4.0 269 * 6.2
PCS score* 09 = 09 27.1 = 149
Experienced concussions 23 *+ 26 25 *+ 1.8
Time post-concussion (months) 51.1 + 56.0 27.9 * 475
Years of sport participation 7.4 = 44 10.0 = 8.0
Working memory performance 89 = 0.0 86 + 0.1
(correct answers in%)
Response times during working 981.8 = 1459 1071.7 = 162.8

memory performance
(milliseconds)*

8.7 % 6.6) from various sports (American Football, ice hockey, rugby,
boxing, handball, soccer, etc.) from local sports-clubs participated in
the study as part of a concussion assessment protocol of the German
Sports University. Written informed consent was obtained from each
participant. The local Ethics Committee of the GSU approved the study.

2.2. Clinical assessment

Participants were clinically questioned using a standardized ques-
tionnaire to obtain the athletes’ sports participation, age, education,
and the occurrence of a mild traumatic brain injury as defined by the
recent consensus statement on concussion in sport (McCrory et al.,
2013), time post-concussion, and the presence or absence of post-con-
cussive symptoms according to symptom scale used in the “Sport
Concussion Assessment Tool — 3rd edition” (SCAT3) (Guskiewicz et al.,
2013). The number of 22 symptoms was summated to a post-concussion
symptom score (PCS score), with a maximum of 132 (22 X 6). We used
a PCS score of 10 as a cut-off to differentiate between symptomatic and
asymptomatic athletes as previous studies reported an average between
8 and 10 points during baseline tests (Chen et al., 2007; Lovell et al.,
2004) (Table 1). Asymptomatic athletes were matched to symptomatic
athletes in age, gender, amount of experienced SRC, time post-con-
cussion, years of sports participation, and cognitive performance
(working memory). Le., there were no significant group differences in
chi-square tests and independent t-tests.

2.3. Neuropsychological testing

Participants performed a working memory task, which had proven
effective in the investigation of functional abnormalities of concussed
athletes (Chen et al., 2004; Helmich et al., 2015). During the working
memory task, four out of five items were presented in random order at
the center of a computer screen. After the presentation of the fourth
item, a delay of 1 s was introduced. Immediately after this delay, a test
item was presented, and the subject had to indicate whether this test
item was one of the four items presented before the delay or if the item
had not been presented. The subjects indicated their responses by
pressing a mouse button (right button = yes, left button = no). Each
subject had 1.5 s to respond, after which a new trial began. The par-
ticipants had the opportunity to practice the task before in order to
familiarize themselves with the target stimuli. Variables of the working
memory task for statistical analysis constituted the correct answers (%)
and the response times in milliseconds (Table 1).

2.4. Posturography, balance tasks and data collection

Four balance conditions (six trials per condition (two blocks with
three trials each; 10 s per trial; Fig. 1) were carried out according to
Shumway-Cook and Horak (Shumway-Cook and Horak, 1986), which
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Fig. 1. Left (a): Balance position of one individual during the unstable surface condition; top right (b): fNIRS optode placement (s1-s2: sources; d1-d6: detectors; ch1-
ch8: channels) above the frontopolar cortex of the right (RH) and left hemispheres (LH) according to the 10-20-system; bottom right (c): Experimental conditions and

block design.

examine combinations of visual and tactile manipulations during bal-
ance control: condition 1: eyes opened (c1); condition 2: eyes closed (c2).
The two conditions (cl1 and c2) were performed either on a firm
(/stable) surface or on an unstable surface: condition 3 (c3): eyes opened
and unstable surface; condition 4 (c4): eyes closed and unstable surface.
The unstable surface was created using a piece of six cm thick foam pad
("AIREX Balance-Pad“). Each balance condition comprised two blocks,
each of which included three trials (ten seconds per trial), resulting in a
total of six trials per condition. The subjects were instructed to stand
still on both feet (distance between feet: 2 cm) without losing balance in
a standardized position and posture (Fig. 1).

During balance tasks, a force plate system (,,ZEBRIS platform, type
FDM-S”, measure frequency 240 Hz) was used to register center of mass
displacement (/postural sway) by measuring ground reaction forces.
This system provides three parameters of information about the ability
to keep postural control, i.e., (i) it registers the deviations from the
Center of Pressure (CoP) by the mean length of the movement path per
time [millimeters/second] (path length, PL); PL is defined as the ab-
solute length of the CoP path movements throughout the testing period;
(ii) the second parameter surface area (SuA) [mm?] is defined as a 95%
confidence ellipse for the mean of the CoP anterior, posterior, medial
and lateral coordinates; (iii) the third parameter velocity (V) [mm/
second] represents the mean velocity during the postural control trials
per second. Mean parameters of the values of PL, SuA, and V were
exported for each subject and condition for statistical analyses.

2.5. fNIRS acquisition and analysis

Cerebral oxygenation changes were recorded during postural con-
trol tasks using a near-infrared optical tomographic imaging device
(DYNOT Imaging System, NIRx, Wavelengths 760 nm, 830 nm,
Sampling rate 7.2 Hz). Methodology and underlying physiology are

explained in detail elsewhere (Cope et al, 1988; Obrig and
Villringer, 2003). A total of 8 optodes (2 emittors, 6 detectors) were
placed above the frontopolar cortex (FPC) of each hemisphere resulting
in 8 channels of measurement (channel 1-4: FPC of the left hemisphere
(LH); channel 5-8: FPC of the right hemisphere (RH); Fig. 1). Optodes
were placed with an approximate interoptode distance of 3 cm ac-
cording to the 10-20-system (Jasper, 1958). Optodes were mounted
with a customized plastic hard shell system on the participant's head to
gain placement stability and to avoid movement artifacts.

Data were analyzed using the “nirslab” software package (NIRx
Medical Technologies, LLC). 8 channels (ch) were converted to he-
moglobin concentration changes according to Cope et al. (1988). The
,remove discontinuities “ and the ,remove spike artifacts “ algorithms
of the nirsLAB toolbox were used to correct for discontinuities and spike
artifacts in the (raw) signal (with the standard deviation threshold set
to 5). When removing spike artifacts, data was replaced by using the
“nearest signals“ function. Data were then bandpass filtered (low cut-off
frequency at 0.01 Hz / high cut-off frequency at 0.2 Hz) to eliminate the
effects of heartbeat, respiration, and low frequency signal drifts for each
wavelength. Because individuals were asked to stand still during the
entire procedure, the baseline was set to the full time course of the data
set. Block averages (10 s) of AHbO2 from each channel and condition
were then exported for statistical analyses.

2.6. Statistics

Comparisons of the mean(s) (repeated (rmANOVA) and univariate
(uniANOVA) analyses of variance) were performed using IBM SPSS
statistics (Version 25). The parameters path length (PL), parameter
surface area (SuA), and velocity (V) were used for statistical analyses of
postural control. Statistical analyses of brain oxygenation data focused
on the changes of oxygenated hemoglobin (AHbO,), because these
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appear to reflect task-related cortical activation more directly than
changes of deoxygenated hemoglobin, as evidenced by the stronger
correlation between the former and the blood-oxygenation level- de-
pendent signal measured by fMRI (Strangman et al., 2002) and by the
results of animal studies (Hoshi et al., 1985). Thus, mean brain oxy-
genation patterns (block averages of 10 s) of AHbO, were used for
statistical analyses of brain activity. The between-subjects factor group
constitutes (i) concussed athletes with a PCS score > 10 (symptomatic),
and (ii) concussed athletes with a PCS score < 10 (asymptomatic). Re-
peated within-subjects factors constitute visibility (postural control
conditions (i) with either opened eyes or (ii) closed eyes) and stability
(postural control conditions while standing (i) on a stable or (ii) on an
unstable surface). For fNIRS analyses, the additional within-subjects
factor channels (8) was statistically calculated by uniANOVA. Sig-
nificant results are reported from p < 0.05. Multiple post hoc pairwise
comparisons were corrected with Bonferroni corrections. To determine
a relationship of postural control, brain oxygenation, the PCS score, and
post-concussion symptoms, we calculated a correlation (using the
Pearson's correlation coefficient, r,) and (stepwise) regression analyses.
Because the aim of the present paper is to better understand differences
between symptomatic and asymptomatic athletes, we focus onto the
effects between groups in the results section.

3. Results
3.1. Group effects

2.1.1. Participants

Significant differences between groups were found for the PCS score
(t(60) = —9.703, p < 0.001) and the response times during working
memory performances (t(60) = —2.289, p < 0.05; Table 1). Sympto-
matic athletes (Mean [M] = 27.1 = 14.9) showed significantly higher
PCS scores than asymptomatic athletes (M = 0.9 * 0.9). Furthermore,
symptomatic athletes (M = 1071.7 * 162.8) showed significantly
increased response times during the working memory task when com-
pared to asymptomatic athletes (M = 981.8 *= 145.9).

2.1.2. Balance performance

The rmANOVA revealed for the parameter surface area (SuA) (but
neither for path length nor velocity) significant differences between
groups (F(1, 60) = 7.874,p < 0.01, nz = 0.116), an interaction effect of
group x visibility (F(1, 60) = 7.093, p < 0.05, n? = 0.106), group x
stability (F(1, 60) = 6.646, p < 0.05, n? = 0.100), and of group X Vis-
ibility x stability (F(1, 60) = 5.096, p < 0.05, n> = 0.078; Table 2).

Post-hoc comparisons of the group effect revealed a significantly

Table 2
Overview of the (significant) results (mean * standard error) between groups.

Postural control Asymptomatic athletes ~ Symptomatic athletes

SuA 497.4 *+ 61.6 741.9 = 61.6
SuA sighted 164.8 = 27.6 248.7 £ 27.6
SuA eyes closed 829.9 * 102.3 1235.1 * 102.3
SuA stable 82.6 = 14.4 141.4 + 14,4
SuA unstable 912.1 =+ 1121 1342.4 += 1121
SuA eyes closed / stable 276.6 = 48.6 423.1 *= 48.6
SuA sighted / unstable 1122 * 21.9 2085 * 21.9
SuA (mmz) eyes closed / 1547.6 = 189.4 2261.6 = 189.4

unstable

Brain oxygenation Asymptomatic athletes Symptomatic athletes

AHbO, (ch1: LH FPC) 0.000016 =+ 0.000052 —0.000058 * 0.000052
AHbO,, (ch4: LH FPC) 0.000147 = 0.000043 0.000018 =+ 0.000043
AHbO, (ch6: RH FPC) 0.000029 + 0.000043 —0.000031 *+ 0.000043

Values presented are surface area, SuA (mm?); brain oxygenation (changes of
oxygenated hemoglobin, AHbO,) within channels (ch) 1,4, and 6; left hemi-
sphere, LH; frontopolar cortex, FPC; right hemisphere, RH.
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Fig. 2. Mean surface areas (mm?) of symptomatic and asymptomatic athletes
during balance conditions with eyes opened vs. eyes closed.

greater SuA for symptomatic athletes when compared to asymptomatic
(p < 0.01). Post-hoc comparisons of the interaction effect of group x
visibility revealed significantly greater SuA for symptomatic athletes
when compared to asymptomatic during the sighted (p < 0.01) as well as
during the condition with closed eyes (p < 0.01; Fig. 2). Post-hoc
comparisons of the interaction of group x stability revealed significantly
greater SuA for symptomatic athletes when compared to asymptomatic
during the stable (p < 0.01) as well as during the unstable conditions
(p < 0.01). Post-hoc comparisons of the interaction of group x stability x
visibility revealed significantly greater SuA for symptomatic athletes
when compared to asymptomatic during the stable condition with closed
eyes (p < 0.01), and during the unstable condition with opened
(p < 0.05) and closed eyes (p < 0.01).

2.1.3. Correlation of balance performance and the PCS score

There is a significant positive correlation between the (increased)
PCS score and worse postural control by increased mean surface areas
during the eyes opened and stable surface condition (r5(62) = 0.306,
p < 0.05), during the eyes closed and stable surface condition
(rs(62) = 0.376, p < 0.01), during the eyes opened and unstable surface
condition (rg(62) = 0.282, p < 0.05), and during the eyes closed and
unstable surface condition (rs(62) = 0.275, p < 0.05). A following
stepwise linear regression analysis with the PCS score as the dependent
variable and the significantly correlated SuA parameters as in-
dependent variables revealed significance (F(1, 60) = 9.893,p < 0.01,
R®> = 0.142), i.e., the SuA during the eyes closed and stable surface
condition significantly predicted the PCS score (f = 0.376, t = 3.145,
p < 0.01; Fig. 3).

2.1.4. Correlation of balance performance and response times

It exists a significant positive correlation between (increased) mean
surface area during the eyes closed condition and increased) response
times during the working memory task (r;(62) = 0.279, p < 0.05).

2.1.5. Brain oxygenation

The rmANOVA revealed a significant effect for the interaction of
group x visibility (F(8, 53) = 3.071, p < 0.05, n°> = 0.317). The
uniANOVA showed significant effects above the right and left hemi-
spheric (LH) frontopolar cortex (FPC) for the interaction of group x
visibility for channel 1 (chl; LH FPC; F(1, 60) = 4.799, p < 0.05,
n2 = 0.074), ch4 (LH FPG; F(1, 60) = 7.215, p < 0.05, n° = 0.107;
Fig. 4), and channel 6 (RH FPC; marginally significant, F(1,
60) = 3.394, p = 0.07, 1> = 0.05; table 2). Post-hoc comparisons
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revealed reduced AHbO, in symptomatic when compared to asympto- 2.1.6. Correlation of brain oxygenation and PCS score

matic athletes during the condition with closed eyes in all three chan- It exists a significant negative correlation between the (increased)
nels, however, only in channel 4 post-hoc comparisons reached sig- PCS score and the (decreased) brain oxygenation during the eyes closed
nificance (p < 0.05). condition in channel 4 (r,(62) = —0.345, p < 0.01; Fig. 5). A following

stepwise linear regression analysis with the PCS score as the dependent
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(channel 6) between symptomatic and asymptomatic groups during balance conditions with eyes closed.
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variable and all fNIRS channels as independent variables revealed sig-
nificance (F(1, 60) = 8.572, p < 0.01, R? = 0.125), i.e., left hemi-
spheric FPC (channel 4) during the eyes closed and stable surface con-
dition significantly predicted the PCS score (f = —0.354,t = —2.928,
p < 0.01).

2.1.7. Correlation of brain oxygenation and post-concussion symptoms

A following correlation analysis of the AHbO, in channel 4 during
the eyes closed and stable surface condition and each post-concussion
symptom revealed significance, i.e., the data showed a significant ne-
gative correlation between (decreased) AHbO, in the LF FPC (ch4) and
the (increased) symptoms headaches (r{(62) = —0.461, p < 0.001),
pressure in the head (rs(62) = —0.276, p < 0.05), sensitivity to light
(rs(62) = —0.316, p < 0.05), sensitivity to noise (rs(62) = —0.329,
p < 0.01), difficulty remembering (rs(62) = —0.309, p < 0.05), fatigue
or low energy (r5(62) = —0.267,p < 0.05), confusion (rs(62) = —0.276,
p < 0.05), difficulty falling asleep (rs(62) = —0.376, p < 0.01), irrit-
ability (rs(62) = —0.352, p < 0.01), and sadness (r5(62) = —0.347,
p < 0.01). A following stepwise linear regression analysis with AHbO,
in ch4 during the eyes closed and stable surface condition as the de-
pendent variable and the significantly correlated symptoms as in-
dependent variables revealed significance (F(2, 59) = 12.327,
p < 0.001, R? = 0.295), i.e., the (increased) symptoms headaches
(B = —0.421,t = —3.819, p < 0.001) and sadness (f = —0.290,
t = —2.627,p < 0.05) significantly predicted decreased AHbO, in LF
FPC (ch4) during the eyes closed and stable surface condition.

4. Discussion
The present study compared postural control performances in con-

cussed athletes with and without post-concussion symptoms by ana-
lyzing postural sway and functional brain oxygenation in frontopolar

cortices using fNIRS. Symptomatic athletes presented increased pos-
tural sway (/surface areas (SuA)) when compared to asymptomatic
athletes overall balance conditions as well as during the eyes closed
condition, the unstable surface condition, and the combination of closed
eyes and unstable surface condition. The SuA during the eyes closed and
stable surface condition showed to predict the PCS score. The analysis of
the fNIRS data revealed that symptomatic athletes are characterized by
a lack of activation (i.e., reduced changes of AHbO,) in frontopolar
cortices when compared to asymptomatic athletes during postural
control with eyes closed on a stable surface. The symptoms headaches
and sadness significantly predicted reduced AHbO, in frontopolar cor-
tices when controlling posture with closed eyes.

4.1. Postural control

In line with previous findings (Kleffelgaard et al., 2012;
Purkayastha et al., 2019; Schmidt et al., 2018), the present study
showed that symptomatic athletes present balance deficits when com-
pared to asymptomatic athletes, particularly during conditions with
eyes closed. Guskiewicz et al. (1997) pointed out that concussed ath-
letes may suffer from sensory integration problems. Because concus-
sions have been associated to a decline in the randomness of center of
pressure oscillations (De Beaumont et al., 2011; Cavanaugh et al.,
2005), it has been also assumed that the concussive injury constrains
the output of the postural control system (Cavanaugh et al., 2006).
Thus, the impaired control of balance with closed eyes of symptomatic
athletes might be grounded in a deficit of integrating sensory input,
particularly when visual information is missing, which then results in
impaired motor output control.

The present analyses also revealed that symptomatic athletes re-
spond slower (/increased response times) during a working memory
task when compared to the asymptomatic group. Increased symptoms
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post concussion have been previously been associated to increased re-
sponse times (Chen et al., 2007; Eckner et al., 2011). Furthermore,
increased postural sway during eyes closed conditions and increased
response times during working memory performances are positively
correlated. Data from studies about neurodegenerative disorders also
showed a relationship of reduced response times (during an auditory
stepping task) and postural control deficits (VanderVelde et al., 2005).
Because neurodegeneration following repetitive concussions has been
related to motor deficits and cognitive dysfunction (Baugh et al., 2012),
the present data indicates that symptomatic athletes might be particu-
larly impaired in the time to adapt to altered sensory manipulations
during postural control tasks. Further investigations must therefore
differentiate whether alterations of postural control are particularly
related to decreased reaction times.

The analysis of the fNIRS data revealed that symptomatic athletes
are characterized by a lack of activation (i.e., reduced changes of
AHbO, when compared to asymptomatic athletes) in frontopolar cor-
tices when performing postural control tasks with closed eyes. When
balancing with closed eyes, the attention of an individual shifts from
external reference points towards the perception of proprioceptive in-
formation from the own body (El Shemy, 2018 Dec). Marx et al. (2003)
postulated that during eyes closed conditions, the mental activity of an
individual shifts from an “exteroceptive” state during eyes opened
conditions to an “interoceptive” state that is characterized by imagi-
nation and multisensory activity that also depends on information from
frontopolar cortices. Thus, individuals must adapt to a novel situation
and control posture based on altered proprioceptive inputs. As it has
been postulated that concussed athletes may suffer from balance pro-
blems during situations with altered sensory inputs (Guskiewicz et al.,
1997), the reduced brain oxygenation in the FPC of individuals may
characterize the deficit of shifting the focus from visual inputs towards
proprioception. The FPC contributes to the exploration and rapid ac-
quisition of novel behavioral options, which constitutes an essential
aspect of complex, higher order behavior (Boschin et al., 2015). FPC-
lesioned monkeys remained more focused than control monkeys in
exploiting a current task than when they faced newly introduced in-
terruptions by a secondary task suggesting that the FPC is involved in
redistribution of cognitive resources from the current task to novel si-
tuations (Mansouri et al., 2015). Furthermore, the prefrontal cortex
showed to be involved in active controlled processing for the dis-
ambiguation of vibrotactile information in short-term memory
(Kostopoulos et al., 2007). Thus, the FPC seems to critically contribute
to posture control when integrating (proprioceptive) information
during altered sensory inputs. The decreased oxygenation of sympto-
matic athletes therefore indicates that those individuals suffer from the
inability to adapt to postural control conditions with altered sensory
inputs such as balance conditions with closed eyes.

4.2. Post-concussion symptoms and postural control

Further analyses revealed that increased self-reported symptoms
such as headaches and sadness predicted decreased brain oxygenation
patterns in frontopolar regions during postural control conditions with
closed eyes. Symptoms of fatigue or low energy have been reported
previously to be related to balance deficits (Kitaoka et al., 2004;
Lundin et al., 1993). It has also been documented that postural control,
headaches, and concussions are related by the fact that concussed
athletes with post-traumatic headache experience greater declines in
balance than concussed athletes without posttraumatic headache
(Register-Mihalik et al., 2008). Individuals affected by chronic tension-
type headache are characterized by increased body sway particularly
during balance tasks with eyes closed (Giacomini et al., 2004). Thus,
when athletes suffer from post-concussion symptoms such as head-
aches, the present data indicate that those athletes are characterized by
decreased brain oxygenation when controlling posture with closed eyes.
Abnormal somatosensory afferents arising from the muscle spindles,
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joint and pain receptors, or nerve roots of the cervical spine can con-
tribute to cervicogenic headache (Biondi, 2005; Kristjansson and
Treleaven, 2009) and vertigo or dizziness (Kristjansson and
Treleaven, 2009). Because concussive injuries can result in abnormal
proprioceptive feedback (Mallinson and Longridge, 1998 Nov;
Rubin et al., 1995), it has been assumed that individuals with post-
traumatic headache experience increased balance deficits because
sensory inputs are disrupted (Register-Mihalik et al., 2008). In fact,
concussed athletes may suffer from balance problems during conditions
with altered sensory inputs (Guskiewicz et al., 1997). Thus, decreased
frontopolar brain oxygenation during postural control tasks with closed
eyes points out that symptomatic athletes are impaired in the integra-
tion of sensory information to control posture, particularly when suf-
fering from post-concussion headaches. However, the fact that mTBI
increases the likelihood of depression and post concussion syndrome
(Lange et al., 2011; Vanderploeg et al., 2007), i.e., mental disorders that
are also commonly accompanied by symptoms such as sadness and
headaches, must be taken into account as depressive patients have been
characterized by decreased brain oxygenation in the frontal cortex as
well (Schecklmann et al., 2011). Thus, future studies must elaborate
whether decreased oxygenation patterns in the frontal cortex char-
acterize concussed athletes with long-term impairments or if this pat-
tern of brain oxygenation is related to the progression of a depressive
disorder.

4.3. Practical implications

Because sport-related concussions and potential long-term effects
are a major concern in sports (McCrory et al., 2013), it is of relevance to
understand post-concussion outcomes on health status of athletes in
order to make decisions about the return-to-play and / or treatment
strategies. =~ Recent development of portable instruments
(Scholkmann et al., 2014) allow to address the potential application of
fNIRS immediately after concussive incidents on site of sport events.
This offers the unique possibility to assess brain oxygenation im-
mediately post-concussion for potential clinical diagnosis. However,
because clinical decisions have to be made for each athlete individually,
a variety of issues must be taken into account when using NIRS clini-
cally (Greenberg et al., 2017). NIRS measurements concern light ab-
sorption of chromophores from a small segment of tissue within the
path of emitted light and its sensors, i.e., the data provides merely in-
formation  about localized  regional brain  oxygenation
(Scholkmann et al., 2014). Secondly, alterations in intra- and extra-
cranial contents may affect readings (Gagnon et al., 2014;
Tachtsidis and Scholkmann, 2016), however, at this point it is unknown
what clinical impact extracranial contamination has on the use of NIRS
devices (Greenberg et al., 2017). Although the clinical implications of
these apparent inaccuracies require further study, they suggest that the
brain oxygenation measurements using fNIRS do not solely reflect brain
activation alone. Extra cerebral confounders can be minimized by
several approaches such as for example multi-distance optode mea-
surements (Gagnon et al., 2014; Tachtsidis and Scholkmann, 2016) or
particular experimental designs (Tachtsidis and Scholkmann, 2016). To
minimize confounders in the present study, we applied a block design
contrasting between experimental tasks of similar characteristics that
advances statistical calculations (Tachtsidis and Scholkmann, 2016). In
view of those issues, the present fNIRS data indicate that symptomatic
athletes present a deficit of activating neural structures that are re-
levant to control posture during altered sensory input, particularly
during closed eyes conditions. Thus, symptomatic athletes might be
particularly impaired to adapt to postural control conditions that are
characterized by altered sensory inputs. Post-concussion headaches
seem to particularly predict whether an individual suffers from de-
creased brain oxygenation patterns. Medical personal should therefore
be aware that athletes who suffer from headaches might have deficits of
integrating sensory information that is necessary to control posture.
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