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Abstract 

Background:  Social genetic effects (SGE) are the effects of the genotype of one animal on the phenotypes of other 
animals within a social group. Because SGE contribute to variation in economically important traits for pigs, the inclu-
sion of SGE in statistical models could increase responses to selection (RS) in breeding programs. In such models, 
increasing the relatedness of members within groups further increases RS when using pedigree-based relationships; 
however, this has not been demonstrated with genomic-based relationships or with a constraint on inbreeding. In 
this study, we compared the use of statistical models with and without SGE and compared groups composed at 
random versus groups composed of families in genomic selection breeding programs with a constraint on the rate of 
inbreeding.

Results:  When SGE were of a moderate magnitude, inclusion of SGE in the statistical model substantially increased 
RS when SGE were considered for selection. However, when SGE were included in the model but not considered 
for selection, the increase in RS and in accuracy of predicted direct genetic effects (DGE) depended on the correla-
tion between SGE and DGE. When SGE were of a low magnitude, inclusion of SGE in the model did not increase RS, 
probably because of the poor separation of effects and convergence issues of the algorithms. Compared to a random 
group composition design, groups composed of families led to higher RS. The difference in RS between the two 
group compositions was slightly reduced when using genomic-based compared to pedigree-based relationships.

Conclusions:  The use of a statistical model that includes SGE can substantially improve response to selection at a 
fixed rate of inbreeding, because it allows the heritable variation from SGE to be accounted for and capitalized on. 
Compared to having random groups, family groups result in greater response to selection in the presence of SGE but 
the advantage of using family groups decreases when genomic-based relationships are used.
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Background
In typical production systems, pigs are housed in groups. 
Social interactions between individuals within a group 
influence the phenotype of each pig [1–3], such that the 
phenotype of an individual depends on the genotype 
of the animal itself (termed as the direct genetic effect, 
DGE) and the genotypes of the other animals in the same 
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group (termed as the social or indirect genetic effects, 
SGE). SGE have been shown to account for 10 to 75% of 
the heritable variation of economically important traits 
in pigs, such as growth traits and feed intake [2, 4–7]. 
Thus, statistical models that include SGE might realize 
more responses to selection (RS) by exploiting the herit-
able variation from SGE and increasing the accuracy of 
predicted DGE.

From a production perspective, the performance of ani-
mals is important, regardless of whether the performance 
is due to DGE, SGE, or other effects. Because SGE are 
heritable and available for selection, they should be given 
the same weighting as DGE in the breeding goal. For 
instance, the total breeding value (TBV) of an individual 
in a group of n animals is: uTBV = 1 ∗ uD + (n− 1) ∗ uS , 
where uTBV  , uD and uS are the TBV, DGE, and SGE of 
the individual, respectively [8]. Theoretical and empiri-
cal studies have demonstrated that a selection program 
that takes SGE into account increases RS [8–10]. How-
ever, these studies did not consider rate of inbreeding. 
Selection accounting for SGE leads to higher rates of 
inbreeding [11], which could generate rapid and higher 
short-term RS, but not necessarily long-term RS. There-
fore, the use of SGE in selection programs should be 
investigated under a restricted rate of inbreeding, for 
example, using optimum-contribution selection (OCS) 
[12–14]. In addition, ignoring SGE when they are pre-
sent can reduce the accuracy of the predicted DGE 
because the statistical model is mis-specified. However, 
in empirical studies, the use of correctly specified mod-
els that include SGE for selection has shown inconsistent 
results on predictive ability of DGE [4, 5, 15] and RS [1, 
16]. These inconsistent results might be related to how 
the predictive ability of the models was investigated, i.e., 
based on the correlation between predicted DGE and 
phenotypes corrected for fixed effects. In empirical data, 
true breeding values and true variance components are 
not known. Investigating properties of models by sto-
chastic simulation overcomes this limitation. Here in the 
case of breeding programs for pigs, we hypothesized that 
inclusion of SGE in the prediction model would improve 
RS at a fixed rate of inbreeding by using the correctly 
specified model and exploiting SGE for selection.

Allocating related animals to groups when using a 
model that includes SGE increases RS [10], decreases 
standard errors on variance estimates [17], and increases 
the accuracy of predicted genetic effects [18] for traits 
that are affected by social interactions. The increased RS 
obtained by increasing the number of related animals 
in the groups is mainly attributed to an increase in the 
accuracy of the predicted SGE [10, 19]. A review by Ellen 
et al. [19] demonstrated that RS is maximized when ani-
mals allocated to groups come from the same family but 

in that case, the genetic parameters for DGE, SGE, lit-
ter effects, and pen effects are not identifiable. To strike 
a balance between relatedness and effect identifiability, 
Ødegård and Olesen [18] suggested a design, where each 
group was composed of three full-sib families, and each 
full-sib family contributed offspring to three groups.

Previous studies [10, 17, 18] on the effects of group 
composition in models with SGE used pedigree infor-
mation. With pedigree-based relationships, information 
about the SGE of a group of unrelated animals would 
originate from their parents and relatives in other groups. 
However, information from the relatives in other groups 
would be less informative for predicting SGE than infor-
mation from relatives that are in the same group. This 
explains the higher accuracy of predicted SGE based on 
family groups compared to random groups when ped-
igree-based relationships are used. Compared to pedi-
gree-based relationships, genomic-based relationships 
better use information from relatives, and also exploit 
information from animals that appear to be unrelated 
based on pedigree [20] to predict SGE. This may remove 
the advantage of having family groups compared to ran-
dom groups. Thus, we hypothesized that RS is expected 
to be similar for random and family groups when 
genomic-based relationships are used.

We tested the aforementioned two hypotheses by: (1) 
comparing the use of statistical models with and with-
out SGE for estimation of genetic effects and selection 
for traits affected by SGE in a pig breeding program, and 
(2) comparing groups that were randomly selected with 
groups that were composed of families when pedigree- 
versus genomic-based relationships are used in the sta-
tistical models. These comparisons were investigated for 
different magnitudes of SGE and correlations between 
SGE and DGE. In all cases, the rate of inbreeding was 
controlled at 1% per generation based on pedigree-based 
relationships.

Methods
Breeding program designs
The stochastic simulation program ADAM [21] was used 
to simulate a breeding program for pigs. The simulated 
genome was 30 Morgan long and consisted of 18 pairs of 
autosomes, 54,218 biallelic markers and 2000 quantita-
tive trait loci (QTL). The genome was similar to that used 
by Henryon et al. [12], except that the 2000 biallelic QTL 
were randomly chosen from the 7702 QTL that were 
simulated in [12]. The breeding program was run for 10 
discrete generations ( t = 1,…,10). At generations t = 1 
and 2, parents (30 sires and 600 dams) were randomly 
selected from the base population and the offspring of 
generation t = 1, respectively. Each sire mated with 20 
dams, and each dam mated with one sire only. Each dam 
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produced six offspring, three males and three females. 
Thus, for each generation, 3600 offspring were candidates 
for selection. At generations t = 2,…,10, offspring were 
allocated to groups of 12 individuals. The phenotypes 
of individuals were identified before selection (mimick-
ing traits such as average daily gain or feed efficiency). 
Depending on the scenarios, at generation t = 3, variance 
components were estimated using pedigree-based ani-
mal models from the dataset that had 7200 animals, with 
records from 1200 litters and a total of 7830 animals in 
the pedigree. In the other scenarios, true variance com-
ponents were used. The estimated or true variance com-
ponents were used to predict the genetic effects with 
pedigree-based or genomic-based best linear unbiased 
prediction (BLUP) in generations t = 3,…,10. Estimated 
breeding values (EBV) for selection were based on pre-
dicted genetic effects, either TBV or DGE.

Selection in generations t = 3,…,10 used optimum-
contribution selection (OCS) procedures that controlled 
the rate of inbreeding at 0.01 per generation [12, 13]. To 
realize long-term RS, pedigree information rather than 
genomic information was used to compute relationships 
and control the rate of inbreeding, as recommended 
by Henryon et  al. [12]. To save computation time, pre-
selection based on EBV was carried out before optimiza-
tion of the OCS procedures; specifically, 600 males and 
900 females were pre-selected from 1800 male and 1800 
female candidates in each generation. The pre-selection 
step does not reduce long-term RS [22]. The optimum 
number of matings, as defined by OCS, was fixed for 
selected dams, but not for selected sires for biological 
and logistical reasons [22]. Consequently, 600 dams and 
a number of sires determined by OCS were selected for 
mating. For the genomic selection scenarios, all animals 
at generations t = 1,…,10 were genotyped, and genomic-
based BLUP was used to compute EBV. Each scenario 
was replicated 100 times.

Trait simulation
The phenotype of the trait for individual i was simulated 
based on the following model:

where yikm is the phenotype of animal i in pen k , and 
from litter m ; uDikm

 is the DGE of animal i ; 
∑n

j=1,j �=i uSjk is 
the sum of the SGE of animals j in pen k with n individu-
als, and animal j differs from animal i ; cpk is the perma-
nent environmental effect of pen k ; clm is the permanent 
environmental effect of litter m ; and eikm is the environ-
mental term for animal i . Pen and group were used as 
interchangeable terms in this study. Each animal had two 

(1)yikm = uDikm
+

n∑

j=1,j �=i

uSjk + cpk + clm + eikm,

genetic effects: (1) DGE affecting the phenotype of the 
animal itself ( uDi ), and (2) SGE affecting the phenotype of 
each pen mate ( uSi ). The genetic effects, DGE and SGE, of 
the trait were fully controlled by 2000 QTL. Epistasis and 
dominance effects of QTL were not simulated. The allelic 
effects of QTL were scaled to obtain an initial genetic 

covariance matrix of 
(

1 σuDS
σuDS σ 2

uS

)
 in the base popula-

tion, where σ 2
uD

 = 1 is the variance of DGE, σ 2
uS

 is the vari-
ance of SGE, and σuDS is the covariance between the DGE 
and SGE. The allelic effects of QTL were kept constant 
across generations but the allele frequency at each QTL 
could change due to selection and drift. Pen, litter, and 
environmental effects were drawn from normal distribu-
tions of N

[
0, σ 2

cp
= 0.25

]
 , N

[
0, σ 2

cl
= 0.25

]
 and 

N
[
0, σ 2

e = 2.5
]
 , respectively. Because we assumed a con-

stant group size of 12 individuals, the environmental 
effect of social interactions was completely confounded 
with the pen effect and, therefore, the environmental 
effect of social interactions was not simulated separately. 
The levels of the pen and litter effects assumed in our 
study were moderate compared to those in previous 
studies [2, 4–7].

Statistical models
The statistical models used to derive EBV were the clas-
sical model without SGE (CGM) and with SGE (SGM). 
The SGM model was the same as that used to simulate 
the trait (Model 1). In matrix notation, SGM is Model (2) 
and CGM is Model (3):

where y is the vector of individual phenotypic records; b 
and b′ are the vectors of the fixed effects of generations, 
uD and u′

D are the vectors of DGE, cp and c′p are the vec-
tors of environmental effects of pen,cl and c′l are the vec-
tors of environmental effects of litter, e and e′ are the 
vectors of residuals in Models (2) and (3), respectively;uS 
is the vector of SGE; X , ZD , Wp and Wl are incidence 
matrices that associate fixed, DGE, pen, and litter effects, 
respectively, to the phenotypic records; ZS is an incidence 
matrix relating phenotypic records to the SGE of group 
mates. Vectors cp , cl , and e in Model (2) were assumed to 
be independent and follow normal distributions: 
cp ∼ N

[
0, Ipσ

2
cp

]
 , cl ∼ N

[
0, Ilσ

2
cl

]
 , and e ∼ N

[
0, Ieσ

2
e

]
 , 

where σ 2
cp

 , σ 2
cl

 , and σ 2
e  are the variances of pen, litter, and 

residual effects, respectively; Ip , Il , and Ie are identity 
matrices. Vectors c′p , c′l , and e′ in Model (3) were similarly 
assumed to be independent and follow normal 

(2)y = Xb+ ZDuD + ZSuS +Wpcp +Wlcl + e,

(3)y = Xb′ + ZDu
′

D +Wpc
′

p +Wlc
′

l + e′,
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distributions: c
′

p ∼ N

[
0, Ipσ

2
c
′
p

]
 , cl′ ∼ N

[
0, Ilσ

2

c
′

l

]
 , and 

e′ ∼ N
[
0, Ieσ

2
e′

]
 , where σ 2

c
′
p
 , σ 2

c
′

l

 , and σ 2
e′ are the variances of 

the pen, litter, and residual effects, respectively.
Vectors uD and uS in Model (2) were assumed to be 

jointly normally distributed: [
uD
uS

]
∼ N

[
0,U ⊗

(
σ 2
uD

σuDS
σuDS σ 2

uS

)]
 , where σ 2

uD
 , σ 2

uS
 , and 

σuDS are as defined for Model (1); ⊗ is the Kronecker 
product; and U is a relationship matrix between individu-
als that was constructed from pedigree information in 
the pedigree-based BLUP models or from marker data in 
the genomic-based BLUP models. Vector uD′ in Model 
(3) was assumed to be normally distributed: 

u
′

D ∼ N

[
0,Uσ 2

u
′

D

]
 , where σ 2

u
′

D

 is the variance of DGE. In 

both Models (2) and (3), these genetic effects were 
assumed to be independent of the other effects in the 
model.

Variance components were estimated at generation 
t = 3 by the average information restricted maximum 
likelihood estimation method using the DMUAI pro-
cedure of the DMU package [23]. Default values from 
DMU were used to assess convergence of the models. 
For instance, the Frobenius norm of the updated vector 
was set at less than 10–7, and the maximum number of 
iterations to maximize the likelihood function, was set 
at 200 for the DMUAI procedure [23]. Variance compo-
nents were estimated with the pedigree-based model. 
Predicted genetic effects at t = 3…10 were based on 
either pedigree-based BLUP or genomic-based BLUP, 
using the DMU5 procedure of the DMU package [23], 
which iteratively solves the mixed model equations using 
the preconditioned conjugate gradient method [23]. The 
maximum number of iterations and convergence crite-
ria were set at 2000 rounds and 10–8, respectively, for the 
DMU5 procedure [23]. In each generation, t = 3…10, pre-
dicted genetic effects for all individuals were computed 

using phenotypes and genomic data or pedigree from 
all animals in generations 1,…,t . The predicted genetic 
effects were used to compute EBV that were used for the 
OCS procedures, which were carried out with the EVA 
software [24].

Factors investigated
The first aim of our study was to compare the RS realized 
by the classical model without SGE (i.e. CGM) and with 
SGE (i.e. SGM). For SGM, selection criteria were based 
on either predicted DGE or predicted TBV. The TBV of 
an animal was defined as the sum of DGE and ( n− 1 ) 
times SGE, where n is the number of animals in the 
group [8]. The combination of different statistical models 
to predict genetic effects and different selection criteria 
resulted in three breeding schemes that used: (i) SGM 
with selection criteria based on TBV, (ii) SGM with selec-
tion criteria based on DGE, and (iii) CGM with selection 
criteria based on DGE. These three breeding schemes 
and using either pedigree-based or genomic-based rela-
tionship matrices, were investigated for traits with differ-
ent SGE variances ( σ 2

uS
 ) and different correlations ( ruDS ) 

between DGE and SGE (Table 1). Combinations of these 
four factors yielded 36 scenarios. Variance components 
for use in the statistical models for these 36 scenarios 
were estimated based on data available at generation t = 3 
in the breeding program. Animals in these scenarios were 
allocated to groups at random.

We assumed a variance of 1 for the DGE ( σ 2
uD

 ) and of 
0.001 or 0.01 for SGE ( σ 2

uS
 ). For economically important 

pig traits, the values of σ 2
uS

 used represent SGE with low 
and moderate magnitudes compared to previous studies 
[2, 4–7]. For example, the ratio σ

2
uS
/
σ 2
uD

 was on average 
0.01 (ranging from 0.002 to 0.044) in previous studies [2, 
4–7] and the ratio of SGE to total phenotypic variance (
(n−1)2σ 2

uS

σ 2
P

)
 was on average 0.25 (ranging from 0.10 to 

0.53) [2, 4–7] (see Bergsma et al. [2] for the formula for 

Table 1  Factors investigated

CGM is the classical model without social genetic effects (SGE); SGM is the model with SGE; CGM-DGE is the scheme using CGM with predicted direct genetic effects 
(DGE) as selection criteria; SGM-TBV is the scheme using SGM with predicted total breeding value (TBV) as selection criteria; SGM-DGE is the scheme using SGM 
with DGE as selection criteria; A and G are the pedigree- and genomic-based relationship matrix, respectively; σ 2

uS
 is the social additive genetic variance; ruDS is the 

correlation between DGE and SGE

Factors investigated Comparing the use of models CGM and SGM Comparing group composition designs

Breeding scheme CGM-DGE; SGM-TBV; SGM-DGE CGM-DGE; SGM-TBV; SGM-DGE

Relationships A ; G A ; G

σ 2
uS

0.001; 0.01 0.01

ruDS  − 0.5; 0; 0.5 0

Group composition Random Random; four families

Variance components used Estimated values Estimated values; true values
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the total phenotypic variance σ 2
P ), compared to ratios of 

0.03 and 0.29 for σ 2
uS

 equal to 0.001 and 0.01, respectively, 
when group members are unrelated. Three values of ruDS 
were used: − 0.5, 0, and 0.5. The total heritable variation 
can be computed as σ 2

uTBV
= σ 2

uD
+ 2(n− 1)σuDS + (n− 1)2σ 2

uS
 , 

which was equal to 0.77, 1.12, and 1.47 with σ 2
uS

= 0.001 
and ruDS − 0.5, 0, and 0.5, respectively, and equal to 1.11, 
2.21, and 3.31, respectively, when σ 2

uS
= 0.01.

The second aim of our study was to compare random 
grouping versus family grouping. Each group consisted 
of 12 individuals. With random grouping, members of 
a group were sampled at random with respect to fam-
ily and could, therefore be sibs by chance. With family 
grouping, members of a group were sampled from fami-
lies. In the design with four families per group, each 
group was composed of members from four families, 
and each family contributed offspring equally to two 
groups. When the parents were non-inbred and unre-
lated, the average relationship between members within 
groups was 0.009 with random group composition, and 
0.096 in groups composed of four families. The two 
group composition strategies were compared in various 
situations: models using different relationship matri-
ces, different breeding schemes, and different assumed 
variance components (Table  1). Combining these four 
factors yielded 20 scenarios because the true variance 
components were not known for the CGM model. 
These 20 scenarios were investigated with σ 2

uS
= 0.01 

and ruDS = 0 . Variance components used for the SGM 
prediction model could be either true values or esti-
mated values. In the second case, variances were esti-
mated using a pedigree-based model at generation t = 3. 
In both cases, breeding values were predicted at gen-
erations t = 3,…,10 of the breeding program for selec-
tion. Using estimated versus true values of variance 
components is a relevant factor when different group 
composition designs are investigated, because group 
composition could affect the accuracy of EBV based on 
the ability to correctly estimate variance components. 
Because the true values of variance components were 
not known for the CGM model, the use of the true val-
ues was not investigated when comparing the CGM and 
SGM models.

Response to selection
The realised RS was evaluated for each scenario as: 
RS =

(
y10 − y3

)
/(10− 3) , where y3 and y10 are the 

average of the phenotypes at generations 3 and 10, 
respectively. Means and standard errors of RS were 
calculated based on 100 replicates for each scenario. 
The rate of true inbreeding ( �Ftrue ) based on identical-
by-descent alleles was calculated as described in [12]: 
�Ftrue = (1− exp (β)) ∗ 100% , where β is the regression 

coefficient of ln
(
1− Ft

)
 on t , where Ft  is the average 

coefficient of true inbreeding for animals born in gen-
erations t = 3,…,10.

The relative difference in RS between the two group 
composition strategies was compared for pedigree-
based relationships versus genomic-based relationships 
using a statistical bootstrapping approach. The com-
parison was assessed by a value termed 
�DA_G = RSAFam

/
RSARan

− RSGFam
/
RSGRan

 , where (
RSiFam

/
RSiRan

)
 is the relative difference in RS when 

using family grouping ( RSiFam ) versus random grouping 
( RSiRan ) with pedigree-based ( i = A ) versus genomic-
based ( i = G ) relationships. RSAFam was the mean of 100 
samples that were obtained by sampling with replace-
ment from 100 replicates with random grouping and 
the use of the pedigree-based relationships. Similarly, 
RSARan , RSGFam and RSGRan were the means of their corre-
sponding scenarios. �DA_G was computed based on the 
sampled means. This process was repeated 5000 times. 
If �DA_G were greater than zero, the relative difference 
in RS between the two grouping strategies would be 
lower when using genomic- than when using pedigree-
based relationships.

Accuracy and bias of the predicted genetic effects
Accuracy and bias of the different predicted genetic 
effects were assessed for the animals in generation t = 4. 
When comparing the difference in accuracy between sce-
narios, we found that the results for generation t = 4 were 
similar to those for generation t = 5…10; thus, only the 
results for generation 4 are presented. Accuracy of DGE 
(referring to the accuracy of predicted DGE), was the 
correlation between uD and ûD in SGM or the correlation 
between uD and û′

D in CGM, where vectors with a hat are 
predicted effects using a specific model and vectors with-
out a hat are true effects from the simulation. Accuracy of 
SGE (referring to the accuracy of predicted SGE) was the 
correlation between uS and ûS in the breeding scheme 
using TBV as the selection criteria from SGM. Accuracy 
of SGE was not reported for the scheme that used DGE 
from SGM as the selection criterion, because SGE was 
not accounted for in selection. The accuracy of the pre-
dicted genetic effects of selection criteria (GESC), which 
was directly related to RS, was calculated as the correla-
tion between ûD and uTBV for the breeding scheme using 
DGE from SGM as selection criterion, the correlation 
between ûTBV and uTBV for the scheme using TBV from 
SGM, and the correlation between ûD′ and uTBV for the 
scheme using DGE from CGM. Bias was computed as 
the regression coefficient of true on predicted values for 
DGE, SGE, and GESC.
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Estimates of variance components
Estimates of variance components obtained using the 
SGM and CGM models in generation t = 3 were used 
to investigate how the variance of SGE was allocated to 
other variance components of the CGM when the model 
was mis-specified. For all scenarios, estimation of vari-
ance components was based on pedigree-based REML 
and datasets with random selection of parents. All repli-
cates with the same model and the same group composi-
tion design were used to analyze the estimated variance 
components. For example, in the situation with a σ 2

uS
 of 

0.01 and ruDS of − 0.5, there were 400 replicates across 
scenarios that used the SGM and random group compo-
sition, compared to 200 replicates across scenarios that 
used the CGM and random group composition. A t-test 
was used to identify whether the estimates were statis-
tically different from true values used for simulation. 
t-tests were also performed for comparisons between 
estimates of variance components from the SGM and 
CGM.

Results
Social genetic effects
To compare the use of the statistical models SGM ver-
sus CGM, with the latter being a mis-specified model 
compared to the underlying simulation model, three 
breeding schemes were investigated: (i) SGM with 
selection criteria based on TBV, (ii) SGM with selection 
criteria based on DGE, and (iii) CGM with selection 
criteria based on DGE. RS was higher when genomic-
based rather than pedigree-based relationships were 
used; however, the difference in RS between the three 
breeding schemes were similar for both relationships 
used (Fig. 1). With a σ 2

uS
 of 0.01, RS was highest when 

TBV from SGM were used as selection criteria. With a 
σ 2
uS

 of 0.01 and a ruDS of 0 and 0.5, the second highest RS 
was obtained when the DGE from SGM were used as 
selection criteria. With a ruDS of − 0.5, the selection cri-
teria based on DGE using CGM had the second highest 
RS. When σ 2

uS
 was 0.001, RS hardly differed between the 

three selection strategies.

Fig. 1  Response to selection (mean and standard error over 100 replicates) for three breeding schemes. SGM_DGE used a social genetic model 
(SGM) with selection criteria based on direct genetic values (DGE); SGM_TBV used a SGM with selection criteria based on total breeding values 
(TBV); and CGM_DGE used the classical genetic model (CGM) with selection criteria based on DGE. Breeding schemes used either pedigree- ( A ) or 
genomic-based ( G ) relationships to predict genetic effects. The three breeding schemes were compared for traits with SGE variance ( σ 2

uS
 ) equal to 

0.01 and 0.001 and a correlation ( ruDS ) between SGE and DGE of -0.5, 0, and 0.5. Group members were allocated at random
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Table  2 shows the accuracies of the predicted genetic 
effects and the bias of predictions when σ 2

uS
 = 0.01 and 

ruDS =  − 0.5, 0, or 0.5. Standard errors of the accuracies 
and the biases over 100 replicates for these scenarios are 
in Table S1 [see Additional file 1: Table S1]. Compared to 
pedigree-based relationships, the use of genomic-based 
relationships for prediction resulted in higher accura-
cies of predicted genetic effects, and generally lower 
bias. However, the patterns of the differences in accura-
cies between the three breeding schemes were similar for 
genomic- and pedigree-based relationships. Compared 
to the two alternative schemes, the scheme with selec-
tion criteria based on TBV from SGM led to the highest 
accuracy of GESC. With ruDS =  − 0.5, GESC accuracy was 
lowest when using DGE from SGM as selection crite-
ria. With ruDS = 0 or 0.5, the accuracy of GESC was low-
est when using CGM. The ranking of the three schemes 
based on the accuracy of DGE was similar to that based 
on the accuracy of GESC. For example, the scheme with 
selection criteria based on TBV from SGM had the 
highest accuracy of DGE compared to the alternative 
schemes. Although predictions of DGE were unbiased, 
predictions of TBV based on DGE were biased.

With σ 2
uS

 = 0.001, accuracies of predicted genetic effects 
and biases are in Table S2 [see Additional file 1: Table S2]. 
The difference in the accuracies between the three 

breeding schemes was small relative to their standard 
errors. For 25.6 to 80.5% of the SGM predictions across 
replicates, the iterative solving methods for predicting 
genetic effects did not converge when σ 2

uS
 = 0.001, com-

pared 1.3 to 29.8% of the predictions when σ 2
uS

 = 0.01 [see 
Additional file  1: Table  S3]. The CGM predictions con-
verged well for all replicates regardless of the value of σ 2

uS

Group composition
Another aim of our study was to compare the use of 
groups composed at random and those composed of 
a few families, when using pedigree- versus genomic-
based relationship matrices in the model for genetic 
evaluation. Family grouping resulted in higher RS than 
random grouping (Fig.  2). RS was higher for all three 
breeding schemes that used SGM and CGM with selec-
tion criteria based on TBV and DGE. Except when 
using SGM with estimated variance components and 
selection criteria based on DGE, the difference in 
RS between the two group compositions was signifi-
cantly larger when pedigree-based versus genomic-
based relationships were used (Table  3). For example, 
when using SGM with estimated variances and selec-
tion criteria based on TBV, the relative differences 
were equal to 1.10 and 1.07 for pedigree-based and 
genomic-based relationships, respectively. The higher 

Table 2  Accuracies and bias of predicted genetic effects (mean over 100 replicates) for the three breeding schemes

Accuracy of predicted genetic effects of selection criteria (GESC) was calculated as the correlation between GESC and true TBV. Bias of GESC was the regression 
coefficient of true values of TBV on predicted values of GESC

SGM_DGE used a social genetic model (SGM) with selection criteria based on direct genetic values (DGE); SGM_TBV used a SGM with selection criteria based on total 
breeding values (TBV); and CGM_DGE used the classical genetic model (CGM) with selection criteria based on DGE. Breeding schemes used either pedigree- ( A ) or 
genomic-based ( G ) relationships to predict genetic effects. The three breeding schemes were compared by making different assumptions for the trait simulated with 
SGE variance ( σ 2

uS
 ) of 0.01 and correlation ( ruDS ) between SGE and DGE at − 0.5, 0, and 0.5. Group members were allocated at random. Accuracy and bias of predicted 

genetic effects were computed based on animals at generation t  = 4

ruDS A G

SGM_DGE SGM_TBV CGM_DGE SGM_DGE SGM_TBV CGM_DGE

Accuracy of GESC

 − 0.5 0.201 0.318 0.204 0.244 0.437 0.269

 0 0.347 0.430 0.341 0.449 0.556 0.436

 0.5 0.481 0.504 0.457 0.614 0.656 0.596

Accuracy of DGE

 − 0.5 0.582 0.623 0.588 0.770 0.811 0.774

 0 0.583 0.604 0.580 0.768 0.792 0.765

 0.5 0.580 0.586 0.577 0.765 0.777 0.764

Bias of GESC

 − 0.5 0.39 1.00 0.39 0.38 0.98 0.41

 0 0.92 1.01 0.94 0.94 0.99 0.93

 0.5 1.54 1.05 1.50 1.52 1.00 1.51

Bias of DGE

 − 0.5 0.99 0.99 0.97 1.00 1.01 0.97

 0 0.98 0.99 1.01 0.99 1.00 1.00

 0.5 0.99 1.00 1.02 0.99 1.00 1.02
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relative difference obtained for pedigree-based rela-
tionships was statistically significant, with 96.6% of the 
�DA_G values being greater than zero in the bootstrap-
ping approach. When using SGM with estimated vari-
ances and selection criteria based on DGE, 24.7% of the 
�DA_G values were greater than zero, which showed 
that the relative difference in RS between the two group 
compositions was not statistically significant between 
the two relationship matrices used.

The comparison between the two group composi-
tions was investigated using either the true or estimated 
variance components at generation t = 3 for prediction. 
With random grouping, the use of true variance compo-
nents for prediction resulted in higher RS than the use 
of estimated variance components when using selection 
criteria based on TBV. With family grouping, the use of 
true or estimated variance components resulted in only 
small differences in RS, because family groups resulted 
in more accurate estimates of variance components.

Differences in accuracy of GESC between the designs 
with random and family grouping were similar to the 
differences in RS. Specifically, with family grouping, the 
accuracy of GESC was higher than with random group-
ing (Table 4). Accuracies of GESC tended to differ more 
between the two group designs when pedigree-based 
rather than genomic-based relationships were used. 
With family grouping, the accuracy of SGE was higher 
than with random grouping. In contrast, the accuracy of 
DGE was lower with family grouping than with random 
grouping. Predictions of GESC, DGE, and SGE were 
generally unbiased for both group designs. Standard 
errors of accuracy and bias over 100 replicates of these 
scenarios are in Table S4 [see Additional file 1: Table S4].

Variance component estimates
Table 5 shows estimates of variance components based on 
SGM and CGM at generation t = 3 based on the pedigree-
based relationship matrix. Three scenarios used a random 

Fig. 2  Response to selection (mean and standard error over 100 replicates) when group members were composed at random (RAN) versus 
composed of four families (FAM) per group. These two designs were compared under three breeding schemes: SGM_DGE used a social genetic 
model (SGM) with selection criteria based on direct genetic values (DGE); SGM_TBV used a SGM with selection criteria based on total breeding 
values (TBV); and CGM_DGE used the classical genetic model (CGM) with selection criteria based on DGE. Breeding schemes used either 
pedigree- ( A ) or genomic-based ( G ) relationships were used. The variance components used were true (TrueVC) and estimated values (EstVC). The 
trait was simulated with a SGE variance of 0.01 and a correlation between SGE and DGE of 0
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grouping with ruDS =  − 0.5, 0, or 0.5 used for simulation, 
while the fourth scenario used family grouping with ruDS = 0. 
Variance component estimates from SGM, which was the 
true model, were not statistically significantly different from 
the true variances, except for estimates of the variance of 
DGE with ruDS =  − 0.5 and 0.5. Statistical significance of 
the differences between the true and estimated variances 
from CGM varied depending on the variance component 
evaluated. Estimates of variances of DGE and pen effects 
from CGM were statistically significantly different from 
their true values, while those of litter effects were not. The 
variances estimated from SGM and CGM were statistically 
significantly different for pen effects for all four scenarios 
(P < 0.0001). The estimates of the variance of DGE from 
SGM and CGM were not statistically significantly different 
with family grouping, but were with random grouping. Vari-
ance estimates from SGM and CGM were generally not sta-
tistically significant different for litter effects.

Discussion
Social genetic effects
With σ 2

uS
= 0.01 , i.e. SGE of moderate magnitude, our results 

showed that RS increased considerably with the use of SGM 
and predictions of TBV as selection criteria compared to the 
use of predictions of DGE only, and compared to the use of 
CGM. This result confirmed our hypothesis that SGM mod-
els improve RS by exploiting SGE for selection. However, 

inclusion of SGE in the prediction model did not consist-
ently increase RS for different values of ruDS . With σ 2

uS
 = 0.001, 

i.e. SGE of low magnitude, inclusion of SGE in SGM did not 
improve RS, which might be due to convergence problems.

With σ 2
uS

= 0.01 , the breeding scheme using predictions 
of TBV from SGM as selection criteria led to considerably 
higher RS compared to the alternative schemes because 
using SGE increases the heritable variation available for 
selection, accounts for the possible negative correlation 
between DGE and SGE in selection, and increases the 
accuracy of selection. The total heritable variation that was 
explored in the scheme using selection criteria based on 
TBV was: σ 2

uTBV
= σ 2

uD
+ 2(n− 1)σuDS + (n− 1)2σ 2

uS
 . In 

comparison, the heritable variation that was explored for 
selection in the scheme with selection criteria based on 
DGE was σ 2

uD
 when using SGM and σ 2

u
′

D

 when using CGM, 

where σ 2

u
′

D

= σ 2
uD

− 2σuDS + σ 2
uS

 (see “Appendix” section). 

The derivation of σ 2

u
′

D

 in “Appendix” section was based on 

several assumptions such as random grouping and no litter 
variance but was in agreement with Chen et al. [5]. When 
SGE was not used in selection, the correlation between 
DGE and SGE was not exploited. Selection based on DGE 
only, could lead to negative RS [3, 9] if (
σ 2
uD

+ (n− 1)σuDS
)
< 0 based on the formula of Bijma 

[25]. In addition, the scheme using predictions of TBV 
from SGM as selection criteria had a higher accuracy of 
GESC compared to the alternative schemes. However, this 
higher accuracy could be primarily attributed to a larger 
genetic variance that was capitalized on in the scheme 
using predictions of TBV as selection criteria.

When SGE were not used for selection, the use of the 
correctly specified model SGM increased RS when ruDS 
was 0 or 0.5, but not when ruDS was − 0.5. Based on our 
derivations (see “Appendix” section) and those of Chen 
et al. [5], selection criteria based on DGE when using CGM 
would have been: u′

D = uD − uS , which was in the wrong 
direction for SGE. In comparison, when using SGM with 
selection criteria based on DGE, selection was based on 
uD , which could explain the higher RS in this case. Using 
the correctly specified model might also help to improve 
the accuracy of GESC when using SGM. However, these 
results could not explain the lower RS when using SGM 
with ruDS =  − 0.5. One possible explanation is that, when 
using SGM, the ability of BLUP to separate DGE and SGE 
generally increases as ruDS decreases, resulting in SGE to be 
less likely accounted for by selection on DGE. In contrast, 
because SGE was not included as an effect in CGM, the 
extent to which SGE is accounted for by selection on pre-
dictions of DGE may depend less on ruDS for CGM than for 
SGM. Combining these two suggestions may explain the 
lower RS when using SGM when ruDS is − 0.5.

Table 3  Relative difference in  response to  selection 
with  family group composition and  random group 
composition using pedigree-based ( DA ) and  genomic-
based ( DG  ) relationships

�DA_G = RS
A
Fam

/
RS

A

Ran
− RS

G
Fam

/
RS

G

Ran
 , where RSA

Fam
 , RSA

Ran
 , RSG

Fam
 , RSG

Ran
 are 

responses to selection (RS) obtained from the bootstrapping procedures for 
scenarios using group composition of families (Fam) and random (Ran) group 
composition for the use of pedigree- ( A ) and genomic-based ( G ) relationships. 

The bootstrapping procedures were repeated 5000 times, and DA = RS
A
Fam

/
RS

A

Ran
 

and DG = RS
G
Fam

/
RS

G

Ran
 are the averages of the values from the repeated 

bootstrapping procedures

The comparison between the two relationships was investigated under three 
breeding schemes: SGM_DGE used a social genetic model (SGM) with selection 
criteria based on direct genetic values (DGE); SGM_TBV used a SGM with 
selection criteria based on total breeding values (TBV); and CGM_DGE used the 
classical genetic model (CGM) with selection criteria based on DGE. Variance 
components used were true and estimated values. The trait was simulated with 
an SGE variance of 0.01 and a correlation between SGE and DGE of 0

Scheme Variance 
components

DA DG
Percentage 
of �DA_G > 0

SGM_DGE Estimated 1.016 1.027 24.7

SGM_DGE True 1.047 1.020 96.7

SGM_TBV Estimated 1.103 1.074 96.6

SGM_TBV True 1.075 1.057 94.3

CGM_DGE Estimated 1.080 1.049 97.1



Page 10 of 16Chu et al. Genet Sel Evol            (2021) 53:1 

With σ 2
uS

 = 0.001, i.e. SGE of low magnitude, inclusion 
of SGE in SGM did not improve RS, which might be due 
to the complexity of the model that makes it difficult to 
separate effects and hinders convergence. Consequently, 
the accuracy of GESC declined slightly compared to that 
of CGM [See Additional file 1: Table S2]. Default values 
for convergence criteria were set for the DMUAI proce-
dure when the variance components were estimated and 
for the DMU5 procedure when the EBV were predicted 
[23]. However, for a number of replicates, the iterative 
solving methods for the SGM predictions of breeding 
values did not converge [See Additional file 1: Table S3]. 
Ødegård and Olesen [18] encountered convergence prob-
lems in 6 to 24% of replicates when using pedigree-based 
relationships with SGE to estimate variance components. 
Because a stochastic simulation using genomic-based 
models involves extensive computation, we did not inves-
tigate whether the iterative solving method converged 
for each replicate of the analyzed model. Yet, when over-
looking computation costs, SGM allows the heritable 

variation from SGE to be capitalized on, thus improv-
ing RS, even at low magnitudes of SGE, for instance 
σ 2
uS

 = 0.001 relative to σ 2
uD

 = 1.
Muir [9] showed that RS increased when capitalizing 

SGE for selection, but in that study the rate of inbreed-
ing was not considered. Khaw et  al. [11] recorded sig-
nificantly higher rates of inbreeding when using SGE 
for selection. However, neither of these studies [9, 11] 
investigated the impact of using SGE at the same rate 
of inbreeding or at the same rate of RS. Using OCS, the 
rate of inbreeding in our simulated pig breeding program 
was restricted to 1% per generation based on pedigree 
relationships. Note that this does not necessarily restrict 
the rate of true inbreeding to 1%. In Additional file  1: 
Table S5, RS was scaled to the rate of true inbreeding as 
RS
/
�Ftrue , which was RS per 1% increase in true inbreed-

ing. RS across breeding schemes (Fig.  1) was similar to 
RS per 1% increase in true inbreeding (see Additional 
file 1: Table S5). Therefore, our results confirm that using 

Table 4  Accuracies and  bias of  predicted genetic effects (mean over  100 replicates) when  group members were 
composed at random versus composed of four families per group

Fam_T and Fam_E are the scenarios using family (Fam_) group composition and true (T) or estimated (E) variance components for prediction, respectively. Ran_T and 
Ran_E are the scenarios using random (Ran_) group composition and T or E variance components, respectively

These two designs were compared under three breeding schemes: SGM_DGE used a social genetic model (SGM) with selection criteria based on direct genetic values 
(DGE); SGM_TBV used a SGM with selection criteria based on total breeding values (TBV); and CGM_DGE used the classical genetic model (CGM) with selection criteria 
based on DGE. Breeding schemes used either pedigree- ( A ) or genomic-based ( G ) relationships to predict genetic effects. The trait was simulated with an SGE variance 
of 0.01 and a correlation between SGE and DGE of 0.

Accuracy of SGE and bias of SGE are not available (n/a) for model CGM.

Scheme A G

Fam_T Fam_E Ran_T Ran_E Fam_T Fam_E Ran_T Ran_E

Accuracy of GESC

 SGM_DGE 0.369 0.369 0.358 0.347 0.463 0.459 0.453 0.449

 SGM_TBV 0.495 0.478 0.436 0.430 0.617 0.610 0.566 0.556

 CGM_DGE n/a 0.377 n/a 0.341 n/a 0.463 n/a 0.436

Accuracy of DGE

 SGM_DGE 0.570 0.574 0.586 0.583 0.767 0.763 0.772 0.768

 SGM_TBV 0.611 0.603 0.607 0.604 0.79 0.794 0.789 0.792

 CGM_DGE n/a 0.577 n/a 0.580 n/a 0.765 n/a 0.765

Accuracy of SGE

 SGM_TBV 0.444 0.430 0.366 0.365 0.563 0.549 0.484 0.451

Bias of GESC

 SGM_DGE 1.01 0.99 0.95 0.92 0.97 0.97 0.94 0.94

 SGM_TBV 1.00 1.01 0.97 1.01 0.98 1.00 0.98 0.99

 CGM_DGE n/a 1.02 n/a 0.94 n/a 0.97 n/a 0.93

Bias of DGE

 SGM_DGE 0. 99 0.99 0.99 0.98 0.99 0.99 0.99 0.99

 SGM_TBV 0.99 0.98 0.99 0.99 0.98 1.00 0.99 1.00

 CGM_DGE n/a 1.01 n/a 1.01 n/a 0.98 n/a 1.00

Bias of SGE

 SGM_TBV 1.00 0.97 0.97 1.05 1.00 1.01 0.98 1.07
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SGE for selection improves RS without needing to sacri-
fice the rate of inbreeding.

We determined how the parameters in SGM were 
related to parameters in CGM (see “Appendix” section). 
The derivations were based on several assumptions. For 
example, parameters in SGM and CGM were assumed to 
be determined by differences between variance and 
covariance of phenotypes within a pen, as well as the 
average difference between the covariance of phenotypes 
within and between pens. This assumption is not com-
pletely correct, and there exist alternative derivations of 
how parameters in SGM relate to parameters in CGM. 
For instance, Bijma [25] showed that the residual 

variance differed between SGM and CGM as: 
σ 2
e′ = σ 2

uS
− 2σuDS + σ 2

e  ; however, in our derivation, the 
two models had the same residual variance. The differ-
ence in pen variance between SGM and CGM in our der-
ivation agreed with results of Bijma [25] and Bergsma 
et  al. [2]: σ 2

c
′
p
= σ 2

cp
+ 2σuDS + σ 2

uS
(n− 2) . If the residual 

and pen variances from Bijma [25] and Bergsma et al. [2] 
were assumed, variance in DGE should not change when 
SGM or CGM is used. However, DGE, pen, and residual 
variances differed between SGM and CGM, as shown in 
Table  5. The difference in the parameters of SGM and 
CGM between our study and Bijma [25] was due to the 

Table 5  Variance components estimated at  generation t = 3 using social (SGM) and  classical genetic (CGM) models 
for group members composed at random or families

a  Value was the mean (standard deviation) over 400 replicates for variance components estimated from SGM
b  Value was the mean (standard deviation) over 200 replicates for variance components estimated from CGM. One sample t-test was carried out to compare the 
estimates from SGM and CGM with the simulated values
c  Two sample t-test was carried out to compare the estimates from SGM with those from CGM

P-value indicates the significance: *** < 0.0001, ** < 0.001, and * < 0.01

The trait was simulated with an SGE variance of 0.01 and correlations of -0.5, 0 and 0.5 between SGE and DGE

Parameter Simulated values Estimatesa 
from SGM

(SD) Estimatesb 
from CGM

(SD) SGM-CGMc

Random group and ruDS = − 0.5

 DGE variance 1 0.975* 0.145 1.023 0.142 − 0.051***

 Covariance of DGE and SGE − 0.05 − 0.049 0.018

 SGE variance 0.01 0.010 0.004

 Litter variance 0.25 0.251 0.045 0.245 0.047 0.006

 Pen variance 0.25 0.249 0.050 0.287*** 0.035 − 0.037***

 Residual variance 2.50 2.500 0.094 2.543*** 0.086 − 0.044***

Random group and ruDS = 0

 DGE variance 1 1 0.141 0.961** 0.143 0.039*

 Covariance of DGE and SGE 0 − 0.001 0.021

 SGE variance 0.01 0.010 0.005

 Litter variance 0.25 0.245 0.044 0.256 0.043 − 0.011*

 Pen variance 0.25 0.250 0.058 0.350*** 0.038 − 0.1***

 Residual variance 2.50 2.492 0.089 2.516 0.099 − 0.024*

Random group an ruDS = 0.5

 DGE variance 1 0.980* 0.142 0.929*** 0.137 0.050**

 Covariance of DGE and SGE 0.05 0.048 0.021

 SGE variance 0.01 0.009 0.005

 Litter variance 0.25 0.247 0.045 0.248 0.045 0.000

 Pen variance 0.25 0.252 0.064 0.412*** 0.041 − 0.160***

 Residual variance 2.50 2.501 0.088 2.478** 0.083 0.023*

Family group and ruDS = 0

 DGE variance 1 0.987 0.154 0.989 0.154 − 0.002

 Covariance of DGE and SGE 0 0 0.016

 SGE variance 0.01 0.010 0.003

 Litter variance 0.25 0.250 0.054 0.251 0.052 − 0.001

 Pen variance 0.25 0.251 0.065 0.433*** 0.049 − 0.181***

 Residual variance 2.50 2.492 0.093 2.506 0.086 − 0.014
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assumptions of the two derivations. In our study, the 
genetic variances and covariances were assumed to be 
determined by the variation in relatedness between ani-
mals within pens. In contrast, Bijma [25] assumed the 
genetic variances and covariances were determined by 
the variation in relatedness of animals between pens.

Compared to pedigree-based relationships, using 
genomic-based relationships for predictions results in a 
substantial increase in the accuracy of DGE [20, 26–29] 
and TBV [30, 31]. The accuracy of TBV (i.e. accuracy of 
GESC in the scheme using predictions of TBV from SGM 
as selection criteria) was based on the correlation between 
predicted and true TBV. Genomic-based relationships 
provide better estimates of the actual genetic relationships 
between individuals [32], which increases not only the 
accuracy of DGE, but also that of SGE and TBV.

Group composition
Differences in RS between random grouping and family 
grouping were smaller when genomic-based relationships 
were used than when pedigree-based relationships were 
used, which supports our hypothesis. This result could 
be explained by the capability of genomic-based relation-
ships to exploit information from group members that are 
unrelated based on pedigree, which favors random group-
ing for predicting SGE. Nevertheless, RS was higher with 
family grouping, regardless of the relationships, statistical 
model, or selection criteria used in our study.

In the breeding scheme using predictions of TBV from 
SGM as selection criteria, a higher RS with family group-
ing could be explained by the higher accuracy of SGE. 
Yet, we observed a small difference in accuracy of DGE 
with random grouping. The higher accuracy of SGE with 
family grouping indicates that it is more important to 
obtain information on group members to predict SGE 
compared to information on animals from other groups. 
Thus, higher relatedness among group members likely 
increases the accuracy of SGE. Another reason for the 
increased accuracy could be due to the amplified effect of 
SGE when group members were composed of families. As 
an extreme example, for a group composed of n clones, 
the phenotype of an individual would receive n − 1 times 
its own SGE, which has a variance of (n− 1)2∗σ 2

uS
 . In 

contrast, when a group is composed of n unrelated indi-
viduals, the phenotype of an individual would be affected 
by SGE from group mates with a variance of (n− 1)∗σ 2

uS
 . 

As the effect of SGE is much larger in groups composed 
of clones, it would be predicted more accurately.

Interestingly, in the two breeding schemes using pre-
dictions of DGE from SGM and CGM as selection cri-
teria, RS was higher with family grouping than with 
random grouping. This could be explained by the effects 
of DGE and SGE being poorly separated when group 

members are composed of families. In other words, 
SGE might be partly confounded by DGE in this design, 
with SGE being partly accounted for in selection criteria 
when it is based on DGE predicted from SGM and CGM 
models.

The effects of group composition on prediction of 
genetic effects and variance estimation observed here 
are consistent with previous reports [17, 18]. Ødegård 
and Olesen [18] found that the accuracy of SGE and TBV 
was higher for groups composed of families, whereas the 
accuracy of DGE was lower for family groups compared 
to random groups. Compared to random groups, family 
groups had lower standard errors for estimates of SGE 
variance [17, 18], but high standard errors for estimates 
of DGE variance [18]. Our findings are also consistent 
with the results of Ødegård and Olesen [18] regarding the 
accuracy of TBV for random and family groups. How-
ever, these studies [17, 18] only considered SGM. When 
CGM was used, the accuracy of TBV was also higher 
with family grouping compared to random grouping. If (
σ 2
uD

+ (n− 1)σuDS
)
< 0 , random grouping could result 

in a negative accuracy of GESC [19, 25]; however, Ellen 
et al. [19] showed that the accuracy of GESC from CGM 
is always positive when group members are composed 
of families. In addition, our study shows that higher RS 
in groups composed of families could be obtained when 
predictions of DGE from SGM are used as the selection 
criteria, which had not been demonstrated to date.

Conclusions
Our study compared statistical models that did or did 
not include predictions of SGE for the selection of a 
trait affected by social interactions in a breeding pro-
gram for pigs, in which the rate of inbreeding was con-
strained. Statistical models that include SGE improved 
RS substantially, mainly because all the heritable vari-
ation from SGE could be exploited for selection. By 
using the correctly specified model, RS also increased 
slightly as a result of greater accuracy of predictions of 
DGE, depending on the genetic correlation between 
DGE and SGE. In addition, groups composed of four 
families were compared to randomly composed groups 
when using pedigree- or genomic-based relation-
ships of animals. Family group composition resulted 
in higher RS, regardless of the models used. However, 
the relative difference in RS between the two group 
compositions declined when using genomic-based 
relationships. In summary, for production systems in 
which animals are commonly housed in groups and 
for traits that are affected by SGE, statistical models 
using SGE for selection substantially increase RS at a 
fixed rate of inbreeding, because the heritable varia-
tion from SGE is accounted for. The advantage of using 
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family groups compared to random groups for RS 
reduces when using genomic-based relationships than 
pedigree-based relationships.
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Appendix
Genetic parameters in models with and without SGE
This Appendix presents the derivation that was used 
to show how the parameters for the model with SGE 
were related to those for the model without SGE. It was 
assumed that group members were composed at ran-
dom, and litter effect was absent.

The model with SGE, called SGM, in the scalar nota-
tion was:

where yi was the phenotypic record of individual i in pen 
p that has n individuals; µ is the mean; uD,i is the direct 
breeding value (DGE) of individual i using SGM; ∑n

j∈g\{i} uS,j is the sum of the social genetic effects (SGE) 
of pen mates j in pen p , not including individual i ; cp is 
the pen effect of pen p using SGM; ei is the residual using 
SGM. Using SGM, variance of DGE is σ 2

uD
 , variance of 

SGE is σ 2
uS

 , covariance of DGE and SGE is σuDS , variance 
of pen effect is σ 2

cp
 , and residual variance is σ 2

e .
Consider two individuals i1 and i2 in pen p1 and 

another individual i3 in another pen p2 . Individuals j 
and j′ are pen mates of individual i . Phenotypic vari-
ance and covariance based on SGM would be:

(A1.1)yi = µ+ uD,i +

n∑

j∈p\{i}

uS,j + cp + ei,

Var
�
yi1

�
= Ai1i1σ

2

uD
+ 2

�

j∈p1\{i1}

Ai1jσuDS +
�
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Ajj′σ
2

uS
+ σ 2

cp
+ σ 2

e ,

Var
�
yi2

�
= Ai2i2σ

2

uD
+ 2

�

j∈p1\{i2}

Ai2jσuDS +
�

j,j′∈p1\{i2}

Ajj′σ
2

uS
+ σ 2

cp
+ σ 2

e ,

Cov
�
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�
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2
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+




�
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+
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
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where A is the relationship coefficient between two 
animals.

The model without SGE, called CGM, in scalar nota-
tion is:

where u′

D,i is the direct breeding value (DGE) of individ-
ual i using CGM; c′p is the pen effect of pen p using CGM; 
and ei is the residual e′i . Variance of DGE is σ 2

u
′

D

 , variance 

of pen effect is σ 2
c
′
p
 , and residual variance is σ 2

e′.

Phenotypic variances and covariances based on CGM 
would be:

We see that information about the residual variance 
is in the differences between Var

(
yi1

)
 and Cov

(
yi1 , yi2

)
 , 

and information about the group variance is in the dif-
ference between Cov

(
yi1 , yi2

)
 , i.e. covariance between 

pen members, and Cov
(
yi1 , yi3

)
 , i.e. covariance between 

individuals that are not pen members. Thus, we study 
such differences.

First, in SGM, after some algebra the difference 
between variances and covariance between pen members 
equals:

In CGM, this becomes:

Due to the random composition of groups, then there 
is variation in relatedness among pairs of group mates, 
and therefore the term Ai1i1

+Ai2i2
2 − Ai1i2 differs between 

pairs of individuals in a pen. Comparing these two equa-
tions (A1.3) and (A1.4) and noting that they hold for any 
pair of individuals in the same pen, suggests that in CGM, 
an expression for the direct genetic variance is a function 
of parameters in SGM: σ 2

u
′

D

= σ 2
uD

− 2σuDS + σ 2
uS

 , 

(A1.2)yi = µ+ u
′

D,i + c
′

p + e
′
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D
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D
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(
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(
Ai1i1 + Ai2i2

2
− Ai1i2

)
σ 2

u
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whereas the residual variance in the two models is the 
same.

Second, in SGM, by averaging over all pairs of indi-
viduals in the same pen and over all pens, the phenotypic 
covariance between i1 and i2 is:

where dA is the average self-relationship and A0,w  is the 
average relationship between pen mates, and averaging 
over all pairs of individuals in different pens and all pairs 
of different pens,

where A0,b is the average relationship between indi-
viduals in different pens. Assuming that relationships 
within pens are the same as relationships between 
pens, A0,b = A0,w = A0 , as is the case when animals are 
assigned randomly to pens, then the difference

The expression for CGM is:

The comparison between these two equations (A1.5) 
and (A1.6) suggests that in CGM, an expression for the 

random pen variance as a function of parameters in the 

social genetic model is:

A simplification is obtained when relationships and 
self-relationships are weak, in which case dA− A0 ≈ 1, 
and this gives the expression:
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Note that SGM and CGM are not completely deter-
mined by differences between variance and covari-
ance within pen, and averages of differences between 
covariances within pens and covariances between pens. 
Therefore, alternative equations for relating parameters 
in SGM to parameters in CGM can be derived instead.

 Additional file 1: Table S1. Accuracies and bias of predicted genetic 
effects (mean ± standard error over 100 replicates) for the three breeding 
schemes assuming a social genetic variance ( σ 2

uS
 ) of 0.01. The means 

and standard errors over 100 replicates are shown for the accuracies and 
bias of predicted genetic effects between the three breeding schemes: 
SGM_DGE used a social genetic model (SGM) with selection criteria based 
on direct genetic values (DGE); SGM_TBV used a SGM with selection 
criteria based on total breeding values (TBV); and CGM_DGE used the 
classical genetic model (CGM) with selection criteria based on DGE. The 
three breeding schemes were compared for traits with an SGE variance 
( σ 2
uS

 ) equal to 0.01. Table S2. Accuracies and bias of predicted genetic 
effects (mean ± standard error over 100 replicates) for the three breeding 
schemes assuming a social genetic variance ( σ 2

uS
 ) of 0.001. The means 

and standard errors over 100 replicates are shown for the accuracies and 
bias of predicted genetic effects between the three breeding schemes: 
SGM_DGE used a social genetic model (SGM) with selection criteria based 
on direct genetic values (DGE); SGM_TBV used a SGM with selection crite-
ria based on total breeding values (TBV); and CGM_DGE used the classical 
genetic model (CGM) with selection criteria based on DGE. The three 
breeding schemes were compared for traits with an SGE variance ( σ 2

uS
 ) 

equal to 0.001. Table S3. Percentage of converged replicates in scenarios 
assuming a social genetic variance ( σ 2

uS
 ) of 0.001 or 0.01, and a correla-

tion ( ruDS ) between direct and social genetic effects at -0.5, 0 or 0.5. The 
table shows the convergence of the model for the estimation of variance 
components based on the average information (AI) restricted maximum 
likelihood (REML) estimation method (DMUAI module), and for solving 
BLUP equations based on the preconditioned conjugate gradient method 
(DMU5 module). Table S4. Accuracies of predicted genetic effects and 
bias in prediction (mean ± standard error over 100 replicates) when group 
members were composed at random versus composed of four families 
per group. The means and standard errors over 100 replicates are shown 
for the accuracies and bias of predicted genetic effects between family 
groups and random groups. These two designs were compared under 
three breeding schemes: SGM_DGE used a social genetic model (SGM) 
with selection criteria based on direct genetic values (DGE); SGM_TBV 
used a SGM with selection criteria based on total breeding values (TBV); 
and CGM_DGE used the classical genetic model (CGM) with selection 
criteria based on DGE. The trait was simulated with an SGE variance of 0.01 
and a correlation between SGE and DGE of 0. Table S5. Response to selec-
tion per 1% of increase in true inbreeding (mean ± standard error over 
100 replicates) in the three breeding schemes. The table shows response 
to selection per 1% of increase in true inbreeding for different breeding 
schemes using either pedigree-based or genomic-based relationship 
matrices. The three breeding schemes were compared for traits with an 
SGE variance ( σ 2

uS
 ) equal to 0.01 and correlations ( ruDS ) between SGE 

and DGE of -0.5, 0, and 0.5. Group members were allocated at random or 
composed of families.
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