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Background
Flow and mass cytometry are techniques to measure the presence of fluorochromes 
or isotopes conjugated to antibodies that are bound to specific cellular components at 
single cell resolution. Although cytometry can be considered an established method, 
recent developments enable the measurement of ever more markers simultaneously, 
resulting in a high-dimensional view for each cell [1, 2]. Although the number of 
measured features per cell is still much lower than in other single cell methods, such 
as single-cell RNA sequencing (scRNA-seq), the throughput is typically much higher 
with thousands of cells per second [1, 2]. An additional benefit of cytometry compared 
to scRNA-seq is the measurement at the protein level instead at the RNA level (since 
correlations between protein and mRNA expression can be low [3, 4]), although new 
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cytometry-by-seq approaches (e.g. Cite-seq [5] and REAP-seq [6]) allow the simultane-
ous measurement of transcript and protein expression. The antibodies used in cytom-
etry experiments are often chosen to discriminate several cell types by leveraging the 
biological knowledge about their protein expression (e.g. T-cells can be distinguished 
from other lymphocytes by the amount of CD3 they express). After obtaining the raw 
marker intensities per cell and preprocessing (including some or all of: Compensation, 
Quality assessment, Normalization, De-Barcoding, Filtering, Transformation [7, 8]), the 
first step is to discern cell populations. Many approaches exist, ranging from manual gat-
ing (with its known shortcomings [9, 10]) to modern methods such as automatic gat-
ing (e.g. with flowDensity [11]), by clustering cells using techniques such as FlowSOM 
(using a self organizing map) [12], flowMeans (k-means with cluster merging) [13] or 
PhenoGraph (based on a nearest neighbor graph) [14], or by using an annotated refer-
ence dataset (e.g. linear discriminant analysis [15]).

After clustering or cell type assignment, the processed data contains a subpopula-
tion label for each cell. The two classical analyses that can be performed are differential 
abundance (DA) and differential state analysis (DS) [16]. In DA, the (perhaps normal-
ized) relative proportion of cells in a subpopulation per sample is tested for an associa-
tion with additional information about the sample (e.g. control vs. treatment). The input 
data consists of a cluster× sample matrix of cell population abundances. In contrast, DS 
analyses organize the single cell data into (cluster-marker)× sample matrices, typically 
summarizing each subpopulation per sample with median marker expression; afterward, 
the summary is modeled against sample-wise annnotations for the association testing.

The R [17] package diffcyt [18] provides a framework for DA and DS for flow and mass 
cytometry. After preprocessing of the raw data, FlowSOM is (by default) used to cluster 
cells into many small clusters representing potential rare cell populations [18]. DA can 
then be performed with well-known count-based methods voom [19], edgeR [20] or Gen-
eralized Linear Mixed Models (GLMM). Alternatives for differential discovery include, 
among others, citrus (overclustering, building of hierarchy, model selection and regulari-
zations to get associations) [21], cydar (differential abundance on hypersphere counts, 
testing with Generalized Linear Models) [22], CellCnn (convolutional neural networks) 
[23] and MASC (Mixed-effects modeling of Associations of Single Cells) [24]. An impor-
tant distinction is that, with citrus and CellCnn on one side and diffcyt and MASC (and 
cydar) on the other, the association testing is “reversed”: for diffcyt, the cell population 
(relative) abundances are represented in the statistical model as the response, whereas 
in citrus and CellCnn, the abundances are treated as a covariate. The reversed approach 
allows for more flexibility in the experimental setup since it allows to include additional 
covariates, such as batch or age, to be directly adjusted for [16], and diffcyt was shown to 
compare favourably in terms of sensitivity and specificity across several test cases [18].

Cytometry samples from clinical studies often contain additional patient data, such 
as treatment group (e.g. control vs. treated), age or survival time. DA with a binary 
variable (e.g. control vs. treated) can be seen as the “classical” case in cytometry. Of 
particular interest is whether a cell subpopulation is more abundant in one experi-
mental condition compared to the other, which could be indicative of the effectiveness 
of a treatment. If an association with a continuous variable (e.g. age) is of interest, the 
modeling and testing are similar to the binary case and often the same methods can 
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be used, since linear models underpin the statistical framework. If a time-to-event 
variable (e.g. time to an event, such as death or recurrence of disease) is considered, 
there is a need to use different methods altogether. The problem with time-to-event 
variables is a purely practical one caused by events that are “censored”, i.e., they are 
not fully observed but only a minimum (or maximum) is known.

An example of cytometry data of a clinical study can be found in the FlowCAP IV 
(Flow Cytometry: Critical Assessment of Population Identification Methods) chal-
lenge [25]. 13 marker intensities of PBMC samples of 383 patients linked to time to 
progression to AIDS from HIV+ were measured with flow cytometry, with the objec-
tive to find cellular correlates that predict survival [25]. At the time, the two best 
performing methods, (FloReMi [26] and flowDensity/flowType/RchyOptimyx), both 
relied on classical survival analysis methods in the association testing step, such as 
the Cox proportional hazard model [27], where the censored variable is modeled as 
the response and the subpopulation abundance as the predictor.

Meanwhile, the performant frameworks for cytometry analysis that have been 
shown to perform well with completely observed data (e.g. diffcyt [18]) cannot directly 
handle censored data; in particular, a censored predictor should not be treated as 
fully observed, since it can lead to a bias [28]. Removing incomplete samples can be 
a workaround, but is inefficient for high censoring rates and might lead to a bias as 
well [29]. Thus, the goal of this work is to investigate how to best directly include a 
censored predictor in the modeling framework, which itself is an under-researched 
area compared to survival response models. The following are noteworthy: Rigobon 
et al. described basic issues that arise from censored covariates [28]; Tsimikas et al. 
developed a method based on estimating functions for generalized linear models [30]; 
Taylor et  al. described two methods based on multiple imputation [31]; Qian et  al. 
developed a threshold regression approach [32]; Atem et al. developed methods based 
on multiple imputation in a bootstrapping setup [33].

In the following, we describe an extension to the linear model approach to DA in 
diffcyt that allows to directly include random right censored time-to-event variables 
as a covariate using methods based on multiple imputation. More specifically, risk 
set (rs) imputation (constructs the risk set and then draws a random value from this 
set) and Kaplan–Meier (km) imputation (similar to risk set imputation, but the values 
in the risk set are weighted according to the survival function of the risk set) from 
Taylor et  al. [31] and the conditional multiple (mrl) imputation (the censored value 
is replaced with the mean residual life, i.e. the expected remaining survival time) 
from Atem et al. [33] are included. Furthermore, complete case analysis (cc) (deleting 
samples with incomplete data) and predictive mean matching (pmm) (treating cen-
sored values as missing and imputation by replacing with a random draw from similar 
samples) were included for comparison, as well as an extension to km, Kaplan–Meier 
imputation with an exponential tail (kme) (modelling of the tail of the survival func-
tion as an exponential distribution). A simulation framework was developed to eval-
uate basic properties of the model as well as differential discovery performance in 
the context of cytometry. The dataset from the FlowCAP IV challenge, represent-
ing an optimal use case as it is a public dataset with a large number of samples that 
has already been analyzed using a variety of methods, was re-analysed according 
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to the diffcyt workflow with the censoring-specific methods to highlight real world 
applicability.

Results
In order to test the performance of the included methods that handle censored covar-
iates, two simulation studies were performed. The first models a single cluster to test 
basic statistical validity of the underlying multiple imputation methods, and the second 
models multiple clusters representing a single cell dataset to test the performance of dis-
tinguishing between DA clusters and non-DA clusters.

Basic simulations

In the basic simulation, counts ( Yj ) for a sample j were modeled as binomially distributed 
with a GLMM association with two covariates, one censored ( Tj ) and the other binary 
( Zj ), via a logit link function with regression coefficients β:

where Rj represents an observation-level random effect to model overdispersion and nj 
is the total number of cells in a sample. For further details, see the “Methods” section.

Results of the basic simulations are shown in Fig. 1 for three different censoring rates 
(30%, 50%, 70%) for a sample size of 100 with 100 repetitions per condition. Four differ-
ent evaluation criteria are considered: raw bias ( RB = E(β̂1)− β1 ), coverage rate (CR, 
proportion of confidence intervals that contain the true value), confidence interval (CI) 
width and root mean squared error ( RMSE =

√

E((β̂1 − β1)2) ). For a multiple imputa-
tion method to be considered “randomization-valid”, it should have no bias and a CR 
close to the specified proportion (in this case, 0.95) [34]. If a method is randomization-
valid, the average width of the CI is another important criterion that represents sta-
tistical efficiency. On the other hand, the RMSE is an indicator of the precision of the 
estimation as it combines the variance and the bias ( RMSE = Var(β̂1)+ Bias(β̂1)

2 ). For 
increasing censoring rates, the RB (top row in Fig. 1) for methods km, kme, rs and pmm 
increases slightly, while for the other methods, it remains constant despite an increase in 
the RMSE. In particular, the RB for those four methods is positive under all conditions, 
indicating overestimation. This observed bias is quite consistent across different simula-
tion conditions (see Additional file  1: Figs. S1–S4) although only for a low regression 
coefficient of the censored covariate does it become pronounced (Additional file 1: Fig. 
S2). The CR (second row in Fig. 1) is for all methods close to the expected value of 0.95 
and taken together with the RB (in general close to zero) confirms the randomization-
validness of the methods under most of the tested simulation conditions. The CI width 
(third row in Fig. 1) for km, kme and rs has a nearly equal spread across all conditions 
while for the remaining methods, it increases with increasing censoring rate. Since the 
RMSE (bottom row in Fig. 1) is a combination of the variance and the bias of an estimate 

(1)

Yj|nj , pj ∼ Bin(nj , pj)

logit(pj) = β0 + β1Tj + β2Zj + Rj

nj ∼ U(1e4, 1e5)

Tj ∼ Weibull(�t , κt)

Rj ∼ N (0, σ 2)
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it summarizes row 1 and 3 of Fig. 1. So even though the estimates from km, kme and rs 
are slightly biased, their RMSE is lower compared to the other methods since their vari-
ance is lower.

The distribution of p values under the null simulation is for a low censoring rate uni-
form for all methods except mrl whose distribution is shifted towards 1 (Fig.  2). For 
increasing sample sizes, the p value distributions of all methods (except cc) shift towards 
1, suggesting they become more conservative. The distribution for cc on the other hand 
shifts slightly towards 0.

Taken together, these results show that no tested methods stand out as being uni-
formly underperforming, but none is remarkably outperforming compared to its com-
peting methods.

Simulations modeled from real data

Figure  3 depicts a schematic of the simulation procedure for the multiple cell pop-
ulation scenario. Based on a real dataset clustered into cell populations (e.g. data 
from FlowCAP IV clustered with FlowSOM; Fig.  3a), a Dirichlet-multinomial (DM) 
distribution is fit to the cluster× sample matrix of abundances (Fig. 3b). To insert a 
known association, the obtained concentration parameters α = (α1 . . . αK ) ∈ R

K
+ are 

then adjusted to include an association with a continuous (and later, censored) and 

Fig. 1  Single cluster simulation results for a sample size of 100 for censoring rates of 30%, 50% and 70%. 
Shown are four measures calculated from 100 simulation repetitions: raw bias (RB), coverage rate (CR), 
confidence interval (CI) width and root mean squared error (RMSE). cc: complete case analysis, km: Kaplan–
Meier imputation, kme: Kaplan–Meier imputation with an exponential tail, mrl: mean residual life imputation 
(conditional multiple imputation), pmm: predictive mean matching (treating censored values as missing), rs: 
risk set imputation. Other parameter values are: true regression coefficient β1 = − 1e−4 , number of multiple 
imputations = 50 and the variance of the random effect = 1
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a binary variable (Fig.  3c, Eq.  3). The sizes (second parameter of DM) are kept the 
same. For subpopulation i ∈ {1 . . .K } and sample j ∈ {1 . . .N } the counts of a sample 
Y j ∈ N

K  with size nj ∈ N are distributed according to

Fig. 2  Single cluster simulation p value distribution under the null model for three different censoring rates 
(30%, 50%, 70%). cc : complete case analysis, km Kaplan–Meier imputation, kme Kaplan–Meier imputation 
with an exponential tail, mrl mean residual life imputation (conditional multiple imputation), pmm predictive 
mean matching (treating censored values as missing), rs Risk set imputation. Each line represents 1000 
repetitions

Fig. 3  Simulation schema for multiple cell populations. a Starting with a cluster × sample matrix of 
abundances from a real dataset b a Dirichlet-multinomial (DM) distribution is fitted. c The DM parameters 
are expanded and adapted to include an association of the abundances with a continuous covariate t and a 
binary covariate z. d A new dataset is simulated from the new parameters
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with the matrix of concentration parameters A = (αT
1
. . .αT

N ) ∈ R
K×N
+  dependent 

among others on the continuous covariate Tj and the binary covariate Zj:

where the β parameters are the regression coefficients. A new dataset is then simulated 
with the adjusted parameters (Fig. 3d). For further details, see the “Methods” section.

When two covariates are present, one option is to test for an association of the cell 
population abundance with the censored covariate (i.e. by testing if the regression coef-
ficient of the censored covariate β1 = 0 in Eq.  3) while also accounting for the binary 
covariate. In Fig. 4 the TPR-FDR (true positive rate versus achieved false discovery rate) 
curves for the detection of true association between cell population abundance and sur-
vival time are shown for three different censoring rates and four different sample sizes. 
The method GLMM is the generalized linear mixed model method from diffcyt using 

(2)Y j ∼ DM(nj ,Aj)

(3)Aij = logit−1(β0i + β1iTj + β2iZj)×

K
∑

l=1

Alj

Fig. 4  Multiple cluster simulation results testing for the association of the censored covariate. True positive 
rate (TPR) versus False discovery rate (FDR) curves for censoring rates of 30%, 50% and 70% (rows) and 
samples sizes of 50, 100, 200, 400 (columns). Dots represent values at different significance thresholds 
(0.01, 0.05, 0.1; dashed lines). Filled dots have a lower FDR than the corresponding threshold, while empty 
dots have a FDR above. The x-axis is square root transformed. cc: complete case analysis, km: Kaplan–Meier 
imputation, kme: Kaplan–Meier imputation with an exponential tail, mrl: mean residual life imputation 
(conditional multiple imputation), pmm: predictive mean matching (treating censored values as missing), rs: 
Risk set imputation. GLMM uses the (unobserved) ground truth of the survival time and can be considered to 
be the maximum possible performance of the other methods
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the true (but unobserved) survival times and is included as a control, since it represents 
the maximum performance that could be achieved if the data were fully observed. It is 
not dependent on the censoring rate, so it can also be seen as a qualitative comparison 
of the simulation variability for a given sample size. pmm, on the other hand, can be con-
sidered to be a quasi-negative control, since it treats censored values as missing (leading 
to increased uncertainty about the data); thus, it highlights the gain in information from 
including censored values versus treating them as missing. In contrast, cc only keeps the 
“best” samples (the ones that are observed), which leads to more certainty about the data 
(at the cost of less data and potentially biased estimates).

Not surprisingly, lower sample sizes and increased censoring rates result in lower sen-
sitivity. For a censoring rate of 30%, the differences in performance between the methods 
are minimal, independent of the sample size. For high censoring rates (70%), the dif-
ferences between the methods are more prominent but decrease again for large sample 
sizes (400). pmm has overall the lowest sensitivity and poor error control; this is espe-
cially pronounced at high censoring rates leading to TPR-FDR curves with high FDR at 
low TPR. On the other hand, cc shows moderate sensitivity but the error control is poor 
for both high censoring rates and small sample sizes. rs, km, kme have in general a mod-
erate sensitivity and good error control while mrl has good sensitivity and decent error 
control. Especially for high censoring rates, mrl outperforms other methods in terms of 
TPR.

To summarize: The censoring-specific methods have in general good error control, but 
especially for high censoring rates, result in lower sensitivity at a given p value threshold 
(e.g. 0.05) than cc (which has poor error control).

The second option is to test for the association between the binary covariate and the 
cell population abundance (i.e. by testing if the regression coefficient of the binary covar-
iate β2 = 0 in Eq. 3), in the presence of a censored covariate. The TPR-FDR curves in this 
scenario (Fig. 5) show clear differences compared to the testing for the association with 
the censored variable. GLMM is again the unrealistic control while ncGLMM is based 
on GLMM, but excludes the censored covariate in differential testing. It could therefore 
be seen as the ad-hoc solution when a censored covariate is present but not of interest 
and one decides to neglect the possible effect of the second covariate on the response. 
Two main differences compared to the association testing of the censored covariate is 
that cc and mrl have low sensitivity, even lower than pmm in many cases. The best per-
forming methods are km, kme and rs, which often have similar sensitivity and error con-
trol. In many cases, they have a higher sensitivity than ncGLMM indicating that there is 
a benefit of accounting for the censored covariate instead of discarding it. Comparing 
the error control between Figs. 4 and 5 shows that in the binary covariate association 
testing, the error control of the censoring-specific methods is often closer to its expected 
values than in the censored covariate association testing.

An alternative simulation scenario with only one censored covariate was modeled as 
well to compare censored-covariate methods with the Cox proportional hazard model 
[27] (by maintaining the simulated associations, but switching the response and the 
covariate in the statistical model). The results indicate similar performance in terms of 
specificity and error control for the Cox proportional hazards model and the censored 
covariate regression models (Additional file 1: Fig. S5).
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Case study

To illustrate the use of models with censored covariates in differential discovery analy-
sis, the FlowCAP IV dataset was reanalysed. A total of 766 flow cytometry PBMC sam-
ples linked to time to progression to AIDS from HIV+ of 383 patients (two per patient, 
one stimulated, one unstimulated) were available. For each sample, 13 marker intensities 
(IFNγ , TNFα , CD4, CD27, CD107-A, CD154, CD3, CCR7, IL2, CD8, CD57, CD45RO 
and V-Amine/CD14) together with channels FSC-A, FSC-H and SSC-A were measured. 
Of the 383 available survival times, 79 were observed, resulting in a censoring rate of 
79% [25].

Preprocessing was performed according to the FloReMi pipeline (See Methods) fol-
lowed by clustering with FlowSOM using all marker intensities except FSC-C, FSC-H and 
SSC-A. The number of clusters in the first step of FlowSOM was set to 400. Additionally, 
metaclustering on the initial clusters was performed to obtain three resolutions: 20, 50, 
and 100 clusters; differential testing was then performed on all four sets separately. The 
covariates were the survival time and the condition (stimulated or unstimulated) of the 

Fig. 5  Multiple cluster simulation results testing for the association of the binary covariate. True positive 
rate (TPR) vs. False discovery rate (FDR) curves for censoring rates of 30%, 50% and 70% (rows) and samples 
sizes of 50, 100, 200, 400 (columns). Dots represent values at different significance thresholds (0.01, 0.05, 0.1; 
dashed lines). Filled dots have a lower FDR than the corresponding threshold, while empty dots have a FDR 
above.The x-axis is square root transformed. cc: complete case analysis, km: Kaplan–Meier imputation, kme: 
Kaplan–Meier imputation with an exponential tail of the survival function, mrl: mean residual life imputation 
(conditional multiple imputation), pmm: predictive mean matching (treating censored values as missing), rs 
: risk set imputation. GLMM uses the (unobserved) ground truth of the survival time and can be considered 
to be the maximum possible performance of the other methods. ncGLMM: same as GLMM but uses only the 
binary covariate for fitting and testing
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sample. Two random effects were modeled, one on a per sample level and the other on a 
per patient level. The three main methods (rs, km, mrl; number of imputations equal to 
200) plus the complete case analysis were applied. An illustration of how the association 
between the survival time and the abundance for a cell population looks like is shown in 
Fig. 6. At the top is a cluster with small adjusted p value while the cluster in the bottom 

Fig. 6  Association between cluster proportion and survival time for two selected clusters (from a total of 100 
clusters), one DA (top) and one non DA (bottom). Each dot represents a sample, the shape (Stim, Unstim) the 
condition (Stimulated, Unstimulated), the color the censoring state (censored, observed). The survival time is 
translated to get only positive values and then log transformed. Scaling of the axis in the upper plot removed 
7 data points (0.9%)
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has a high adjusted p value (as evaluated by mrl). No immediate association is visible, 
which could have various explanations, including high censoring rate, overdispersion, 
weak association.

Although no ground truth is established (i.e. which cell belongs to which cell popu-
lation and which (if any) cell population is DA), a comparison to results from other 
methods (i.e. the original FlowCAP IV submissions) still gives insights into differen-
tial discovery performance. For the differential testing, the proportion of significant 
clusters for multiple cut offs differed substantially (Table 1). In general, the propor-
tion of significant clusters is higher for a lower number of total clusters. While rs and 
km did not detect any DA clusters, cc found a large proportion of clusters to be sig-
nificant and mrl has intermediate detection rates.

Based on the proportion of detected clusters (Table 1), a level of 100 clusters was 
deemed to have a good balance between precision (cell population sizes) and sensi-
tivity (proportion of detected clusters). A closer look at the (unadjusted) p values of 
those clusters (at a level of 100 clusters) revealed similarities between the methods: 
6 clusters were found in the 10 clusters with lowest (unadjusted) p value for at least 
3 methods. The adjusted p values for rs and km are much higher than any reasonable 
significance level, however, cc and mrl have clusters that are differentially abundant. 
For cc, the proportion of significant clusters seems to be rather high ( ∼ 50% ), which 
is not unexpected given the poor error control observed in the simulations.

Comparing the marker expressions of those “top” 6 clusters (Additional file 1: Fig. 
S6) with the discovered subpopulations in the FlowCAP IV challenge reveals some 
similarities. For example, Cluster 9 matches the described population of CD3+ 
CD4− CD14/VIVID+ CD57− cells [25]) and cluster 38 is similar to the CD4- CD27− 
CD107a− CD154− CD45RO− population described in FloReMi [26].

Table 1  Proportion of significant clusters for different total number of clusters (20, 50, 100, 400) for 
different significant levels (0.01, 0.05, 0.1) after multiple hypothesis correction in the case study

cc complete case analysis, km Kaplan–Meier imputation, mrl mean residual life imputation (conditional multiple 
imputation), rs Risk set imputation

Number of cluster Cut off mrl rs km cc

20 0.01 0.35 0 0 0.75

0.05 0.55 0 0 0.9

0.1 0.85 0 0.1 0.95

50 0.01 0.3 0 0 0.62

0.05 0.48 0 0 0.76

0.1 0.66 0 0 0.8

100 0.01 0.13 0 0 0.49

0.05 0.32 0 0 0.59

0.1 0.39 0 0 0.64

400 0.01 0 0 0 0.0575

0.05 0 0 0 0.07

0.1 0 0 0 0.108
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Discussion
In differential abundance analysis with a variable subject to censoring, existing meth-
ods make use of classical survival analysis methods, such as the Cox proportional haz-
ard model. In particular, this would model the observed cell population abundances as 
predictors, which is a valid choice if no additional covariates are present. The use of a 
reversed approach (cell population abundance as response), however, has the benefit 
to directly include confounders such as batch or age. The problem is that this reversed 
approach leads to a censored predictor, which renders standard differential abundance 
analysis inapplicable. A workaround to this issue is the use of multiple imputation, 
where the imputation step is specifically designed to handle censored values. Simulation 
studies indicate that in general, there is a gain by including the censored data instead of 
discarding samples (complete case analysis; cc) or treating censored values as missing 
(predictive mean matching; pmm).

More specifically, the basic simulations revealed consistent but slightly biased param-
eter estimation for the related methods rs, km and kme, and the simulations modeled 
from real data showed similar or increased performance in terms of sensitivity compared 
to cc but with better error control. Parameter estimation with mrl on the other hand was 
unbiased in the basic simulation, but the coverage rate was higher than expected, which 
typically leads to conservative performance. In the simulations modeled from real data, 
the conservative performance of mrl was apparent for low FDR, while the TPR was often 
(especially for higher censoring rates) higher than for other methods. In the case study 
(no ground truth), only mrl and cc were able to detect differentially abundant cell (sub) 
populations although especially for cc, the number of detected clusters was high, which 
could indicate many false positives. But since for mrl the FDR was in the simulations in 
general very low, this could mean that indeed many clusters are differentially abundant 
or alternatively, the real data is substantially different in structure compared to the simu-
lations. For example, the simulations assumed a missing data mechanism that is missing-
completely-at-random (MCAR), which might not be given in this case. Especially for cc, 
a missing data mechanism different from MCAR could be a problem since it is known to 
be biased under this condition. On the other hand, mrl (and rs and km) should be able 
to handle certain missing-at-random (MAR) cases [33], although this was not directly 
confirmed here.

Furthermore, the comparison in the scenario with only one (censored) covariate 
shows that the Cox proportional hazard model performs well. In general, if no additional 
covariates need to be taken into account, classical survival analysis methods can be a 
reasonable option with a potential benefit in runtime.

The methods considered for direct inclusion of a censored covariate all rely on multi-
ple imputation, which has the advantage of high interpretability since the underlying sta-
tistical models are classical GLMMs. A disadvantage are high computing costs caused by 
the need for repeated imputations (e.g. for high censoring rates, runtimes of 1 h instead 
of 1 min); runtimes can be nonetheless reduced through parallelization. The resolution 
at which to analyze is another issue, since a high number of clusters may reduce the sta-
tistical power imposed by multiple hypothesis correction, while associations with rare 
cell populations might be overlooked for a low total number of clusters. If a hierarchi-
cal structure of the cell populations is available (e.g. via metaclustering in FlowSOM), 
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tree-based aggregated hypothesis testing methods (e.g. treeclimbR [35]) could increase 
differential discovery performance. Additional improvements of the differential discov-
ery performance could be achieved by the use of a different analysis method such as 
edgeR or voom, which were shown to have increased performance compared to GLMM 
[18].

A related issue is the assumption that the clustering method produces stable, mean-
ingful cell populations, which is in practice not always easy to achieve. Clustering is 
furthermore often complicated by the stochastic nature and/or the need to manually 
choose a threshold (e.g. number of clusters). One possible workaround could be to iter-
ate the clustering step (similar to VoPo [36]) and differential abundance analysis, whose 
results can then be combined to obtain regions in marker space of high probability of an 
association with the corresponding covariate.

A further issue is of general nature: testing the association with a continuous (cen-
sored) covariate requires larger sample sizes compared to the testing with a binary 
covariate, although this nonetheless also depends on the dispersion and the strength of 
the association.

Conclusion
Statistical modeling with a high proportion of censored data is always challenging, but 
even more so in DA settings with often overdispersed data and the need for multiple 
hypothesis testing correction. Nonetheless, we showed that including censored variables 
as a predictor in GLMMs results in high error control and decent sensitivity for a subset 
of the tested methods. Compared to classical survival analysis methods, such as the Cox 
proportional hazard model, higher flexibility in testing is provided, reflecting the need in 
typical experimental and clinical setups.

The tested methods were implemented in R and are available on Bioconductor (https://​
bioco​nduct​or.​org/​packa​ges/​censc​yt). Scripts for reproducing results and figures can be 
found on https://​github.​com/​retog​erber/​censc​yt_​paper_​scrip​ts.

Methods
Censoring

The data mechanism for simulating censored data is based on the one described in Atem 
et al. [33]. The variable X to be censored is drawn from a Weibull distribution with scale 
�x and shape κx with the following parameterization:

with the scale parameter � > 0 , the shape parameter κ > 0 and x ≥ 0 . A second variable 
C that corresponds to the censoring time is also drawn from a Weibull distribution, but 
with different shape and scale parameters. The observed value T is then the minimum of 
X and C. In summary:

f (x) =
κ

�

(x

�

)κ−1

e−(
x
�
)
κ

https://bioconductor.org/packages/censcyt
https://bioconductor.org/packages/censcyt
https://github.com/retogerber/censcyt_paper_scripts
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The parameters of the Weibull distributions are derived from the FlowCAP IV dataset 
[25]. More precisely �x and κx are obtained by fitting a Weibull distribution on the full 
dataset (taking into account censoring), while �c is from fitting only on the censored 
samples. κc is then calculated by first defining the desired censoring rate and then solv-
ing for κc (by calculating the probability P(C < X) =

∫∞
0

∫ x
0
f (c)f (x)dcdx , which can be 

seen as the expected censoring rate, for different values of κc).

Single cluster simulation

For the basic simulations with only a single cluster, the counts Yj (number of cells) with 
j ∈ 1 . . .N  was sampled from a generalized linear mixed model with a logit link function 
where the response (the number of cells) followed a binomial distribution (Eq. 1) where 
Tj follows a Weibull distribution with parameter as described above estimated from the 
FlowCAP IV dataset [25], the regression coefficients were set to b0 = − 2 , b1 = − 0.0001 
and b2 = 1 , Zj ∈ {0, 1} is a binary covariate with balanced groups, Rj is an observation 
level random effect to model overdispersion distributed according to a standard normal 
distribution ( σ 2 = 1 ) and nj is the sample size distributed according to a uniform distri-
bution with a minimum limit of 10,000 and a maximum limit of 100,000.

Multiple cluster simulation

The matrix of counts Y ∈ R
K×N for K clusters (cell populations) and N samples follows 

a Dirichlet-Multinomial (DM) distribution (Eq. 2) for j ∈ {1 . . .N } where nj is the total 
number of cells in sample j and A = (αT

1
. . .αT

N } ∈ R
K×N with Aij > 0 for i ∈ {1 . . .N } 

are the concentration parameters dependent on covariates Tj and Zj . Additionally 
Y j = (Y 1j . . .Y kj) , Tj ∼ Weibull(�, κ) and Zj ∈ {0, 1} is a binary variable with balanced 
groups. The proportions of cells in cluster i in sample j is simply

An association for cluster i is then assumed to be the following:

with an intercept β0i , a slope β1i for Tj and a slope β2i for Zj . The β ’s are therefore fixed 
for a cluster but are different between clusters. The covariates Tj and Zj are specific for a 
sample but not a cluster. The proportions πj for sample j follow a Dirichlet distribution, 
meaning the πij themselves follow a Beta distribution with mean

This allows to combine Eqs. 4 and 5 leading to Eq. 6 (which is the same as Eq. 3):

X ∼ Weibull(�t , κt)

C ∼ Weibull(�c, κc)

T = Min(X ,C)

πij =
Y ij

∑K
l=1 Y lj

(4)E(πij|Tj ,Zj) = logit−1(β0i + β1iTj + β2iZj)

(5)E(πij|Tj ,Zj) =
Aij

∑K
l=1 Alj
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with the sum of the concentration parameters for a sample A•j =
∑K

l=1 Alj . This means 
that Aij|Tj ,Zj is dependent on six values: the intercept β0i , the first slope β1i , the con-
tinuous covariate Tj , the second slope β2i , the binary covariate Zj and A•j . Since the sum 
A•j depends on all Aij for a given sample j, this means that in order to keep this sum 
equal across samples, for every Aij that is increased with increasing Tj there has to be an 
Aij that decreases the same amount. Because of the non-linearity of the logit function 
this could lead to a very weak association of the second Aij (which would not strictly 
follow the logit relationship). The strategy is therefore to allow small discrepancies of 
the sum A•j in order to get the specified associations. To decrease the variation of the 
sum A•j two clusters of similar proportion are chosen. To obtain β0 and β1 , the desired 
minimum/maximum mean proportion πij for max(Tj) is determined and then Zj is set 
to zero to solve for β0 and β1 . This will result in a sum A•j that is exactly the same at 
Tj = 0 and Tj = max(Tj) . All sums A•j in between will slightly deviate but this deviation 
is too small to detect under the simulation conditions considered here. To obtain β2i , 
a difference of the mean abundance at Tj = 0 is specified, which then allows to calcu-
late β2i . In short, the β ’s are calculated by specifying border constraints, consisting of 
maximum differences in the mean abundance dependent on the covariates. Because it 
was observed that the spread of the simulated data was higher than in the real dataset, 
the concentration parameters were multiplied by a factor of five (keeping the expected 
counts per cluster the same) toreduce the variance of counts.

Multiple imputation

The goal of multiple imputation is not to replace the missing or censored values by esti-
mates but rather to find a parameter estimate of the statistical model being tested that is 
unbiased and confidence valid [34].

Multiple imputation consists of three main steps [34]: Imputation, Analysis, Pooling. 
In the first step, multiple complete datasets are generated by replacing the incomplete 
values with a random draw from a set of possible true values. This can, for example, be 
the assumed or empirical distribution of the incomplete value. In the second step, each 
completed dataset is individually analysed, e.g. by fitting a regression model. In the third 
step, the results from the second step are combined using Rubin’s rules [37] that con-
sider the additional variances in the analysis. A slight variation is the use of Resampling 
in the first step. Before imputation, a bootstrap sample is drawn, which is then the new 
incomplete dataset where the missing values get replaced. One of the advantages of this 
approach: the incomplete value can be replaced by a deterministic quantity of the data 
(e.g. the mean), which would not work in classical multiple imputation (each imputed 
dataset would be the same). A drawback is that Resampling techniques are based on 
large-sample theory and might not work properly for small samples [29].

DA

The presented DA methods are based on the GLMM approach in diffcyt which con-
sists of fitting a generalized linear mixed model with a logit link function for each cell 

(6)Aij = logit−1(β0i + β1iTj + β2iZj)A•j
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population, testing and multiple hypothesis testing correction. When a censored covari-
ate is present, multiple imputation is used to handle the additional uncertainties of the 
parameters caused by incomplete data. The imputation methods are described in the 
following.

In complete case analysis (cc, also known as listwise deletion [34]), only the observed 
values ( T j|T j < C j for j ∈ {1 . . .N } ) are used by discarding all incomplete samples.

The risk set imputation (rs) [31] first constructs the risk set R(T l) = {T j|T j > T l} for 
j ∈ {1 . . .N } for all T l |T l < X l with l ∈ {1 . . .N } and second, randomly draws one of 
those as the imputed value. If censoring depends on a covariate, the risk set is calculated 
as described in (Hsu et al.) [38], incorporating the idea of predictive mean matching.

The Kaplan–Meier imputation (km) [31] is similar to risk set imputation. It first con-
structs the risk set R(T l) for all T l |T l < X l and then estimates the survival function with 
the Kaplan–Meier estimator for each of those sets. A random event time according to 
the survival curve is drawn and replaces the censored value.

Conditional multiple imputation [33] (labeled here as mean residual life imputation 
(mrl)) is based on the mean residual life, which is the expected remaining survival time 
until an event happens

with the random variable X representing the true (unobserved) survival time and S(t) 
the survival function. It can be used to get an estimate of how long it will take until an 
event happens given that the event did not happen yet. Conditional single imputation 
[33] (Conditional multiple imputation with only one imputation) imputes censored val-
ues by adding the corresponding mean residual life. First a survival curve S(T ) (using the 
Kaplan–Meier estimator) is fitted and then the mean residual life is added to the cen-
sored value [33]. If censoring depends on a covariate, S(T ) can be fitted using the Cox-
proportional hazards model [27]. Mean residual life imputation (Conditional multiple 
imputation) can not be used in the normal multiple imputation set up since all imputed 
datasets would be the same. Instead Resampling is applied to first generate incomplete 
datasets before imputation.

The estimation of S(T ) is done without any distributional assumptions resulting in a 
high data dependency. If the sample size is small and/or many values are censored the 
estimation can be drastically different from the true (unobserved) survival function. 
Especially towards the tails, as data gets even sparser, estimation is difficult. If the high-
est measured value is censored, S(T ) does not reach its theoretical minimum (zero). The 
usual way to deal with this problem is to treat the maximum value as if it was observed. 
Another possibility is to make a distributional assumption for the tail of the survival 
function. This was explored for the method Kaplan–Meier imputation by assuming an 
exponential tail, which is referred to here as kme (based on [39]).

Unfortunately, there is no clear rule as to how many imputations are needed [34]. 
In general, this depends on (among other things) the censoring rate; higher censoring 
requires more imputations. Two methods to estimate the number of imputations are 
based on a linear rule [40] and a quadratic rule [41]. Only minor changes in the results 

(7)mrl(t) = E(X − t|X > t) =

∫∞
t S(u)du

S(t)
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after around 50 imputations could be seen in our case leading to the use of 50 imputa-
tions as the default.

Case study

Following are some clarifications of the description in the main text. The raw flow 
cytometry data is available under http://​flowr​eposi​tory.​org/​id/​FR-​FCM-​ZZ99. The data 
set consists of 766 PBMC samples linked to time to progression to AIDS from HIV+ of 
383 patients. For each patient, two samples (measured at the same time) are available: 
one untreated and one treated with HIV-Gag proteins.

Preprocessing was performed according to the FloReMi pipeline [26]: First, qual-
ity control by removing cells within a certain time sampling interval where the median 
FSC-A value differed dramatically from tolerable limits. Then, removal of margin events 
by removing cells that have a minimum and maximum value for some channel. Next, the 
selection of single cells by removing cells whose FSC-A to FSC-H ratio was larger than 
the median ratio plus two times the standard deviation of the ratios. Next, compensation 
with the given spillover matrices (from the .fcs files) was applied, data was logicle trans-
formed and alive T-cells were gated (using flowDensity) using channels V-Amine/CD14 
and CD3 and selection of V-Amine/CD14-CD3+ population.

In the differential testing a transformed survival time, according to strans = loge(s + 11) 
(the +11 is to obtain only positive values since the lowest survival time is −10 ), was used.
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