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Introduction
Although there have been extensive studies on multiscale 
modeling of cancer from molecular level to tumor level in 
the past decade, drug effect modeling has mostly remained 
at the pharmacokinetic/pharmacodynamic (PK/PD) charac-
terization in modern pharmacotherapy without any multiscale 
consideration and integration with existing multiscale tumor 
studies. Thus, there is a need to develop multiscale computa-
tional models which cover the divide between organism-level 
PK/PD model and cell-level biochemical models.

Multiscale modeling deals with integrating information 
at multiple temporal and spatial scales and at various lev-
els of biochemical complexities as summarized in Figure 1. 
It involves linking data resulting from the studies of mol-
ecules, cell, tissue, organ, organism, and population.1 Multi-
scale modeling has been widely touted as being exceedingly 
challenging with few successes but many failures.2 However, 
successes typically have a great impact as depicted by the 
application of multiscale modeling of the human heart to 
patient care,3 clinically driven design of multiscale modeling 

of cancers (eg, nephroblastoma, lung cancer, and glioblas-
toma multiforme),4,5 multiscale modeling of the progression 
of breast cancer,6 multiscale modeling of the development of 
cancer in epithelial tissues,7 and so on.

It is possible that the levels or scales on which cancer acts 
in some domains have relatively little to do with the canoni-
cal molecule, organelle, cell, tissue, tumor, or body hierarchy. 
Some cancer regimes (perhaps most, given the gene network 
analyses of several of the publications of the Cancer Genome 
Atlas project) may have an inherent network level of action 
(ie, the aggregate behavior of ∼10 genes in each of ∼15 gene 
networks). If so, at the gene level, carcinogenesis is often not 
meaningfully decomposable to the actions of network com-
ponents (the individual genes) or localizable in the above 
canonical hierarchy. Sensitivity analyses can help to reveal 
these emergent features. However, it is also noticed that this 
phenomenon does not contradict with the multiscale mod-
eling framework that links the entities at different scales, 
only that the entity may be a set of genes rather than an 
individual gene.
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enhance the selectivity and efficacy by interfering with specific- 
targeted molecules needed for carcinogenesis and tumor 
growth. Although the lack of precision of the traditional cyto-
toxic drug allowed a rather direct approach in preclinical and 
clinical study, developing a paradigm that will better evaluate 
MTA efficacy is substantially more complicated. Moreover, 
complex diseases, such as cancer, involve the interaction of 
more complicated and dynamical biological systems. Thus, it 
is important to quantify drug effectiveness regarding different 
dosing regimens, optimal target(s), and combinational therapy 
at multiple scales of biochemical complexities.

The rationale of integrating multiscale modeling with 
drug effects is to link PK and PD information with experimen-
tal design (at cell population level and tumor level) in order to 
establish and evaluate dose–concentration–response relation-
ships and subsequently describe and predict the effect-time 
courses resulting from a drug dose, while taking into account 
the underlying biological regulatory networks (at the molecular 
level).18,24–26 There are several challenges in this regard, namely:

•	 Selecting a model with manageable complexity, while 
not losing critical information.

Body level modeling • PK/PD modeling

• PK models for system pharmacology

• Models population dynamics, fomation and
   maintenance of tissue architecture
• Cell-stroma interactions, biomechanical models
• Models heterogeneous tumor environs and
   tumor heterogeneity with PDEs/ABMs

• Cells behavior in their microenvironment
• Cells-cell interactions models
• Models effect of physical properties of cells and
   their environment on cell divisions

• Drug target prediction by sensitivity analysis
• Models signaling pathways, metabolic networks,
   genetic regulatory networks

• Models protein-protein interactions
• Models drug target interactions
• Prediction of pathogenic mutations
• Uses ODE to model biochemical reactions

• Uses molecular dynamics(MD) simulation method

• Models dependency on environmental features
   or on ligand binding

• Models structure and dynamic properties of lipids
   proteins and peptides

Tissue/organ level
modeling

Cell-based modeling

Subcellular process
modeling

Molecular modeling

Atomic modeling

figure 1. Hierarchical abstractions or components of multiscale models.

This review of multiscale models is from the system’s 
pharmacology perspective. System pharmacology is a vast 
area of study that deals with the applying knowledge of sys-
tems biology8 in combination with large-scale experiments 
and model-based computational analysis in the studies of drug 
effects, targets, and activities9–11 as well as the dynamics of 
drug interactions with biological systems.12–14 More concisely, 
multiscale modeling with drug effects integrates PK/PD drug 
models with phenomena at two or multiple temporal and spa-
tial scales such as signaling networks, drug interactions, physi-
ological processes operating at the tissue and organ level as well 
as animal models or clinical information. In other words, it is 
aimed at understanding the dynamics and evolution of a true 
multiscale model with PK/PD or integrative pharmacological 
perturbations through experimentations and mathematical or 
computational analysis.15–18

Currently, drug efficacy improvement is a critical research 
need, and this implies the identification of a new or better ther-
apeutic targets. In recent years, there has been an increasing 
usage of molecularly targeted agents (MTAs)19–23 for cancer 
treatment. MTA design enables the interruption of vital com-
ponents of crucial pathways in the system. MTAs are used to 
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•	 Accurate model parameter identification.
•	 Experimental validation of the proposed model.

The approach to tackle these challenges is as follows:  
(1) at the cell population level, study the response of a popula-
tion of cells to various drugs and quantify the drug efficacy 
from experimental data; (2) use stochastic hybrid systems 
(SHSs) theory to link the drug efficacy obtained at the cell 
population level to pathways of interest at the molecular level; 
(3) extend the model to integrate the drug administration at 
the tumor level; and (4) improve the experimental design and 
drug intervention optimization iteratively while refining the 
multiscale drug effect model. Further discussions are given in 
the “Computational multiscale models incorporating PK/PD 
drug effect” section.

The need for a paradigm shift to the integration of multi-
scale models with drug development in relation to PK/PD or 
integrative pharmacological information is evident,9,11,13,14,27,28 
as partly corroborated by various National Institute of General 
Medical Sciences workshops tagged as Quantitative and Sys-
tems Pharmacology I and II.29 The workshops were organized 
for the purpose of deliberating on the impact and contributions 
of systems biology to drug discovery and development as well 
as the current and future understanding of drug actions. Inter-
ested readers may refer to Ref. 29 for details.

The remainder of this paper is outlined as follows: the 
“Fundamental multiscale models” section presents a review 

of the fundamental multiscale models, while the “Multiscale 
models incorporating drug effects” section focuses on mul-
tiscale models incorporating drug effects. An example of a 
multiscale model using SHSs with PK/PD and the evaluation 
of drug effects is reviewed in the “Computational multiscale 
models incorporating PK/PD drug effect” section. Finally, 
this paper is concluded in the “Conclusions” section.

Fundamental Multiscale Models
We present example studies on general multiscale modeling for 
cancer and then later move on to multiscale modeling works 
incorporating drug effects. This review aims to complement 
excellent reviews such as Refs 1, 19, 30–38 in the literatures but 
from a slightly different perspective. This is due to the common 
belief that cancer and tumor growth are complex biological phe-
nomena. The complexity can be best understood and tackled by 
employing a multifaceted approach that may involve in vivo and 
in vitro experiments, in silico models, multiscale tumor model-
ing, continuous/discrete modeling, agent-based modeling, and 
multiscale modeling with PK/PD drug effect inputs (which is 
the main focus of this review). A summary of the sample stud-
ies on multiscale models for cancer in terms of application areas 
and methodologies used is provided in Table 1.

A review of important and recent works on multiscale 
cancer models that span two or more spatiotemporal biological 
scales and those that have successfully studied tumor angio-
genesis, invasion, progressions, and metastasis from a truly 

Table 1. sample multiscale modeling researches (with and without system pharmacology considerations) based on application areas and 
methodology used.

RESEaRCh woRkS aPPLICaTIoN aREaS METhoDoLogY

a. Examples of multiscale modeling study incorporating drug effects

Clinically driven design of multiscale cancer models: the 
contracancrum project paradigm, marias et al (2011)5  
multiscale cancer modeling and in silico oncology: 
emerging computational frontiers in basic and translational 
cancer research, stamatakos et al (2013)49

Glioblastoma 
multiforme, lung  
cancer, in silico  
oncology, tumor 
research

Continuum-based method, theory of 
reaction-diffusion, discrete event model 
using cell clustering into equivalent 
classes, monte Carlo approach, cellular 
automata and dedicated algorithms

Discovering molecular targets in cancer with multiscale 
modeling, Wang et al (2011)50,51,59 systems pharmacology:  
Bridging systems biology and pharmacokinetics- 
pharmacodynamics (PKPD) in drug discovery and  
development, Graaf et al (2011)

Drug target discovery, 
drug discovery and 
development

In silico Cross-scale agent Based 
analytical techniques

Drug effect study on proliferation and survival pathways 
on cell line-based platform: a stochastic hybrid systems 
approach24

Colon cancer, drug 
effect modeling

stochastic hybrid system model with 
markov jumps

multiscale mathematical modeling to support drug 
development, nordsletten et al (2011)96

Drug development ordinary differential equations

What it takes to understand and cure a living system: 
computational systems biology and a systems biology-
driven pharmacokinetics/pharmacodynamics platform, 
swat et al (2010)97

Pathway modeling, 
model repositories 
with PK/PD consider-
ations, yeast  
glycolytic network

robustness analysis, nonlinear 
(weighted) least-squares methods for 
parameter estimation

systems pharmacology and genome medicine: a future 
perspective, Wist et al (2009)98

Drug action, genome 
medicine, disease 
treatment and 
prevention

High-level perspective paper, global 
drug analyses, network analysis

(Continued)
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Table 1. (Continued)

RESEaRCh woRkS aPPLICaTIoN aREaS METhoDoLogY

systems approaches to polypharmacology and drug 
discovery, Boran et al (2010)19 mathematical modeling in 
cancer drug discovery, Wang et al (2014)60

Disease treatment, 
drug discovery

Literature review

b. Examples of multiscale modeling works not incorporating drug effects

strategies and tactics in multiscale modeling of cell-
to-organ systems, Bassingthwaighe et al (2006)99 
Hierarchical reconstructions of cardiac tissue, poole et al 
(2002)100

Physiology, cardiac 
performance

Linear-in parameter dynamic system 
model, ordinary and partial differential 
equations, cellular automata

multiscale models of cell signaling, sameer et al (2012)101 
A systems model of signaling identifies a molecular basis 
set for cytokine-induced apoptosis, Janes et al (2005)102 
sachs et al (2005)103

Cell signaling mass cytometry, bayesian theory, partial 
least square regression

structural systems biology and multiscale signaling mod-
els, telesco et al (2012)104 Heterogeneous multiscale 
method: a general methodology for multi-scale modeling, 
engquist et al (2003)105

Cell signaling, protein 
networks

multiple methods reviewed such as 
hybrid multiscale method

multiscale modeling in computational biomedicine, sloot 
et al (2009)106 modeling the heart–from genes to cells 
to the whole organ, noble (2002)3 Hunter et al (2008)46 
Plank et al (2008)107

Human immunodefi-
ciency virus spreading 
and coronary artery 
disease, heart

Complex automation simulations, multi-
scale simulation library environ, con-
tinuum field concepts and temporal scale 
separation in systems of coupled oDes

multiscale computational models of complex biologi-
cal systems, Walpole et al (2013)34 multiscale cancer 
modeling, Deisboeck et al (2011)30 In silico models of 
cancer, edelman et al (2010)35 simulating cancer growth 
with multiscale agent-based modeling, Wang et al (2014)33 
Geraldes et al (2009)36 fedosov et al (2011)37

Blood vessel 
wall, erythrocyte 
membrane, diabetic 
retinopathy, tumor 
modeling, cancer 
systems biology

Literature review

multiscale models for gene network engineering, 
Kaznessis (2006)108

Gene regulatory 
networks, biomole cular 
systems, oscillators

multiscale hybrid algorithms

Cytosolve: a scalable computational method for dynamic 
integration of multiple molecular pathway models, 
ayyadurai et al (2011)109

Biomolecular multi-
pathway modeling

Parallel simulations, Cytosolve software 
platform

multiscale models of breast cancer progression, 
Chakrabarti et al (2012)6

Breast cancer 
progression

Micro-fluidic and 3D tissue engineering 
platform development

Bioinformatics, multiscale modeling and the IUPs 
physiome project, Hunteret al (2008)46 Integration from 
proteins to organs: the Physiome project, Hunter et al 
(2003)110

Heart and organ 
modeling,

XmL markup languages: CellmL for 
oDes and algebraic equations, fieldmL 
for PDes.

multiscale, multi-resolution brain cancer modeling, Zhang 
et al (2009)111

tumor progression 
and invasion, brain 
cancer modeling

agent-based in silico glioma modeling, 
Kinetic equations.

 

multiscale perspective can be found in the study by Deisboeck 
et al.30 The work considered four major biological scales in 
space and time and the various modeling approaches in terms 
of continuum, discrete, and hybrid modeling techniques.39–45 
There are diverse classifications of biological scales46 because 
of the diverse nature of the systems to be modeled. The central 
theme of the classifications is that a multiscale model should 
consider different scales in time and space that reasonably, 
predictively, and realistically capture the behavior of the bio-
logical system across the different scales from lower to higher 
scales or vice versa.47,48 The research community has tackled 
this challenging problem with different modeling and ana-
lytical or computational approaches. For instance, Marias et al 
and Stamatakos et al.5,49 have performed a promising study 
on computational multiscale cancer models and in silico oncol-
ogy for basic and translational cancer research. They discussed 

multiscale cancer modeling and in silico oncology as two dis-
ciplines that are addressing the challenges associated with the 
complexity, heterogeneity, and multifacetedness of cancer cells 
and have been able to clearly describe the common network 
analytical techniques used in the study of tumor invasion, pro-
liferation, apoptosis, and metastasis.

Researchers have extensively studied the simulation of 
cancer growth with multiscale agent-based modeling.33,50,51 
Genetic mutations have long been understood to be the primary 
cause of uncontrolled growth of cells, and this has prompted 
researchers to investigate the genes that are responsible for 
the growth of cells and the associated processes affected and 
regulated in tumorigenesis52 as well as their influence on the 
microenvironments and metastasis of tumors.53 Usually, dif-
ferent approaches such as wet-lab experiments and mathe-
matical and computational models are employed to tackle the 
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complexity and multifacetedness of abnormal cell growth.54 
The mathematical cancer models can be discrete, continuous, 
or hybrid.30,40,41,55–57 Wang et al.33 reviewed the most current 
multiscale agent-based modeling (ABM) of tumors that has 
elucidated the concept of tumor growth and invasions from 
a multiscale perspective. The study discusses the various 
hypotheses resulting from these modeling approaches as well 
as the challenges associated with these cancer ABMs. ABMs 
have successfully incorporated and investigated several aspects 
of the morphology of cancer cells, including angiogenesis, 
phenotype-altering mutation, extracellular matrix influences, 
responses to chemotherapy or surgery, availability of nutrients 
and effects of oxygen, adaptations to the microenvironment, 
metastasis, and invasions of normal tissues.30,40,41,55–57

One example application of the potential of multiscale 
models of cancer is the study by Chakrabarti et al.6, in which 
the authors present a multiscale model of breast cancer pro-
gression. They study multiscale modeling of breast cancer with 
the specific focus on integrating models based on intracellu-
lar signal transductions with procarcinogenic mechanical and 
chemical microenvironmental indications. The authors study 
the initiation, proliferation, and the basic biomolecular angio-
genesis of breast cancer. They investigate modeling methods 
for different types of cancers as well as models specific to 
breast cancer with the long-term aim of identifying and vali-
dating potential therapeutic targets. For the identification and 
validation of multiscale simulations, the authors succinctly 
describe the integration of microfluidic and three-dimensional 
tissue engineering platform development that could be geared 
toward such an endeavor. Multiscale modeling has further 
been applied as a spatiotemporal computational model which 
integrates genetic evolution with spatial growth in predicting 
that migration and cell turnover limits heterogeneity within a 
tumor.58 The model is based on stochastic replication of cells 
having rates that are proportional to the values of the neigh-
boring empty sites, thus suggesting that the growth rates of a 
tumor can be markedly affected by attacking the short-range 
dispersal activities of the tumor cells.58

Multiscale Models Incorporating drug effects
Wang et al have carried out a number of research studies on 
how multiscale models can be used in the identification of 
drug targets and combination therapy.50,51,59–61 The approach 
is based on quantifying the relations among intracellular 
Epidermal growth factor receptor (EGFR) signaling dynam-
ics, extracellular Epidermal growth factor (EGF) stimuli, and 
multicellular growth in lung cancer. Multiscale modeling of 
tumors incorporated with system pharmacology will aid pro-
gress toward the development of practical smart drugs. It will 
result in an integrated system-level method of determining the 
dynamics of actions of existing and new drugs in preclinical 
trials, model organisms, and individual patients. In addition, 
the experimental, mathematical, and computational stud-
ies of biological networks in diseases and health will provide 

a better way to understand the multiple factors that influence 
the drug effects and thus will help in revealing better ways 
to therapeutically intervene in the pathophysiology of dis-
ease and also reduce toxicity to the minimum.29,62 The group 
has also been studying multiscale modeling for investigat-
ing huge malignant brain cancer as biosystems that are self-
organizing and dynamically complex,63–66 which furthers the 
argument for using multiscale modeling for interdisciplinary 
cancer research.

Researchers are currently working on multiple modeling 
approaches that promise to be integrative while linking differ-
ent levels of biological complexities and biochemical details. 
For instance, differential equation models and extensive sto-
chastic simulations have helped to clarify the origin of noise in 
the biological systems,67 the temporal and spatial dynamics of 
complicated signaling pathways,68 and the origin of variabilities 
in cellular response to drugs.69 Regression analytical models  
are used to explain more complex pathway models and to 
compare drug responses in diseased and normal cells.70,71 At 
another direction, bioinformatics and data mining techniques 
have been used to study the diversity in patient drug response.72 
In a practical context, PK/PD models have remained as the 
foundation upon which drug discovery is based. Li et al have 
carried out several studies in an attempt to link pathway and 
PK/PD modeling via hybrid systems modeling and the char-
acterization of drug effects by PK/PD.18,24–26,73

Of particular interest to this review is the study by Li 
et al.24 involving a multiscale integrative preclinical model 
that combines mathematical analysis and experimentations in 
studying the pathway dynamics crucial to cancer cells when 
perturbed with drugs, thereby assessing the therapeutic effects 
of such drugs. The multiscale model bridges cell-level bio-
chemical models and organism-level PK/PD models.

The imperative research needed today is the improvement 
of drug efficacy, which implies the identification of better or 
new targets and/or combinations of targets. This is predicated 
on better predictions, which depend on better computational 
models and measurements. Examples of multiscale models 
that incorporate molecular and cellular information with PK/
PD models and studies of a tumor’s drug absorptions, distri-
butions, and engagements of targets are given in Refs 18, 25, 
26, 28.

The work by Li et al.24 has the potential to help in admini-
stering the appropriate dose and dosage regimens as well as 
the identification of patients who will respond well to new 
therapeutic drugs and/or drug combinations. The approach 
is to combine multiscale mathematical modeling of signal-
ing and regulatory pathways with single-cell and multifaceted 
experimental data in order to grasp the exact biochemistry, 
functionality, and dynamics of the networks controlling regu-
lar cell physiology and implicated in disease. The work pro-
vides a detailed mathematical and computational approach 
to study and describe the dynamics and mechanisms of drug 
actions on tumor growth and diseased cells.18 It also provides 
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a systematic way of determining the best effective dose.5 An 
extension of the work will arm researchers with mathemati-
cal and systematic ways of understanding the mechanisms of 
drug action and adverse responses in a computational multi-
scale context, thereby improving the probability of success in 
new drug discovery.38

The ContraCancrum project paradigm5,74–82 has been 
focused on clinically driven design of multiscale cancer models. 
The project has been seeking to develop a multiscale cancer 
models that contribute to the clinical adaptations of predictive 
in silico oncology. It aims to optimize treatment of cancer in 
personalized medicine via the simulation of malignant tumor 
response to diverse therapeutic regimens. The project has 
developed an integrated software platform called IMENSE 
for uploading the various imaging, molecular, histological 
and treatment data. The data are acquired before and after the 
therapeutic procedure and they are compared with multi-level 
simulation predictions to aid clinical adaptation procedures. 
Marias et al.5 particularly focus on the design of an in silico 
multiscale tumor model, which is driven clinically. The study 
combines fundamental biomedical science with modules in 
information technology to initiate a lifelong clinical adaptation 
procedure of the model for glioblastoma multiforme and lung 
cancer (non-small cell). The modeling methodologies used 
include a continuum-based method that exploits the theory 
of reaction–diffusion, a discrete-event model exploiting cell 
clustering into equivalence classes, Monte Carlo approaches, 
cellular automata, and dedicated algorithms.74–77

Furthermore, the ContraCancrum project team has 
developed the technological integrative oncosimulator, which 
combines multiscale cancer models with information techno-
logy within the in silico oncology framework.4,83 The work by 
Stamatakos et al.4 describes the in silico multiscale informa-
tion technology integrated oncosimulator and its vital compo-
nents and functions. The multiscale oncosimulator simulates 
therapeutic responses of tumors in vivo in the context of clini-
cal trials, adaptations, and personalized medicine. The paper 
describes its use in the prediction of responses to chemo-
therapy in the cases of breast cancer and nephroblastoma. Val-
idation of the oncosimulator is carried out by comparing its in 
silico prediction with preoperative and postoperative imaging 
information and clinical data. This is a step toward enabling 
multiscale models in systems medicine.84 The interdiscip linary 
and multiscale nature of systems medicine with respect to dis-
ease treatment, clinical practice, basic research and informa-
tion technology infrastructure, and the exploitation of current 
data, mathematical analysis, computational approaches, and 
information technology for developing efficient multiscale 
models are discussed by Wolkenhauer et al.84

Multiscale modeling has been used to explain the discov-
ery of molecular targets in cancer.38,59 Wang et al extensively 
studied the identification of molecular therapeutic targets of 
high value via multiscale modeling in combination with cross-
scale agent-based analytical techniques and its associated 

challenges in terms of data heterogeneity, verification of model 
parameters, validation of model outputs, and computational 
complexity of more complicated models. They provided an in 
silico modeling approach that promises to give insight into the 
discovery of drug targets. The group has also studied global 
sensitivity analysis for multiscale mathematical cancer models, 
which helps in identifying crucial molecular-level parameters 
with substantial effect on microscopic-level tumor volume and 
rate of expansion.85

The design of multiscale PK/PD models that is cell type 
specific for personalized patient care has been examined by 
Ballesta et al.86 and specifically applied to Temozolomide 
chemo therapy against brain tumor. The study provided a quan-
titative characterizations of Temozolomide brain dispositions 
in the patient using a  physiological-based mechanistic mod-
eling approach at the molecular level to determine the PKs 
of Temozolomide; the law of mass action was used to model 
the chemical reactions, and the law of diffusion was used to 
model the passive drug transportation. The overall model-
ing approach defined intracellular standard brains and brain 
tumors compartment, where Temozolomide pH-dependent 
conversions to the DNA-alkylating species resulted in form-
ing DNA adducts that served as the entry point for the PD 
model. The study will help in personalizing Temozolomide 
chemotherapy and the development of optimal dosage sched-
ules as well as the optimal combination of drugs for personal-
ized medical care.86

computational Multiscale Models Incorporating 
PK/PD drug effect
The modeling and characterization of drug effects at different 
scales and across scales have been reported by Li et al.18,24–26,73 
Specifically, in a study by Li et al.24, the authors’ goal is to 
investigate the responses of cancer cell population to a variety 
of drugs that target the proliferations and survival pathways 
by proposing a multiscale model that combines dynamics of 
genetic regulation and cell population responses to drugs using 
SHS approach. For the validation of the model, they used the 
example of a colon cancer cell line HCT-116 with the appli-
cation of the Lapatinib drug.24,87 At the time of the Trans-
lational Genomics Research Institute (TGen) experiments 
on HCT-116 cell line, the measure to determine whether the 
proliferation pathway at the cell population level is repressed is 
the percentage change in nonproliferating cells. For the link-
age of this measure to the drug effects on the molecular level, 
an integrative pathway and cell population model were pro-
posed based on SHS theory and the setup of the experiments 
at TGen.

The behavior of cancer can be modeled using discrete, con-
tinuous, or hybrid mathematical approaches. Discrete model-
ing can provide a spatiotemporal representation of individual 
cells and cell–cell interactions. The major disadvantage of this 
modeling approach is that the computation required increases 
as the number of cells being modeled grows and this limitation 

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Integrating multiscale modeling with drug effects for cancer treatment

27CanCer InformatICs 2015:14(s5)

Table 2. notations and pathway dynamics (ηLap,1, ηLap,2, and ηLap,3 are the coefficients due to the drug Lapatinib acting on different proteins or 
complexes. they are affected by the PD and PK characteristics of a patient. s denotes a switch. the evolution of the switch follows a markov 
chain with state transition matrix M. m1 (m0) denotes the probability that s switches from on to off (off to on), respectively.

vaRIabLE PRoTEIN oR CoMPLEx PaThwaY DYNaMICS

y(1) eGfr2 dy
dt

EGFR EGFR y S yLap
( )

[ ][ ] ( ) ( ),
1

1 71 1 1 12= − −β α η α

y(2) eGfr +	erBB2 dy
dt

EGFR ERBB y S yLap
( ) [ ][ ] ( ) ( ),
2

2 2 72 2 2 10= − −β α η α

y(3) erBB2 +	erBB3 dy
dt

ERBB ERBB y S yLap
( ) [ ][ ] ( ) ( ),
3

2 3 3 73 13 3 11= − −β α η α

y(4) ras dy
dt

y S y S y yLap Lap
( )

( ) ( ) ( ) ( ), ,
4

1 2 4 41 1 2 2 3 4= + − −α η α η α α

y(5) raf dy
dt

y y y( ) ( ) ( ) ( )5
4 10 53 5 6= − −α α α

y(6) meK dy
dt

y y( ) ( ) ( )6
5 66 7= −α α

y(7) erK dy
dt

y y y y y y( ) ( ) ( ) ( ) ( ) ( ) ( )7
6 7 7 7 7 77 8 9 10 11 12= − − − − −α α α α α α

y(8) PI3K dy
dt

y S y yLap
( ) ( ) ( ) ( ),
8

3 8 413 3 14 4= − +α η α α

y(9) PDPK1 dy
dt

y y( ) ( ) ( )9
8 914 15= −α α

y(10) aKt dy
dt

y y y( ) ( ) ( ) ( )10
9 10 1015 5 16= − −α α α

y(11) mtor dy
dt

y y( ) ( ) ( )11
10 1116 17= −α α

y(12) rP6sKB1 dy
dt

y y y( ) ( ) ( ) ( )12
11 7 1217 9 18= + −α α α

y(13) fos dy
dt

y y y( ) ( ) ( ) ( )13
7 12 138 18 19= + −α α α

ηLapS drug coeff.

η ηLap
Lap

S =






1 S is OFF

S is ON

s switch
M

m m
m m=

−

−










1

1
0 0

1 1

confines the model to a very small number of cells. Continuous 
modeling is a good candidate for describing large-scale sys-
tems. It can capture large-scale dynamics of tumor growth and 
development at a lower computation cost but sacrifices the 
resolutions of individual cells, especially when the properties of 
the cell vary over little spatiotemporal scales.

Hybrid modeling combines the advantages of both dis-
crete and continuous modeling methods, and is appealing  
for modeling genetic networks under drug perturbations 
because biological systems are naturally nonlinear, have highly 

varied regulatory requirements, and possess a wide range 
of control strategies for meeting their needs. In the case of 
pathway dynamics, we adopted the well-recognized model of 
the proliferation and the survival pathways using Ordinary 
Differential Equations (ODE).24

Another modeling approach is the S-system model-
ing rubric.88–91 The S-systems are described as systems of 
power-law-oriented, finite-difference differential equations  
cast in a canonical producer–consumer form, and their re pre-
sentations are mathematically equivalent to the  generalized 
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Lotka–Volterra schema. Any system of ordinary  differential 
equations can be recast (although not uniquely) as an 
S-system. S-systems have many attractive mathematical 
properties that permit one to freely merge varying levels 
of abstraction with the assumption that flux conservations 
are respected. Specifically, an S-system modeling method 
could be employed in unifying the representations of gene 
regulations,91 molecular mass action-oriented kinetics, and 
population dynamics.

The approach adopted by Li et al follows an SHS model-
ing framework92–95 with the dynamics as shown in Table 2. 
Specifically, they considered the case where the drug effect 
coefficients are stochastic with the switching mechanisms fol-
lowing a Markov chain as shown in Figure 2.

The proliferation and the survival pathway, which bio-
logists presently understand, for instance, the Kegg collection 
of pathways (http://www.genome.jp/kegg/pathway.html) and 
NIH BioCarta pathways collections http://cgap.nci.nih.gov/
Pathways/BioCarta_Pathways, are given in Table 2 together 
with input from the drug Lapatinib. The drug effects are intro-
duced to the switch by affecting m1 (m0).

 
m m0 11 1

=
+

=
+

γ
γ

γ
γ

,  (1)

where γ, the drug effect coefficient, is affected by PK/PD.26 
In the simulation study, the proposed model was validated 
via a baseline run of the pathway model, and the output of 
the combined model was compared with the results from the 
experiments at TGen.87 It is observed from the baseline run 
of the gene expression levels in Figure 3 that Lapatinib sup-
pressed the proliferation of the cancer cells, as indicated by 
the (Extracellular signal-regulated kinases [ERK]) level: It is 
interesting to note that the survival pathway is not suppressed. 
At the beginning of applying the drug, the concentration level 
of (Phosphoinositide 3-Kinase [PI3K]) decreases. However, 
it quickly recovers due to the cross-talk and feedback loops 
in the pathways. The simulation result shown in Figure 4 is 
similar to those observed in the series of experiments carried 
out on cancer cell lines at TGen.87 The observation is that 
Lapatinib repressed the cancer cells from proliferating and 
there exists a slow start for the first 10–15 hours, then a linear 
segment, and later after 30 hours a saturation in response as 
equally observed in the experiments at TGen.

An immediate extension of the work is the identification 
of the model parameters and the validation of the model across 
various drugs and cancer cell lines, but the model has to be 
carefully examined so as not to under- or overfit the parameters 
of interest. These phenomena are mostly relevant to multiscale 
integrated models in which there is a risk of propagating errors 
across scales and between models. The other challenge with this 
is that the model is more closely related to linear systems with 
markov jumps, and our understanding of such systems is not as 
thorough as those of linear systems, bilinear systems, or SHSs.

Species

Population dynamics

E ([ERK])

Gene regulation model
in individual cell

dρ
dt

=

=

=

γ (1 – ρ) – βρ

γ 
γ 0 

Evolution of Si follows a markov chain with
state transition matrix M

Molecular level

dχi
αj  χi  – αj  χi ,

αj  χjηdrug – αj  χi ,dt

S1 is OFF

S1 is ON

figure 2. schematics of the multiscale model used by Li et al.24 ρ is the 
nonproliferating cells ratio, β is the balancing factor that models extra 
variabilities such as logistic constraint. γ is the drug effect coefficient, 
[erK] denotes the mean concentration level of erK in cells. xi and xj are 
the gene expression (protein) levels, αi . 0 and αj . 0 are the degradation 
and synthesis rates, respectively. ηdrug is the drug effects factor. the 
expected impact of Lapatinib is the suppression of the rapidly accelerated 
fibrosarcoma (raf)/ras pathway or reduces the concentration level of 
[erK] and thus, the prevention of cancer cells from proliferation.

conclusions
In this paper, we review multiscale modeling for cancer 
treatment with the incorporation of drug effects from a 
quantitative system’s pharmacology perspective. We believe 
that tumorigenesis and tumor growth can be best under-
stood and tackled by employing and integrating a multifac-
eted approach. This includes in vivo and in vitro experiments, 
in silico models, multiscale tumor modeling, continuous/ 
discrete modeling, agent-based modeling, and multiscale 
modeling with PK/PD drug effect inputs. Multiscale mod-
eling approaches incorporating PK/PD information or drug 
effects will aid progress toward integrative personalized 
medicine, in which we can administer an optimal patient-
 specific nutritional or therapeutic regimen based on the 
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patient’s profiles and drug effects. Thus, this review focuses 
more on multiscale models that incorporated the drug effects. 
We provide an example application of multiscale modeling 
employing SHS for a colon cancer cell line HCT-116 with 
the application of Lapatinib drug. The simulation results are 
similar to those observed from the setup of the wet-lab exper-
iments at TGen.
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figure 3. a baseline run of the proliferation and the survival pathway with 
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