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Abstract

As the number of known proteins has expanded, how to accurately identify DNA binding pro-

teins has become a significant biological challenge. At present, various computational meth-

ods have been proposed to recognize DNA-binding proteins from only amino acid

sequences, such as SVM, DNABP and CNN-RNN. However, these methods do not con-

sider the context in amino acid sequences, which makes it difficult for them to adequately

capture sequence features. In this study, a new method that coordinates a bidirectional

long-term memory recurrent neural network and a convolutional neural network, called

CNN-BiLSTM, is proposed to identify DNA binding proteins. The CNN-BiLSTM model can

explore the potential contextual relationships of amino acid sequences and obtain more fea-

tures than can traditional models. The experimental results show that the CNN-BiLSTM

achieves a validation set prediction accuracy of 96.5%—7.8% higher than that of SVM,

9.6% higher than that of DNABP and 3.7% higher than that of CNN-RNN. After testing on

20,000 independent samples provided by UniProt that were not involved in model training,

the accuracy of CNN-BiLSTM reached 94.5%—12% higher than that of SVM, 4.9% higher

than that of DNABP and 4% higher than that of CNN-RNN. We visualized and compared the

model training process of CNN-BiLSTM with that of CNN-RNN and found that the former is

capable of better generalization from the training dataset, showing that CNN-BiLSTM has a

wider range of adaptations to protein sequences. On the test set, CNN-BiLSTM has better

credibility because its predicted scores are closer to the sample labels than are those of

CNN-RNN. Therefore, the proposed CNN-BiLSTM is a more powerful method for identifying

DNA-binding proteins.

Introduction

As a part of the protein family, DNA binding proteins play an important role in RNA editing,

methylation and other biological processes. [1]. According to current research, DNA can bind

to more than 3% of eukaryotic and prokaryotic proteins [2,3]. In cellular function research,

the ability to recognize DNA-binding proteins is a highly meaningful task [4].
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In recent decades, some biological experimental approaches have been proposed to dis-

criminate among DNA-binding proteins. For example, "protein blotting" uses SDS-polyacryl-

amide gel to detect DNA-binding proteins [5]. Hugh et al. identified DNA binding proteins by

electrostatic potential and structural units [6]. However, these biological experimental

approaches often require considerable time and involve expensive materials; thus, computa-

tional methods have advantages compared to experimental methods for identifying DNA

binding proteins from massive amounts of data [7].

Computational approaches have advantages in processing sequential data, and there is

growing evidence that predicting DNA-binding proteins solely from primary sequences is

effective compared with the experimental methods [8–10]. Many computational approaches

for predicting DNA binding proteins by primary sequences have been introduced, and

machine learning and deep learning methods are among the best.

Models such as the support vector machine (SVM), random forest and other algorithms

that belong to the machine learning category have been used to predict DNA binding proteins,

[11]. For example, Cai et al. used nonlinear characteristic sets in amino acid sequences to predict

DNA-binding proteins using an SVM [12]. Some methods that combine machine learning with

mathematical techniques have also been created. For example, by combining the random forest

algorithm with the "gray model", Lin et al. created a DNA-binding protein recognizer called

iDNA-Prot [13], which reduced the computational time and is thus suitable for large-scale anal-

ysis. Wang et al. used normalization, discrete wavelet alteration and cosine alteration to address

sequence features, and they used the processed feature set to train an SVM to obtain the predic-

tors of DNA binding proteins [14]. To better capture sequence features, Zou et al. used features

from four types of proteins to train an SVM classifier that used three diverse approaches in the

eigen transformation process [15]. Rahman et al. proposed a new computational method to

identify DNA binding proteins that used a random forest to recognize sequence characteristics

and an SVM as the classifier [16]. Chowdhury et al. proposed a new method called iDNAProt-

ES, which trains an SVM to obtain a classification model based on the evolutionary messages

and structural characteristics of proteins [17]. Liu et al. constructed a modular model framework

by combining multi view features and classifiers; the features come from the sequence structure,

physical and chemical properties, evolutionary messages and predictive structure messages [18].

This framework can flexibly coordinate different prediction models and perform well on data-

sets. Adilinaet al. improved the method for extracting sequence features by adopting grouping

and recurrent selection to process the obtained feature sets. Their approach reduced the overfit-

ting degree of the model [19]. With the development of network technology, some web imple-

mentations for discriminating DNA-binding proteins have been created that can provide online

predictive services. One such web site is iDNA-Prot|dis, which incorporated an SVM and link-

age information of the primary protein sequence [20] to improve the predictive accuracy of

DNA-binding proteins compared to previous methods. Ma et al. designed a more accurate

DNA-binding proteins predictor, DNABP, by adopting the random forest algorithm and con-

sidering the physical and chemical characteristics of amino acids [21].

The traditional machine learning methods have shown unmatched superiority for solving

small-scale data identification problems [22,23]. However, the traditional machine learning

methods are difficult to apply to massive samples [24]. Fortunately, the emergence of deep

learning has solved the dilemma of traditional machine learning. Deep learning is a new tech-

nology based on neural network architecture that has been highly successful at image recogni-

tion, voice recognition and many other tasks. [25–27]. Importantly, deep learning can be

applied to large amounts of sample data.

Some scholars have perceived the advantages of deep learning methods and applied them to

predict DNA-binding proteins [7,28,29]. Delong et al. were the first to show that protein
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features can be identified by deep learning; this work provided the original idea for the predic-

tion of DNA-binding proteins [28]. Zeng et al. went further, using a convolutional neural net-

work (CNN) to predict DNA-binding proteins [29]. Qinhu et al. proposed a new method

based on a CNN combined with instance learning to identify DNA binding proteins; this

method fully considers the inherent weak supervision information of sequences to improve

the effect [30]. Recently, Qu et al. combined a CNN with a recurrent neural network

(CNN-RNN) to predict DNA-binding proteins [7]. Previous work has improved the flexibility

with which features of protein sequences can be extracted. Compared with the machine learn-

ing methods, the application of deep learning not only made it possible to use millions of pro-

tein sequences for model training but also improved the prediction accuracy by approximately

5.9 percentage points.

However, it is worth noting that neither the CNN used in [29] nor the recurrent neural net-

work used in [7] take context into account when processing sequence information. From pre-

vious works other than protein sequences, contextual relationship has been found to be

important features of sequence information [31]. These considerations inspired us to wonder

whether amino acid sequence also contain contextual features. If contextual relationships exist

in amino acid sequences, capturing those features might improve the ability to predict DNA-

binding proteins.

Regarding the above question, some other studies on the context of amino acid sequences

have also inspired us. Ashraf et al. found that the contextual relationships among amino acid

sequences are important sequence features and have a positive effect when predicting protein

structures [32,33]. The early GOR method has achieved preliminary success in second level

architecture prognosis by using alternation statistics based on context and information theory.

[34]. Starosta et al. found that a change in the context of consecutive proline triggers (PPP) in

both the NlpD and LepA sequences had an important impact on its function, as shown in Fig

1 [35]. These studies imply that contextual relationships do exist in amino acid sequences;

thus, exploiting this information will contribute to improving the prediction accuracy of

DNA-binding proteins.

Assuming that there is a primary sequence of a protein S = (ALQPGGS. . .), the contextual

features of S can be expressed as follows:

FðSÞ ¼
Xn

i¼1

Xn

j¼1

comðSi; SjÞði 6¼ jÞ:

In the above formula, n represents the length of the sequence, and Si and Sj represent the i

and j elements in the sequence. In addition, com(Si,Sj) represents the functional affinity scores

Fig 1. Changes in the context of PPP in both the NlpD and LepA sequences had an important impact on its function.

https://doi.org/10.1371/journal.pone.0225317.g001
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of the two elements. The affinity scores represent the functional information expressed by

amino acids in a specific context. The sum of the affinity scores between different amino acids

in the whole sequence constitutes the contextual features.

To capture the contextual features of amino acid sequences, it is helpful to use the bidirec-

tional long short-term memory recurrent neural network (Bi-LSTM), which is a recent deep

learning network development [36–38]. A Bi-LSTM effectively captures the contextual infor-

mation of statements or sequences. which can potentially improve contextual feature extrac-

tion and thus achieve a better recognition effect for DNA-binding proteins.

In this paper, we apply a new deep learning model, named CNN-BiLSTM, to identify

DNA-binding proteins. The CNN improves model robustness and reduces the error by using

the backpropagation algorithm and loss function, while the Bi-LSTM mines the relationships

between the contexts in both the forward and backward directions. CNN-BiLSTM includes

two convolutional layers, two pooling layers and a Bi-LSTM recurrent neural network layer. In

this model, an amino acid can be considered a “word” in a sequence, and multiple amino acids

are considered to be a “phrase”. The roles of these “words” or “phrases” are influenced by the

context in which they are located, just as a word has different meanings in different contexts,

as shown in Fig 2.

Compared with the preceding models for identifying DNA binding proteins, our method

captures the contextual features of amino acid sequences and exhibits better performance. The

experiments show that our method is more robust than are previous methods in terms of its

ability to generalize from the training dataset; consequently, it is more accurate at predicting

DNA-binding proteins.

Materials

The Universal Protein Resource (UniProt) is a repository that contains a large number of pro-

tein sequences, and the raw dataset was manually annotated and reviewed [39]. We obtained

the sequences of DNA binding proteins from UniProt. Our use of the UniProt website con-

formed with its terms of use.

In the process of extracting protein data from UniProt, we excluded sequences shorter than

50 and longer than 1,280; we need to limit the input data length to the deep learning model

because a longer length requires more computing resources needed. Most of the proteins in the

database are in the 50–1280 range. Therefore, to collect data of different lengths effectively, we

chose this standard. Finally, we obtained 17,151 positive samples from UniProt, all of which

were marked as DNA binding protein sequences. Simultaneously, we obtained 50,000 negative

samples from UniProt, none of which were marked as DNA binding protein sequences. For

these positive and negative samples, we randomly selected 85% for training and used the

remaining 15% as validation sets for model training. (see Table 1 for specific circumstances).

The number of positive and negative samples in the table above are not equivalent. There-

fore, we established a balanced dataset to carry out comparative experiments. The training

Fig 2. An amino acid sequence can be considered a sentence.

https://doi.org/10.1371/journal.pone.0225317.g002
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data include both positive and negative samples of 14,578 protein sequences, and the valida-

tion set data included 2,573 protein sequences. The comparative experiment is helpful for

investigating the effect of having balanced positive and negative samples on the prediction

accuracy. Additionally, to confirm the universality of CNN-BiLSTM, we adopted the datasets

used in [40] for testing. In addition, we used 32,000 samples from [7] as training sets to com-

pare the differences in the predictive scores of different models on independent sample sets.

(see Table 2 for the specific circumstances).

To test the model generalizability, we have also prepared a tagged test set whose data are

not used during model training. This dataset included 500 units with 500 positive and 500 neg-

ative samples. At the same time, we also prepared a large test set with 10,000 units to test the

model effect on a large dataset. The test results of the model on these sets can reflect the real

prediction level of the model. (see Table 3 for the specific circumstances).

Methods

Deep learning is both a set of algorithms and a branch of machine learning. Deep learning can

approximate complex functions through multiple neural network layers and represent abstract

data. Deep learning uses the backpropagation algorithm to update the internal model weights,

and deep learning can discover the characteristics of complex data and pass them on to the

next layer of the network [41].

A CNN can process data in matrix form well and extract its features effectively through fea-

ture mapping [42]. Unlike a CNN, RNN is designed to address sequence information [43].

However, RNNs suffer from time lag problems during training because they often encounter

disappearing gradient or gradient explosion problems during training.

Bidirectional long-term memory recurrent neural network

The long short-term memory recurrent neural network, first proposed by Hochreiter &

Schmidhuber in 1997, was originally designed to address long time lag problems in RNNs

[44]. Sometimes, however, predictions need to be determined by considering both previous

and subsequent inputs. Therefore, Zhang et al. proposed the bidirectional long short-term

memory network to process sequence information [45]. The network is first calculated for-

ward from time 1 to time t in the forward layer. The output of the hidden layer at each time-

point is obtained and saved, as shown in Fig 3. Then, in the backward layer, the outcome of

Table 1. Unbalanced dataset for model training.

Dataset Positive Negative Total

Original set 17,151 50,000 67,151

Training set (85%) 14,578 42,500 57,078

Validation set (15%) 2,573 7,500 10,073

https://doi.org/10.1371/journal.pone.0225317.t001

Table 2. Balanced experiment dataset for model training.

Dataset Positive samples Negative samples Total

Original set 17,151 17,151 34,302

Training set 14,578 14,578 29,156

Validationt set 2,573 2,573 5,146

Arabidopsis 100 100 200

Dataset from the literature 16,000 16,000 32,000

https://doi.org/10.1371/journal.pone.0225317.t002
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the hidden layer at each time is obtained and saved by the reverse calculation, from time t to

time 1. Finally, the output takes into account the results of both the forward layer and the back-

ward layer.

Deep learning model

There are 20 amino acids that make up proteins. Each amino acid is represented by a capital

letter [46]. We use different numbers to represent different types of amino acids. (see Fig 4 for

details).

The deep learning model is composed of the following four parts: a coding layer, an embed-

ding layer, a convolutional layer and a Bi-LSTM layer. The coding layer represents each amino

acid as a particular number. The embedding layer translates the amino acid sequences into

continuous vectors. The convolution layer consists of two convolutions and two max pooling

operations. The goal of the Bi-LSTM is to grasp the contextual features of amino acid

sequences. (see Fig 5 for the specific circumstances).

Similar to the use of the deep learning method in the field of image recognition, we use fil-

ters in the convolutional layer to obtain the features of protein sequences and further extract

their main features in the pooling layer. Then, we utilize the Bi-LSTM to acquire the contextual

features of amino acid sequences. In this work, an amino acid sequence is treated as a complete

sentence, and each amino acid is treated as a word. We not only capture the characteristic

information of the entire sequence but also capture the effects of the contextual features of

sequences on amino acid combinations. All the information obtained by our model serves as a

predictor of DNA-binding proteins.

The model execution process

To clarify the above process, we take the sequence Seq = MAAITIAN as an example input and

illustrate its flow through the layers. (see Fig 6 for details).

Table 3. Test set.

Dataset Positive Negative Total

Test set (500) 500 500 1,000

Test set (10,000) 10,000 10,000 20,000

https://doi.org/10.1371/journal.pone.0225317.t003

Fig 3. Bi-LSTM structure.

https://doi.org/10.1371/journal.pone.0225317.g003
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Note that the maximum length of protein sequences in the dataset used in this paper is

1,280 because the length range of most of the protein sequences in our dataset is 50–1280. Dur-

ing the coding process, sequences shorter than 1,280 are zero-filled at the end to keep all the

coded sequences aligned. To simplify this concept, in Fig 6, we assume that the maximum

sequence length is 9.

Thus, during coding, the sequence Seq becomes a list of numbers after passing through the

coding layer, as shown in (1).

Seq1 ¼ EncodingðSeqÞ ¼ ð11; 1; 1; 8; 17; 8; 1; 12Þ ð1Þ

Fig 4. Amino acid encoder.

https://doi.org/10.1371/journal.pone.0225317.g004

Fig 5. Model.

https://doi.org/10.1371/journal.pone.0225317.g005
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Next, the sequence is transformed into a multidimensional matrix, as shown in (2).

Seq2 ¼ EmbeddingðSeq1Þ

0:3 � 0:3 0:7 0:9 0:1 0:2 0:9 0:8

0:1 0:3 0:6 � 0:5 0:1 0:9 0:1 � 0:2

0:2 � 0:5 0:3 0:7 � 0:6 0:4 0:2 0:1

0:6 0:2 0:5 � 0:6 0:2 � 0:8 0:6 � 0:1

0:3 0:8 � 0:7 0:6 0:6 0:4 � 0:2 0:1

� 0:8 � 0:3 0:2 0:1 � 0:6 � 0:8 0:3 0:7

0:1 � 0:2 0:3 0:8 � 0:6 � 0:4 0:1 � 0:2

0:6 � 0:9 0:2 � 0:9 0:2 0:1 � 0:3 0:8

0 0 0 0 0 0 0 0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð2Þ

In the convolutional layer, we use the filter matrix to scan Seq2 and obtain Seq3, which is

also a matrix, as shown in (3) and (4).

Matrixðf ilterÞ ¼

0:2 0:2 � 0:3 0:8 0:5 0:3 0:2 � 0:2

0:1 0:3 � 0:3 0:6 � 0:6 0:3 � 0:2 0:3

0:8 � 0:2 0:3 � 0:5 0:5 0:3 0:2 0:1

2

6
4

3

7
5 ð3Þ

Fig 6. Embedding and convolution.

https://doi.org/10.1371/journal.pone.0225317.g006
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Seq3 ¼ ConvðSeq2Þ ¼

0:56

0:67

0:28

0:38

0:30

0:65

0:27

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð4Þ

In the pooling layer, we adopt the max pooling method. This method adopts the maximum

value of two numbers as their representative, as shown in (5).

Seq4 ¼ PoolðSeq3Þ ¼

0:67

0:38

0:65

0:27

2

6
6
6
6
4

3

7
7
7
7
5

ð5Þ

The Bi-LSTM layer computes Hid = (h1,� � �,ht) and Out = (o1,� � �,ot) for the input Seq4 =

(s1,� � �,st), iterating the formulas below from t = 1 to T, as shown in (6) and (7). (see Fig 7 for

details).

ht ¼ ActðWshht þWhhht� 1 þ BiahÞ ð6Þ

ot ¼Whoht þ Biao ð7Þ

Wsh is the weight matrix between the input and intermediate layer, Biah is the bias vector

for intermediate layer vectors, and Act is a nonlinear activation function. Finally, for a given

sequence Seq, we use the function F(Seq) to calculate its score to determine whether it is a

DNA-binding protein, as shown in (8).

FðSeqÞ ¼ Bi � LSTMðCNNðEmbeddingðEncodingðSeqÞÞÞÞ ð8Þ

We implemented the method on the Keras platform [47]. The laboratory protocols for this

study are available at (http://dx.doi.org/10.17504/protocols.io.2rdgd26) and that site contains both

the tools and the steps required for the experiment. All the source code and data used in this study

are available from the Figshare server at (https://doi.org/10.6084/m9.figshare.8131244).

Results and discussion

Program architecture

Based on the method mentioned above, we developed our program on the Keras platform and

used its functions to construct our program architecture. (see Fig 8 for details).

Experimental setup and results

We used both a balanced dataset and unbalanced dataset in our experiments. We also used cross-

validation methods to train the model. Here, K represents the proportion of training set data to

total data in the training model, while 1-K represents the proportion of the validation set data to

Predicting DNA-binding proteins based on contextual features in amino acid sequences
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the total data. For each experiment, we checked the performance of the model on the validation

set under three different conditions: k = 0.85, k = 0.8 and k = 0.9 and found that the model fits the

samples better and predicts the sequences more accurately when k = 0.85. (see Table 4 for details).

The validation accuracy (Validation-Acc) by the best model of the balanced experiment is

94.6%. The test accuracy (Test-Acc) of the model was 94.1% for the 500-unit test set (500

Fig 7. Bi-LSTM layer.

https://doi.org/10.1371/journal.pone.0225317.g007

Fig 8. Program architecture.

https://doi.org/10.1371/journal.pone.0225317.g008
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positive samples and 500 negative samples) and 94.5% for the 10,000-unit test set (10,000 posi-

tive samples and 10,000 negative samples). For the unbalanced experimental group, the Vali-

dation-Acc of the best model is 96.5%. This model achieved a Test-Acc of 90.4% on the

500-unit test set and 90.7% on the 10,000-unit test set. (see Table 5 for details).

In the balanced experiment, the model Test-Acc on the test samples is highly similar to its

Validation-Acc. This result shows that the model trained by the balanced dataset exhibits

almost no overfitting, and its predictions are both sensitive and accurate. On the unbalanced

experiments, the Validation-Acc of the model was higher than that on the balanced experi-

ments, but it performed worse on the test samples. This result indicates that the model trained

on the unbalanced data has a slight overfitting phenomenon; thus, its prediction ability is

weaker than the model trained on the balanced data.

Comparison of the results of different models

We also compared other models for predicting DNA binding proteins with the model pro-

posed in this paper [7,21, 48,49]. Judging from the results of different experiments, the Valida-

tion-Acc of CNN-BiLSTM is 96. 5%—7.8% higher than that of SVM, 9.6% higher than that of

DNABP and 3.7% higher than that of CNN-RNN, respectively. (see Table 6 for details).

The results in Table 6 show that the proposed CNN-BiLSTM is more capable of capturing

protein sequence features and fitting data than are other models.

When tested on the test samples (Arabidopsis) in the literature [40], the Test-Acc of

CNN-BiLSTM reached 93%—12% higher than that of SVM, 19% higher than that of DNA

Binder and 4% higher than that of CNN-RNN. (see Table 7 for details).

Table 4. Experiment with different training set proportions.

Experimental category K

Balanced experiment 0.85

0.8

0.9

Unbalanced experiment 0.85

0.8

0.9

https://doi.org/10.1371/journal.pone.0225317.t004

Table 5. Validation and test results.

Experimental category Validation-Acc Test samples Test-Acc

Balanced experiment 94.6% 1,000 94.1%

20,000 94.5%

Unbalanced experiment 96.5% 1,000 90.4%

20,000 90.7%

https://doi.org/10.1371/journal.pone.0225317.t005

Table 6. Validation-Acc of different models.

Model category Validation-Acc

SVM 88.7%

DNABP 86.9%

CNN-RNN 92.8%

CNN-BiLSTM 96.5%

https://doi.org/10.1371/journal.pone.0225317.t006
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In addition, in order to further verify our model, we used independent test samples in liter-

atures [14,16,17,19] to test our model. Four methods are used to estimate the performance of

our method, including Accuracy, Recall, Specificity, and MCC (Mathew’s correlation coeffi-

cient). Their expressions are listed below:

Accuracy ¼
TP þ TN

TP þ FP þ TN þ FN
ð9Þ

Recall ¼
TP

TP þ FN
ð10Þ

Specif icity ¼
TN

TN þ FP
ð11Þ

MCC ¼
TP � TN � FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FNÞ � ðTN þ FPÞ � ðTP þ FNÞ � ðTNÞ � FN

p ð12Þ

Where TP, TN, FP, FN indicates the number of true positive, true negative, false positive

and false negative respectively.

In Table 8, our model is compared with the models in the above literatures including:

iDNA-Prot [13] Compression technology on PSSM [14], DPP-PseAAC [16], iDNAProt-ES

[17].

As shown in Table 7 and Table 8, the performance of CNN-BiLSTM on the independent

test samples is better than the performances of other models, which indicates that

CNN-BiLSTM is more stable and more trustworthy in practical application.

Comparison of characteristics of different models

To reveal the differences between the different models in amino acid sequence processing, we

compared the CNN-BiLSTM model with the SVM and CNN-RNN models. According to its

length, a sequence is divided into the three parts, N, Middle and C, in the method (SVM) pro-

posed in: [15].Then, the sequence features of the three parts are abstracted, and the DNA-bind-

ing protein prediction is achieved by the SVM package. In [7], an LSTM was used to process

the sequences. During this process, the sequences are scanned unidirectionally. In contrast,

Table 7. Test-Acc of different models (Arabidopsis).

Model categories Test-Acc

SVM 81.0%

DNABP 89.6%

CNN-RNN 89.0%

CNN-BiLSTM 93.0%

https://doi.org/10.1371/journal.pone.0225317.t007

Table 8. The performance of our methods and other existing methods on independent datasets.

Model category Accuracy Recall Specificity MCC

iDNA-Prot 67.20% 67.7% 66.7% 0.344

Compression technology on PSSM 76.3% 92.5% 60.2% 0.557

DPP-PseAAC 77.4% 83.9% 71.0% 0.553

iDNAProt-ES 80.6% 81.3% 80.0% 0.613

CNN-BiLSTM 81.2% 89.2% 73.1% 0.632

https://doi.org/10.1371/journal.pone.0225317.t008
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the process of scanning sequences in the CNN-BiLSTM model is bidirectional, and the output

is constructed by synthesizing the contextual features (see Fig 9 for details).

After the comparison, we find that the CNN-BiLSTM collects more sequence information

than do the SVM and CNN-RNN.

Comparison of score predicted by the different models

A deep learning model yields a prediction score for each test sample; when the prediction

score is between 0 and 0.5, we consider it as a negative sample. In contrast, when the predicted

sample score is between 0.5 and 1, we consider it as a positive sample. The score actually repre-

sents the probability that a sample is a positive sample, that is, the closer the score is to 1, the

greater the probability that it is a positive sample. CNN-BiLSTM relies on the predictive score

to determine whether a sequence is a positive sample (see Fig 10 for details).

We trained the CNN-RNN model on the 32,000 samples provided in the literature and

obtained a final CNN-RNN model, which does not consider the contextual features of the

amino acid sequence. Then, we applied the final CNN-RNN model to the 500-unit test set and

the 10,000-unit test set, respectively. It is worth mentioning that these test samples are labeled.

We drew the plots of the scores shown in Fig 11 and Fig 12.

In the above diagrams, the horizontal axis expresses the ordinal number of the sequences,

and the ordinate expresses the predicted scores of the sequences. A green flag represents a cor-

rect sample judgment, and a red sign represents an incorrect prediction.

We then used the same data to train a CNN-BiLSTM model. As with the CNN-RNN results,

we also obtained the distribution of the predicted scores of CNN-BiLSTM on the test set as

shown in Fig 13 and Fig 14.

Fig 9. Methods of processing the sequences of different models.

https://doi.org/10.1371/journal.pone.0225317.g009
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We can see that the scores obtained by CNN-BiLSTM are more concentrated in the vicini-

ties of 0 and 1 than are those of the CNN-RNN model, which indicates that the CNN-BiLSTM

model has a better predictive score tendency. The prediction score is a probability value. The

closer it is to 0 or 1, the more reliable the prediction results are. However, when the prediction

score is close to 0.5, the prediction reliability is low. Note that the CNN-BiLSTM model graphs

have fewer red marks in the predicted score distribution map than do the CNN-RNN model

graphs. Therefore, the CNN-BiLSTM is more trustworthy and robust regarding data fitting

and prediction accuracy.

Model training process visualization

After reconstructing the experiments in [7], we obtained the data for the running process of

the model (CNN-RNN). We show the variations of the training accuracy (Train-Acc) and Val-

idation-Acc during the model training process in a single chart. Importantly, Train-Acc refers

Fig 10. Evaluation criteria for predicted scores.

https://doi.org/10.1371/journal.pone.0225317.g010

Fig 11. CNN-RNN prediction (1,000).

https://doi.org/10.1371/journal.pone.0225317.g011
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Fig 12. CNN-RNN prediction (20,000).

https://doi.org/10.1371/journal.pone.0225317.g012

Fig 13. CNN-BiLSTM prediction (1,000).

https://doi.org/10.1371/journal.pone.0225317.g013
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Fig 14. CNN-BiLSTM prediction (20,000).

https://doi.org/10.1371/journal.pone.0225317.g014

Fig 15. Accuracy variations during CNN-RNN training.

https://doi.org/10.1371/journal.pone.0225317.g015
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Fig 16. Loss variation during CNN-RNN training.

https://doi.org/10.1371/journal.pone.0225317.g016

Fig 17. The variation of accuracy in CNN-BiLSTM training.

https://doi.org/10.1371/journal.pone.0225317.g017
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to the prediction precision of the method on the training set, while Validation-Acc refers to

the prediction precision of the method on the validation set used to calibrate the parameter

weights of the model. (see Fig 15 for details).

We also show the variation in the training loss (Train-Loss) and validation loss (Validation-

Loss) during the establishment of the above model. (see Fig 16 for details).

For comparison, we used the same data to visualize the CNN-BiLSTM training process.

(see Fig 17 and Fig 18 for details).

From Figs 15–18, we can see that the training curve and the validation curve of the

CNN-BiLSTM are closer than those of the CNN-RNN, both for Acc and loss. This indicates

that CNN-BiLSTM experiences very little overfitting, but the opposite is true in CNN-RNN.

Visibly, the training process of CNN-BiLSTM better reflects the real performance of the data.

Additionally, CNN-RNN converges extremely quickly at the beginning of training, but it

reaches its upper limit quickly, and the Validation -Loss value (0.2) is still relatively high at this

point. In contrast, CNN-BiLSTM converges more slowly, showing a slow climbing trend ini-

tially and ultimately reaching a Validation -Loss value close to 0.1. Because CNN-BiLSTM uses

a more complex neural network than the other models, it cannot improve the Train-Acc

quickly during the initial stage of training, but it does continuously reduce the los value during

continuous operation. Although it requires a longer training period, CNN-BiLSTM can cap-

ture amino acid sequence features in more detail than can the CNN-RNN.

Conclusions

The prediction of DNA-binding proteins has been a focus of some computational biologists,

and many methods have been proposed successfully. In this paper, we proposed a new deep

Fig 18. The variation of loss in CNN-BiLSTM training.

https://doi.org/10.1371/journal.pone.0225317.g018

Predicting DNA-binding proteins based on contextual features in amino acid sequences

PLOS ONE | https://doi.org/10.1371/journal.pone.0225317 November 14, 2019 18 / 21

https://doi.org/10.1371/journal.pone.0225317.g018
https://doi.org/10.1371/journal.pone.0225317


learning model to distinguish DNA-binding proteins. We combined a CNN and a Bi-LSTM to

explore the potential relationships between amino acids that could be used to detect the func-

tional domain of the protein sequence.

Compared with three previous models (SVM, DNABP and CNN-RNN), CNN-BiLSTM

achieves a more advanced performance regarding both prediction accuracy and data fitting. In

the test for independent samples, the tendency of the predicted scores obtained by

CNN-BiLSTM is better than that of CNN-RNN. The use of deep learning methods to discrimi-

nate DNA-binding proteins will become more popular. In addition, the method proposed in

this paper may have many potential applications elsewhere, such as in predicting plant

hemoglobin.
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