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Abstract

Background: Advances in sequencing technology over the past decade have resulted in an abundance of
sequenced proteins whose function is yet unknown. As such, computational systems that can automatically predict
and annotate protein function are in demand. Most computational systems use features derived from protein
sequence or protein structure to predict function. In an earlier work, we demonstrated the utility of biomedical
literature as a source of text features for predicting protein subcellular location. We have also shown that the
combination of text-based and sequence-based prediction improves the performance of location predictors.
Following up on this work, for the Critical Assessment of Function Annotations (CAFA) Challenge, we developed a
text-based system that aims to predict molecular function and biological process (using Gene Ontology terms) for
unannotated proteins. In this paper, we present the preliminary work and evaluation that we performed for our
system, as part of the CAFA challenge.

Results: We have developed a preliminary system that represents proteins using text-based features and predicts
protein function using a k-nearest neighbour classifier (Text-KNN). We selected text features for our classifier by
extracting key terms from biomedical abstracts based on their statistical properties. The system was trained and
tested using 5-fold cross-validation over a dataset of 36,536 proteins. System performance was measured using the
standard measures of precision, recall, F-measure and overall accuracy. The performance of our system was
compared to two baseline classifiers: one that assigns function based solely on the prior distribution of protein
function (Base-Prior) and one that assigns function based on sequence similarity (Base-Seq). The overall prediction
accuracy of Text-KNN, Base-Prior, and Base-Seq for molecular function classes are 62%, 43%, and 58% while the
overall accuracy for biological process classes are 17%, 11%, and 28% respectively. Results obtained as part of the
CAFA evaluation itself on the CAFA dataset are reported as well.

Conclusions: Our evaluation shows that the text-based classifier consistently outperforms the baseline classifier
that is based on prior distribution, and typically has comparable performance to the baseline classifier that uses
sequence similarity. Moreover, the results suggest that combining text features with other types of features can
potentially lead to improved prediction performance. The preliminary results also suggest that while our text-based
classifier can be used to predict both molecular function and biological process in which a protein is involved, the
classifier performs significantly better for predicting molecular function than for predicting biological process. A
similar trend was observed for other classifiers participating in the CAFA challenge.

* Correspondence: shatkay@cis.udel.edu
1Computational Biology and Machine Learning Lab, School of Computing,
Queen’s University, Kingston, ON, K7L 3N6, Canada
Full list of author information is available at the end of the article

Wong and Shatkay BMC Bioinformatics 2013, 14(Suppl 3):S14
http://www.biomedcentral.com/1471-2105/14/S3/S14

© 2013 Wong and Shatkay; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:shatkay@cis.udel.edu
http://creativecommons.org/licenses/by/2.0


Introduction
Proteins play a fundamental role in all living organisms
and are involved in a variety of molecular functions and
biological processes. Thus, characterizing the function of
proteins is an important goal in proteomic research. Due
to high-throughput sequencing technologies, the number
of proteins whose sequence is available but whose function
is still unknown is growing rapidly. Unfortunately, experi-
mental procedures for studying protein function are still
costly and time consuming. Therefore, computational pre-
diction systems are actively being developed and used to
help deduce protein function. The Critical Assessment of
Function Annotations (CAFA) Challenge [1] aimed to
evaluate a variety of systems performing a shared task of
predicting protein function, where the function categories
were based on the molecular function and biological pro-
cess components of the Gene Ontology (GO).
Traditionally, computational prediction methods use

features that are derived from protein sequence, protein
structure or protein interaction networks to predict func-
tion [2-5]. For example, GOtcha [6], OntoBLAST [7], and
BLAST2GO [8] assign protein function based on sequence
similarity; PHUNCTIONER [9] and ConFunc [10] predict
function based on similarity between protein structures;
systems that use protein interaction networks to deduce
function include GeneMANIA [11] and the prediction sys-
tem developed by Chua et al. [12].
In contrast, we propose a system that uses text from

the biomedical literature as a source of features to predict
function; these features are used to represent proteins
and to assign functional annotation. We have submitted
our preliminary results to the CAFA challenge, and pre-
sent here the fundamentals of our text-based prediction
system.
There are two main ways to use text data in the context

of inferring protein function: Information Extraction and
Classification. The system presented here belongs to the
latter category, namely, classification. Systems that use the
information extraction approach aim to identify and
extract phrases or terms from text sources that directly
describe the function of a protein. That is, rather than pre-
dict protein function, such systems aim to find what is
already known and reported in the literature about the
function or the process in which a protein is involved. In
contrast, a classification system uses features that are
derived from text sources in order to represent any protein
- regardless of whether its function is reported in the text
or not. The system uses the text-based representation of
proteins whose function is already known to train
machine-learning classifiers that can then assign function
labels to yet-unannotated proteins (where the latter are
also represented using text-based features).
One of the earliest information extraction systems,

AbXtract [13], identified sentences that discuss the

function of proteins and ranked the relevance of the sen-
tences according to the statistical significance of the words
that are present. Since then, different information extrac-
tion systems have used a variety of strategies to retrieve
passages of text that discusses protein function. For exam-
ple, there are systems that use pattern matching and sen-
tence structure analysis to retrieve sentences that contains
both a protein name and a Gene Ontology (GO) term,
from biomedical abstracts [14,15]. There are also systems
that extract keywords from literature or databases, and
associate the keywords with GO categories by using a dic-
tionary-based approach [16] or by using clustering techni-
ques [17]. Other information extraction systems are used
within the biomedical domain to discover biological
knowledge (see for instance, surveys by Jensen et al. [18]
and by Cohen et al. [19]).
As for systems that perform classification based on text

features, several systems have focused on annotating the
function of yeast proteins. However, these systems are
limited in scope as they only assign GO categories from
the biological process ontology and these systems are only
evaluated on a small number of proteins. For example,
Raychaudhuri et al. [20] built a document classifier that
assigns biological process GO categories to abstracts. The
GO categories that are assigned to each abstract are then
transferred to the proteins that are referenced in the
abstract. Their system used 21 biological process terms
from GO as function categories and was tested only on
1,188 yeast proteins, The text-based classification system
by Nenadic et al. [21] used support vector machines to
classify 2,975 yeast proteins into one of eleven biological
process terms found in the higher level of the GO hierar-
chy. (By “higher level” of the GO hierarchy, we refer to
the more general concepts of the hierarchy, as opposed
to the most specific concepts that occur toward the
leaves.) In their work, the proteins are represented by the
words that are found within associated abstracts for each
protein. The main goal of their work was to study the
impact of various levels of text pre-processing on classifi-
cation performance. They concluded that text pre-pro-
cessing can significantly reduce the training time of the
classifier without decreasing performance.
There are also text-based classifiers that classify biome-

dical abstracts, rather than proteins, into functional cate-
gories. The system by Theodosiou et al. [22] classified
abstracts into 12 function categories (out of the 21 GO
codes used in [20]) using linear discriminant analysis.
Similarly, Pan et al. [23] used linear discriminant analysis
to identify abstracts that describe associations between
transcription factor proteins and GO categories.
Another text-based prediction system that is strongly

related to the one presented here is EpiLoc [24]. EpiLoc
is a text-based classification system that is used to predict
protein subcellular localization. In that work, protein
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information was collected from the curated database
UniProtKB/Swiss-Prot [25], which was used to train and
test the classifier. In order to represent the proteins using
text, the abstracts mentioned for each protein in the
UniProtKB/Swiss-Prot database were retrieved from
PubMed; Text features were then selected from the asso-
ciated abstracts based on the Z-Score statistical test.
While the focus of EpiLoc is protein subcellular localiza-
tion as opposed to function, the system was compared to
other state-of-the-art systems that use other types of fea-
tures and showed that the text-based system offered
competitive performance.
Toward the CAFA challenge, we aimed to develop a

text-based classifier for representing and classifying pro-
teins by their molecular function and biological process.
We based our system on the framework introduced in
EpiLoc, while modifying it to perform function prediction
as opposed to protein subcellular localization. The trained
system was applied through the CAFA challenge to pro-
teins from both the eukaryotic and prokaryotic tracks of
the CAFA evaluation dataset. We have trained and tested
our system using 5-fold cross validation on a dataset of
36,536 proteins extracted from the curated protein data-
base UniProtKB/Swiss-Prot. The proteins that we included
in our dataset had at least one GO functional annotation
with an experimental evidence code, and one associated
abstract from which text features could be obtained.
The results from this evaluation, along with the funda-

mental aspects of this preliminary system and results
from the CAFA challenge itself are presented in this
paper. Notably, the system we submitted solely uses text-
based features, and in-and-of itself is not expected to out-
perform other classifiers. The ultimate goal is to integrate
the text-based system with a other types of function pre-
dictors, as our experience with location prediction [26]
suggests that such an integration is likely to prove
beneficial.

Methods
To train our classifier, we compiled a dataset of proteins
for which a reliable function or process annotation was
assigned according to UniProtKB/Swiss-Prot, as
described below. For each protein we also retrieved the
PubMed abstracts that are referenced from its respective
UniProtKB entry, as a source of text features. From the
associated abstracts, we extracted terms that are charac-
teristic for each functional category - that is, terms whose
occurrence probability is statistically significantly differ-
ent in abstracts of proteins in one functional class than in
all other classes. We used these terms as text features to
represent proteins. The dataset of proteins was then used
to train and test our text-based classifier using 5-fold
cross validation. Further details are provided below.

The protein and the text datasets
Our dataset of proteins was extracted from the Uni-
ProtKB/Swiss-Prot database. We included proteins that
are annotated with at least one GO category from either
the biological process or molecular function ontology, and
whose entry in the database includes at least one reference
to a PubMed abstract. However, since we aimed to identify
features that can characterize well each GO category cor-
responding to function or to process, we excluded from
the dataset proteins that were annotated with three or
more GO categories from the second level of the GO hier-
archy. Furthermore, to ensure that the dataset consists of
proteins whose annotation is of high certainty, we checked
the evidence code associated with each GO annotation,
and did not include in the dataset any annotations that
were generated through computational methods. The evi-
dence codes for annotations that are included in the data-
set are shown in the left column of Table 1, while the
evidence codes for which annotations were excluded are
listed in the right column,
The final dataset thus consisted of a total of 36,536

proteins of which 21,764 proteins were annotated by GO
categories from the biological process sub-ontology, and
22,309 proteins annotated with molecular function GO
categories. This dataset was used for training and testing
the system using 5-fold cross validation.
In order to represent proteins using text-features, we

first linked each protein to the set of PubMed abstracts
that are associated with it, based on UniProtKB/Swiss-
Prot. To do so, we identified for each protein all the
PubMed identifiers (PMIDs) that were listed in its Uni-
ProtKB/Swiss-Prot entry, and retrieved the corresponding
abstracts from PubMed. Notably, our primary goal is to
represent proteins using terms that are highly predictive of
their potential function. Since a single abstract may be
associated with multiple protein entries in UniProtKB/
Swiss-Prot, which may have different functions, we
excluded abstracts that are associated with more than
three proteins that have different functions. Altogether,
our text corpus consists of 68,337 abstracts for all the pro-
teins in the dataset.

The function-classes used
As per the CAFA Challenge requirements, our function
classes consist of GO categories from both the biological
process and molecular function ontologies. There are
about 20,000 distinct GO categories in the biological pro-
cess sub-ontology and about 9,000 categories in the mole-
cular function sub-ontology. Ideally, each of the individual
GO categories should correspond to a separate function
class. However, this simple view cannot be directly
realized. The reason being that many of the specific GO
categories denoting function or process do not have a
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sufficient number of proteins (or associated PubMed
abstracts) to be used for training a classifier. For example,
the GO category ‘platelet activating factor metabolism’ has
only a single protein associated with it. When the number
of training proteins for a function class is low we cannot
extract text features that have a statistically significant
association with the class.
For all these reasons, we do not use all the GO cate-

gories as function classes, but rather use a coarser class
granularity. We thus use as function classes only GO
categories that are at the second level of the GO hierarchy
(one level away from the root node), merging together all
the descendant GO categories below each node all the
way down to the leaf-nodes. However, even at this level,
some of the GO categories still do not have a sufficient
number of proteins for training and testing a classifier.
We therefore removed from the list of function-classes
GO categories that are associated with fewer than 15 pro-
teins (removing from the set both the GO categories and
the associated proteins). This process resulted in a total
of 35 function classes of which 24 are biological process
GO categories and 10 are molecular function GO cate-
gories, all in the second level of the GO hierarchy. The
resulting set of GO categories, which are used as function
classes by our system, is shown in Table 2.

Text feature selection
The purpose of feature selection is to identify terms that
can be used to characterize and to distinguish among
proteins from different function classes. Such terms are
the ones that are associated with a class with high statisti-
cal significance, as explained below. The selected terms
are used as text features to represent proteins and to
train our classifier. For our feature selection step, we
adopt the approach introduced by Brady and Shatkay
[24,26] in their work on predicting protein location. The
main steps are described next.
We first pre-processed all the abstracts, extracting all

individual words (unigrams) and all pairs of consecutive
words (bigrams). We then applied the Porter Stemmer
[27] to all the words, thus removing suffixes and reducing

the words to their root form. Last, we reduced the number
of terms by removing stop words such as ‘or’, ‘and’, or
‘this’, as well as common words that appear in more than
70% of the abstracts. We also removed words that are rare
and specific, which appear in fewer than three abstracts.
After pre-processing the abstracts to obtain the set of

candidate terms, we use the Z-Score statistical test to find
characteristic terms [24]. To avoid any use of information
about the test data in this feature selection process, the
Z-score-based feature selection uses only the training set
within each 5-fold cross validation run [28]. That is, the
characteristic terms are selected only from the four parts
of the dataset that are used for training within each itera-
tion of the cross validation. The test set (the fifth part of
the dataset) is then represented based on the features
selected from the rest of the dataset.
A term is considered to be characteristic with respect

to a function f, if its probability to appear in abstracts
associated with proteins whose function is f is statisti-
cally-significantly different from its probability to appear
in abstracts associated with proteins of all other func-
tions. For each term t, we compute the Z-score to mea-
sure the statistical significance of the difference in term
occurrence probability across function classes. For a term
t, and functions f and f’, the Z-score is defined as:

Zt
f ,f ′ =

Pr(t|f ) − Pr(t|f ′)√
Ṗ · (1 − Ṗ) · (

1∣∣Df
∣∣ +

1∣∣Df ′
∣∣)

, where Ṗ =

∣∣Df
∣∣ · Pr(t|f )

∣∣Df ′
∣∣ · Pr(t|f ′)∣∣Df

∣∣ +
∣∣Df ′

∣∣

and Pr(t | l) denotes the conditional probability of term
t to appear in abstracts that are associated with proteins
whose function is l. For any function l, the conditional
probability Pr(t | l) is estimated using a maximum likeli-
hood estimate, by dividing the number of abstracts that
contain the term t and are associated with proteins
whose function is l, by the total number of abstracts asso-
ciated with proteins whose function is l. Formally, this
conditional probability is defined as:

Pr(t|l) ≈ |d ∈ Dl s.t. t ∈ d|
|Dl|

Table 1 List of evidence codes

Included evidence codes Excluded evidence codes

EXP Inferred from Experiment ISS Inferred from Sequence/Structural Similarity

IDA Inferred from Direct Assay ISO Inferred from Sequence Orthology

IPI Inferred from Physical Interaction ISA Inferred from Sequence Alignment

IMP Inferred from Mutant Phenotype ISM Inferred from Sequence Model

IGI Inferred from Genetic Interaction IGC Inferred from Genomic Context

IEP Inferred from Expression Pattern RCA Reviewed Computational Analysis

IC Inferred by Curator IEA Inferred from Electronic Annotation

TAS Traceable Author Statement NAS Non-traceable Author Statement

The table shows which GO evidence codes were included in our dataset and which evidence codes were excluded.

Wong and Shatkay BMC Bioinformatics 2013, 14(Suppl 3):S14
http://www.biomedcentral.com/1471-2105/14/S3/S14

Page 4 of 14



where d denotes an individual abstract and Dl denotes
the set of abstracts that are associated with proteins
whose function is l.
If the absolute value of the Z-score for a term t and a

function f is higher than a predetermined threshold with
respect to all other functions f’, the term t is selected as
a characteristic term for function f.
In our system, we use the union of all the characteris-

tic terms over all function classes as the set of text fea-
tures for representing proteins. For the molecular
function classes, a total of 521 characteristic terms were
selected and for the biological process classes, a total of
831 characteristic terms were used.

Representing proteins using feature vectors
We represent proteins using the ‘bag of words’ approach
[29], as briefly explained below. The selected set of char-
acteristic terms, denoted as TN, is used to represent
each individual protein p as a vector of | TN | term
weights. (We thus use 521-dimensional vectors in the
case of the molecular function classifier and 831-dimen-
sional vectors for the biological process classifier). Each

term weight, wti, represents the significance of the char-
acteristic term ti, within the set of abstracts associated
with protein p (the set of abstracts is denoted as Dp).
The term weight is calculated as the ratio between the
number of times term ti appears within Dp and the total
number of term occurrences of all distinguishing terms,
tj, from the set TN in Dp:

wp
ti =

# of times ti appears in Dp

�tj∈TN (#of times tj appears in Dp)
.

In the evaluation set that was given by CAFA, 65 of
the 596 proteins had no associated abstracts. For such
“textless“ proteins the text features of homologous pro-
teins are used (as was done before in EpiLoc [24]). We
use BLAST to compare the sequences of textless pro-
teins to the sequences of proteins that have associated
abstracts. We rank the BLAST results by their e-values
and choose the three proteins with the lowest e-values
as homologs. We then assign a weighted combination of
the three feature vectors to the textless protein. To
account for the degree of homology between the textless

Table 2 The GO categories that are used as function classes in this work

Molecular Function Biological Process

GO ID (#) GO Category GO ID (#) GO Category

0005488 Binding 0065007 biological regulation

0003824 catalytic activity 0032502 developmental process

0030528 transcription regulator activity 0009987 cellular process

0005215 transporter activity 0050896 response to stimulus

0060089 molecular transducer activity 0008152 metabolic process

0030234 enzyme regulator activity 0051234 establishment of localization

0005198 structural molecular activity 0016043 cellular component organization

0016247 channel regulator activity 0023052 Signalling

0009055 electron carrier activity 0032501 Multi-cellular organismal process

0045182 translation regulator activity 0022414 reproductive process

0051704 multi-organism process

0040011 Locomotion

0040007 Growth

0051179 Localization

0022610 biological adhesion

0008283 cell proliferation

0000003 Reproduction

0002376 immune system process

0016265 Death

0071554 cell wall organization or biogenesis

0048511 rhythmic process

0023046 signalling process

0044085 cellular component biogenesis

0043473 Pigmentation
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protein and its homologs, we multiply the term weights
of each feature vector by the percentage of matched
amino acids that are identical (percent identity). We
then divide the term weights of each feature vector by
three and sum the resulting weighted feature vectors
together to obtain a representation for the textless
protein.

Training the classifier
As previously mentioned, we use a k-nearest neighbour
(kNN) classifier to classify un-annotated proteins. The
cosine coefficient between feature vectors is calculated
and used as a similarity measure to find the nearest
neighbours. It is defined as the cosine of the angle
between two vectors:

cos(p, q) =

∑n
i=1 pi × qi√∑n

i=1 (pi)
2 ×

√∑n
i=1 (qi)

2
,

where p and q are the two n-dimensional vectors.
The 10 nearest neighbours are then used to classify

unannotated proteins. It is common practice [30] to assign
an un-labeled item to the class that is shared by the major-
ity of its nearest neighbours. However, since a protein can
have multiple functions, we modified the kNN classifier to
assign all functions that are shared by three or more of the
10 nearest neighbour to an un-annotated protein.
We also return a confidence score for each prediction

made by the classifier. For an un-annotated protein, p,
and a predicted function class, f, the confidence score Cf

(p) is calculated as:

Cf (p) =

∑|Nf |
i=1 cos (Nf

i , p)∣∣Nf
∣∣ , 3 ≤ ∣∣Nf

∣∣ ≤ 10

where, out of the 10 nearest neighbours of protein p,
|Nf | is the number of nearest neighbors with function f,
and cos (Nf

i , p)is the cosine coefficient between p and Nf
i
,

its i’th nearest neighbor with function f. The average of
the cosine coefficient values calculated between protein p
and each of its neighbors Nf

i
is then used as the confi-

dence score.

Evaluating the classifier
To evaluate the performance of our classifier (Text-
KNN), we perform stratified 5-fold cross-validation
using the dataset of 36,536 proteins described above.
The dataset is partitioned at random into 5 disjoint sub-
sets where each subset retains the same distribution of
class instances as in the original dataset. The classifier is
evaluated five times, where in each run a different sub-
set of the data is used for testing while the remaining
four subsets are used for training the classifier. To
ensure the robustness of our results, we perform five

complete sets of 5-fold cross-validation (totaling 25 runs
altogether).
We compared our system performance to that of two

baseline classifiers. The first baseline denoted Base-Prior
assigns a class to a protein based on the prior distribution
of function classes in the training set. For instance, if in
the dataset 60% of the proteins belong to the function
class ‘binding’ and 40% of the proteins belong to the class
‘catalytic activity’, assigning a class label to a protein p is
done by Monte-Carlo sampling from a label distribution
with a 60% chance of obtaining the label ‘binding’ and
40% chance of obtaining the label ‘catalytic activity’, and
assigning the sampled label to p. The protein p will thus
be assigned the label ‘binding’ by the classifier with a
probability of 0.6 and the label ‘catalytic activity’ with
probability of 0.4.
The second baseline classifier, denoted Base-Seq,

assigns function classes based on sequence similarity.
Given a protein p, the classifier uses BLAST (with default
parameters) to search for proteins in the training set that
have a sequence similar to p’s. The classifier then consid-
ers the top ten proteins returned by BLAST (only the top
10 are considered because the text-based classifier is a
kNN classifier with k = 10, and the goal is to provide a
fair comparison with the text-based method) and the
protein p is assigned to the function class shared by at
least three of the training proteins. If there are multiple
function classes that fit the criteria, then they are all
assigned to the protein that is being classified.
To evaluate prediction performance on proteins that

have no associated text, we compiled as our test dataset
a set of functionally-annotated proteins that lack asso-
ciated text in the UniProtKB/Swiss-Prot database. These
textless proteins (a total of 155 such proteins) are repre-
sented using the text features of homologous proteins,
as described earlier in the Methods section. The textless
dataset contains 82 proteins that are annotated with
molecular function classes and 111 proteins that are
annotated with biological process classes. We classify the
textless proteins using a classifier that was trained over
all of the 36,536 proteins used in the cross-validation
experiments described above.
To the CAFA challenge we have submitted runs per-

formed over the CAFA dataset. The CAFA dataset origin-
ally consisted of 48,298 proteins from the UniProtKB/
Swiss-Prot database for which no functional annotation
was assigned at the time of the CAFA submission deadline
(October 15, 2010). Between the submission deadline and
the time of assessment (June 2011), several hundreds of
the proteins from the CAFA dataset have received experi-
mentally validated functional annotations; these newly
annotated proteins were used to evaluate the classifiers.
The final CAFA evaluation dataset thus contains 596

proteins, of which 436 proteins annotated with at least
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one biological process GO category and 366 proteins
annotated with at least one molecular function GO cate-
gory in the UniProtKB/Swiss-Prot database. Notably, 65
of the 596 proteins are “textless” and we use the strategy
described before to represent and classify them. As the
CAFA results are not provided to the participants pro-
tein-by-protein, but rather at the class-level, it is not pos-
sible to assess how well we performed specifically on the
textless proteins within the CAFA challenge. The perfor-
mance of our classifier on the CAFA dataset is compared
to results provided by the CAFA evaluation from three
other classifiers, denoted here as CAFA-Prior, CAFA-Seq,
and Gotcha [6]. CAFA-Seq and GOtcha are both
sequence-based classifiers; they use BLAST to find pro-
teins from UnitProtKB/Swiss-Prot whose sequences are
similar to the target’s, transferring the functional annota-
tions of the aligned proteins to the target protein. The
main difference between the two classifiers is that CAFA-
Seq uses the percent identity between sequences as a con-
fidence score, whereas GOtcha bases its score on the sum
of negative logs of e-values associated with the align-
ments between the target protein and the aligned anno-
tated proteins. In contrast, CAFA-Prior assigns every GO
category label to each protein in the dataset and uses the
prior distribution of the GO categories in UnitProtKB/
Swiss-Prot as a confidence score.
A confidence score, associated with the function

assigned by the classifier, aims to represent the confidence
in the classifier’s prediction. Typically, by requiring the
classifiers to only report predictions whose confidence
scores are above a minimum confidence level, the classi-
fier’s precision increases while its recall decreases. Thus,
when comparing classifiers, a threshold is set such that,
only functions assigned with a confidence score higher
than the threshold are evaluated. In the results discussed
below, we compare classifiers’ performance on the CAFA
evaluation dataset using a confidence threshold of 0.95 for
molecular function classes. For biological process classes,
we use a lower confidence threshold for Text-kNN,
GOtcha, and CAFA-Prior because no predictions were
made at a confidence threshold of 0.95. This issue is dis-
cussed in further detail within the Results section.

Results
Cross-validation results
The prediction performance of the classifier over indivi-
dual function classes is measured using the standard
metrics of Precision, Recall, and F-measure, as defined
below:

Recall =
TP

TP + FN
; Precision =

TP

TP + FP
;

F =
2 · Precision · Recall
Precision + Recall

;

where TP, FP, and FN represent the number of true
positives, false positives, and false negatives respectively.
That is, for a given function class f, TP denotes the
number of proteins whose function according to Uni-
ProtKB/Swiss-Prot is f and were labelled as f by the clas-
sifier; FP denotes the number of proteins that were
labelled as f by the classifier but this label does not
match their annotated function in UniProtKB/Swiss-
Prot; FN denotes to the number of proteins whose func-
tion according to UniProtKB/Swiss-Prot is f but were
mislabelled and assigned to another class by the classi-
fier. We also measure the overall accuracy of our classi-
fier, calculated as: Oacc = C/n, where C is the number of
proteins in the test set that are correctly classified and n
is the total number of proteins in the test set.
The overall prediction accuracy levels of the classifiers

Text-KNN, Base-Prior, and Base-Seq with respect to the
molecular function classes are 62%, 43%, and 58% while
the overall accuracy levels with respect to the biological
process classes are 17%, 11%, and 28% respectively. The
results show that all three classifiers perform much better
when classifying molecular function than when classifying
biological processes. The Text-KNN classifier outperforms
both baseline classifiers for molecular function classes
and is second to Base-Seq for biological processes.
The evaluation results, namely the precision, recall, and

F-measure, for individual function classes are shown in
Tables 3 and 4. Table 3 lists the performance measured
for molecular function classes, while Table 4 lists perfor-
mance for biological process classes. In both tables, the
highest value for each performance measure across the
three classifiers is shown in bold. A precision or recall
value of 0 associated with a class, indicates that proteins
annotated with that class label in UniProtKB/Swiss-Prot
are all mislabelled (i.e. assigned another function) by the
classifier.
The results shown in Tables 3 and 4 indicate that the

text-based classifier outperforms Base-Prior (with high sta-
tistical significance, see Discussion section) for almost all
classes in terms of F-measure, except for the molecular
function class ‘structural molecular activity’. Out of the
147 test proteins belonging to this class, 141 were misclas-
sified as ’binding’. The reason for the poor classification
performance for this class may also be explained by the
fact that 218 out of 418 proteins in this class are annotated
as both ‘structural molecular activity’ and ‘binding’.
In comparison to the Base-Seq classifier, our text-

based classifier has a comparable (i.e. no statistically sig-
nificant difference) - if not higher - precision for most
of the molecular function classes, but a lower recall and
F-measure for all but three classes. Notably, for the
three molecular function classes that have fewer than
100 associated proteins, Text-KNN makes correct pre-
dictions for only one out of the three classes, while
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Table 3 Prediction performance on molecular function classes, over the cross-validation dataset.

Function #
Training Proteins

#
Test Proteins

Text-KNN Base-Prior Base-Seq

P R F P R F P R F

GO:0005488 10720 2680 0.65 0.88 0.75 0.63 0.64 0.63 0.67 0.75 0.71

GO:0003824 2943 736 0.52 0.23 0.32 0.16 0.15 0.15 0.38 0.29 0.33

GO:0030528 1276 319 0.44 0.24 0.31 0.07 0.07 0.07 0.49 0.37 0.42

GO:0005215 782 196 0.59 0.38 0.46 0.04 0.04 0.04 0.50 0.43 0.46

GO:0060089 738 184 0.39 0.16 0.22 0.04 0.04 0.04 0.26 0.27 0.27

GO:0030234 485 121 0.43 0.05 0.08 0.03 0.03 0.03 0.16 0.09 0.12

GO:0005198 334 84 0.04 0.01 0.01 0.02 0.02 0.02 0.11 0.11 0.11

GO:0016247 58 14 0.60 0.24 0.35 0.01 0.01 0.01 0.00 0.00 0.00

GO:0009055 54 14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

GO:0045182 21 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

The text-based classifier, Text-KNN, is compared with two baselines: Base-Prior, and Base-Seq. The columns P, R, and F refer, respectively, to the Precision, Recall,
and F-measure of the classifier over individual GO categories. A precision and recall values of 0 on a class indicates that all the proteins belonging to that class
are misclassified into another class.

Table 4 Prediction performance on biological process classes, over the cross-validation dataset.

Function # Training Protein # Test Protein Text-KNN Base-Prior Base-Seq

P R F P R F P R F

GO:0065007 3626 906 0.23 0.52 0.31 0.20 0.24 0.22 0.32 0.48 0.38

GO:0032502 3338 835 0.22 0.19 0.20 0.12 0.17 0.14 0.22 0.24 0.23

GO:0009987 1790 447 0.24 0.29 0.26 0.17 0.14 0.15 0.26 0.27 0.27

GO:0050896 1780 445 0.25 0.16 0.19 0.10 0.10 0.10 0.16 0.09 0.11

GO:0008152 1658 415 0.23 0.14 0.17 0.08 0.06 0.07 0.28 0.34 0.31

GO:0051234 1204 301 0.32 0.20 0.25 0.05 0.05 0.05 0.44 0.45 0.45

GO:0016043 1145 286 0.13 0.05 0.07 0.06 0.05 0.06 0.15 0.12 0.13

GO:0023052 965 241 0.18 0.11 0.14 0.05 0.04 0.04 0.30 0.28 0.29

GO:0032501 606 151 0.12 0.02 0.04 0.04 0.03 0.04 0.24 0.11 0.16

GO:0022414 346 86 0.51 0.15 0.24 0.02 0.02 0.02 0.14 0.03 0.05

GO:0051704 272 68 0.29 0.09 0.14 0.01 0.01 0.01 0.09 0.04 0.05

GO:0040011 170 42 0.13 0.01 0.01 0.01 0.01 0.01 1.00 0.05 0.09

GO:0040007 165 41 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00

GO:0051179 151 38 0.03 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00

GO:0022610 128 32 0.07 0.02 0.03 0.01 0.01 0.01 0.00 0.00 0.00

GO:0008283 118 29 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00

GO:0000003 96 24 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00

GO:0002376 74 19 0.06 0.03 0.04 0.00 0.00 0.00 0.00 0.00 0.00

GO:0016265 64 16 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00

GO:0071554 46 11 0.38 0.08 0.13 0.01 0.00 0.00 0.00 0.00 0.00

GO:0048511 43 11 0.31 0.06 0.10 0.00 0.00 0.00 0.00 0.00 0.00

GO:0023046 35 9 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00

GO:0044085 16 4 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00

GO:0043473 13 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

The text-based classifier, Text-KNN, is compared with two baselines: Base-Prior, and Base-Seq. The columns P, R, and F refer, respectively, to the Precision, Recall,
and F-measure of the classifier over individual GO categories. A precision and recall values of 0 on a class indicates that all the proteins belonging to that class
are misclassified into another class.
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Base-Seq provides no correct predictions at all. For most
of the test proteins that belong to these small classes,
both classifiers consistently misclassify them as belong-
ing to the majority class, ’binding’. For the biological
process classes that have more than 165 associated pro-
teins (12 out of the 24 classes), Base-Seq generally per-
forms better in terms of both precision and recall.
However, for function classes with fewer than 165 asso-
ciated proteins, Base-Seq does not make any correct pre-
dictions because it consistently misclassifies these
proteins as belonging to the classes with the largest
number of associated proteins. Meanwhile, our text-
based classifier is able to correctly predict the function
of some of these proteins, albeit with a low average pre-
cision of 0.05 and average recall of 0.02.
We also evaluate our classifier’s performance on pro-

teins that have no associated abstracts (textless). Table 5
shows the prediction performance on textless proteins
that are annotated with molecular function classes while
Table 6 shows the performance on textless proteins that
are annotated with biological process. Classes that do not
contain any textless proteins are not included in this eva-
luation. As a point of reference, we also show the average
performance obtained in the cross-validation study
described earlier on these same classes.
For molecular function classes, we observe that for the

classes ‘binding’ (GO:0005488) and ‘molecular transducer
activity’ (GO:0060089) the precision on textless proteins
is better than the average results obtained in the cross
validation study, while for the other classes, the precision
is only slightly worse. The only exception is the class
‘transcription regulator activity’, which has only a single
textless protein; the precision here is very low (as quite a
few ‘binding’ textless proteins are misclassified into this
class) while the recall is 1.00.
For biological process proteins, the performance on

eight out of the 13 evaluated classes is consistent with
that obtained in the cross validation experiments. For the
remaining five classes, the precision and recall are both

0.0 on the textless dataset. However, we note once again
that the classes with 0.0 precision and recall have a rela-
tively small sample of less than 10 textless proteins.
Nevertheless, despite the small size of the textless dataset,
the results for the majority of the evaluated classes are
consistent with those obtained for proteins that do have
associated text. This demonstrates that our classifier can
effectively predict function classes for proteins that are
textless.

Results from the CAFA runs
The prediction performance of our classifier on the
CAFA dataset (which consists of 596 proteins) is pre-
sented in Tables 7 and 8. The results for molecular func-
tion classes are shown in Table 7, while the results for
biological process classes are shown in Table 8.
For molecular function classes, the results are shown at

a confidence threshold of 0.95 for Text-kNN, CAFA-Seq
and GOtcha. For CAFA-Prior, a confidence threshold of
0.01 is used, because at a confidence threshold of 0.02
CAFA-Prior makes no predictions for the ’transporter
activity’ class and soon after, at a confidence threshold of
0.14, CAFA-Prior makes no predictions for the ’catalytic
activity’ class.
For biological process classes, only CAFA-Seq results

are shown at a confidence threshold of 0.95. The results
for our classifier, Text-kNN, are shown at a threshold of
0.75, while GOtcha, and CAFA-Prior results are shown at
a threshold of 0.14 and 0.01 respectively. These thresh-
olds are chosen because the classifiers make no predic-
tion for over 75% of the classes at a higher confidence
level.
Note that because our classifier only assigns proteins

to GO categories at the second level of the GO hierar-
chy, the prediction performance on GO categories that
belong to lower (more specific) levels of the GO hierar-
chy are not shown. Prediction performance is measured
by CAFA using Precision, Recall, and Specificity. Preci-
sion and recall are defined above, whereas specificity

Table 5 Prediction performance on molecular function classes, over the dataset of textless proteins.

Function # Textless Proteins Text-KNN (Textless) Text-KNN (Cross-validation)

P R F P R F

GO:0005488 58 0.82 0.47 0.59 0.65 0.88 0.75

GO:0003824 9 0.29 0.56 0.38 0.52 0.23 0.32

GO:0030528 1 0.04 1.00 0.08 0.44 0.24 0.31

GO:0005215 5 0.50 0.20 0.29 0.59 0.38 0.46

GO:0060089 7 0.44 0.57 0.50 0.39 0.16 0.22

GO:0005198 2 0.00 0.00 0.00 0.04 0.01 0.01

Prediction performance of Text-KNN on proteins that have no associated text is shown in the Text-KNN (Textless) column. As a point of reference, the average
cross-validation results, denoted as Text-KNN (Cross-Validation) as obtained over the whole cross-validation dataset, are shown for comparison only. The columns
P, R, and F refer, respectively, to the Precision, Recall, and F-measure of the classifier over individual GO categories. A precision and recall values of 0 on a class
indicates that all the proteins belonging to that class are misclassified into another class.
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is measured as:

Specificity =
TN

TN + FP
.

A specificity value of 1 over a class indicates that all
the proteins that are not annotated with that class label
in UniProtKB/Swiss-Prot are correctly identified as such,
and thus there are no false positives.
As shown in Table 7, the precision of our classifier for

two of the molecular function classes over the CAFA
dataset is comparable to the results obtained through
cross-validation. Namely, at a confidence score threshold
of 0.95, the precision for the ‘binding’ class was 0.64 on

the cross-validation dataset and 0.74 on the CAFA data-
set (which contains 212 ‘binding’ proteins); the precision
for the ‘catalytic activity’ class was 0.31 on the cross-
validation targets and 0.49 on the CAFA targets (which
contains 165 ‘catalaytic activity’ proteins). In contrast,
for the third class, ’transporter activity’ (28 proteins in
the CAFA dataset), the precision shown in Table 6 is 0.
However, if we consider predictions made at a lower
confidence threshold of 0.8, the precision is 0.24 with a
recall of 0.18 compared with a precision of 0.59 and a
recall of 0.38 on the cross-validation dataset. Notably,
the ’transporter activity’ class is much larger in the
cross-validation dataset with a total of 978 proteins as

Table 6 Prediction performance on biological process classes, over the dataset of textless proteins.

Function # Test Proteins Text-KNN (Textless) Text-KNN (Cross-validation)

P R F P R F

GO:0065007 19 0.28 0.47 0.35 0.23 0.52 0.31

GO:0032502 18 0.19 0.22 0.21 0.22 0.19 0.20

GO:0009987 8 0.04 0.13 0.06 0.24 0.29 0.26

GO:0050896 20 0.38 0.30 0.33 0.25 0.16 0.19

GO:0008152 7 0.29 0.29 0.29 0.23 0.14 0.17

GO:0051234 9 0.33 0.33 0.33 0.32 0.20 0.25

GO:0016043 6 0.00 0.00 0.00 0.13 0.05 0.07

GO:0023052 3 0.00 0.00 0.00 0.18 0.11 0.14

GO:0032501 9 0.00 0.00 0.00 0.12 0.02 0.04

GO:0022414 7 0.00 0.00 0.00 0.51 0.15 0.24

GO:0051704 1 0.00 0.00 0.00 0.00 0.00 0.00

GO:0040011 3 0.00 0.00 0.00 0.00 0.00 0.00

GO:0002376 1 0.00 0.00 0.00 0.00 0.00 0.00

Prediction performance of Text-KNN on proteins that have no associated text is shown in the Text-KNN (Textless) column. As a point of reference, the average
cross-validation results, denoted as Text-KNN (Cross-Validation) as obtained over the whole cross-validation dataset, are shown for comparison only. The columns
P, R, and F refer, respectively, to the Precision, Recall, and F-measure of the classifier over individual GO categories. A precision and recall values of 0 on a class
indicates that all the proteins belonging to that class are misclassified into another class.

Table 7 Prediction performance for molecular function classes, over the CAFA evaluation dataset. (The number of
proteins in each class is shown below each function header)

Function Text-KNN
(confidence = 0.95)

CAFA-Prior
(confidence = 0.01)

CAFA-Seq
(confidence = 0.95)

GOtcha
(confidence = 0.95)

P R S P R S P R S P R S

binding
(212 proteins)

0.643 0.17 0.87 0.579 1 0.00 0.9 0.085 0.987 0.723 0.16 0.916

transporter activity
(28 proteins)

0.00 0.00 0.97 0.077 1 0.00 0.5 0.036 0.997 0.714 0.179 0.994

catalytic activity
(165 proteins)

0.312 0.03 0.95 0.451 1 0.00 0.714 0.03 0.990 0.917 0.067 0.995

The text-based classifier, Text-KNN, is compared with baseline results provided by the CAFA challenge: CAFA-Prior, CAFA-Seq, and GOtcha. The confidence
threshold used for each classifier is shown under its name in the respective column. A confidence threshold of 0.01 is used for CAFA-Prior because the classifier
does not make any predictions for the ’transporter activity’ class at higher confidence thresholds.

The columns P, R, and S refer, respectively, to the Precision, Recall, and Specificity of the classifiers over individual classes. Precision and recall values of 0 for a
class indicate that all the proteins belonging to that class are misclassified (when the confidence score is 0.95). CAFA-Prior always has a specificity value of 0,
because it assigns all the proteins to each class, and as such the number of true negatives is always 0.

A specificity value that is close to 1, for a class whose precision and recall are both 0, indicates that most proteins in the dataset are not in the class (true
negatives) and are indeed not assigned to the class. A few proteins from other classes are misclassified into the class (false positives), hence the specificity is
slightly less than 1.
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opposed to only 28 proteins in the CAFA dataset. When
compared to the baseline classifiers, our text-based clas-
sifier has a significantly higher precision than CAFA-
Prior over the ’binding’ and ’transporter activity’ classes
while the CAFA-Seq and GOtcha classifiers both have a
higher precision on all three classes. (Again, we note
that we report CAFA-Prior’s performance at a very low
confidence level, because at a higher confidence thresh-
old it makes no predictions for most classes.)
In terms of recall, CAFA-Prior has a recall of 1.0 on

all classes at the confidence threshold of 0.01, but its
specificity is 0.0 because it assigns every GO category
label to each protein (giving rise to 0 true negatives).
GOtcha has the highest recall for all three molecular
function classes when compared to only CAFA-Seq and

Text-kNN. Our classifier has a slightly higher recall than
CAFA-Seq on the ’binding’ class but a lower recall on
’catalytic activity’ and ‘transporter activity’.
For the biological process classes, as shown in Table 8,

CAFA-Seq has the highest precision on 11 out of the 14
classes. However, for the ‘biological adhesion’ class,
neither CAFA-Seq, GOtcha nor our classifier made any
correct predictions, that is, they all have precision and
recall of 0. (Recall that CAFA-prior assigns all the pro-
teins into each class, and as such by default always
makes some correct predictions at a confidence thresh-
old of 0.01). Moreover, both CAFA-Seq and our classi-
fier have precision and recall of 0 for the ’multi-
organism process’ class. Even though all three classifiers
have a precision and a recall of 0 on these classes, the

Table 8 Prediction performance for biological process classes, over the CAFA evaluation dataset. (The number of
proteins in each class is shown below each function header)

Function Text-KNN
(confidence = 0.75)

CAFA-Prior
(confidence = 0.01)

CAFA-Seq
(confidence = 0.95)

GOtcha
(confidence = 0.14)

P R S P R S P R S P R S

biological regulation
(114 proteins)

0.5 0.009 0.997 0.261 1 0 0.632 0.105 0.978 0.404 0.351 0.817

multi-organism process
(29 proteins)

0.00 0.00 0.939 0.067 1 0 0.00 0.00 0.99 0.286 0.069 0.988

localization
(60 proteins)

0.2 0.017 0.989 0.138 1 0 0.44 0.067 0.976 0.297 0.317 0.88

establishment of localization
(38 proteins)

0.25 0.026 0.992 0.087 1 0 0.5 0.105 0.99 0.263 0.395 0.894

response to stimulus
(106 proteins)

0.125 0.009 0.979 0.243 1 0 0.5 0.047 0.985 0.39 0.302 0.848

developmental process
(83 proteins)

0.00 0.00 0.997 0.19 1 0 0.556 0.06 0.989 0.263 0.181 0.881

multicellular organismal process
(87 proteins)

0.069 0.023 0.923 0.2 1 0 0.625 0.115 0.983 0.343 0.264 0.874

signalling
(33 proteins)

0.5 0.03 0.998 0.076 1 0 0.25 0.061 0.985 0.077 0.061 0.94

biological adhesion
(52 proteins)

0.00 0.00 0.971 0.06 1 0 0.00 0.00 0.998 0.00 0.00 0.993

cellular component organization
(64 proteins)

0.00 0.00 0.997 0.147 1 0 0.286 0.031 0.987 0.192 0.156 0.887

cellular process
(368 proteins)

0.857 0.016 0.985 0.844 1 0 0.867 0.071 0.941 0.866 0.829 0.309

metabolic process
(213 proteins)

0.00 0.00 0.991 0.489 1 0 0.588 0.047 0.969 0.633 0.559 0.691

reproduction
(25 proteins)

0.083 0.08 0.946 0.057 1 0 0.00 0.00 0.995 0.214 0.12 0.973

reproductive process
(25 proteins)

0.083 0.08 0.946 0.057 1 0 0.00 0.00 0.995 0.273 0.12 0.981

The text-based classifier, Text-KNN, compared with baseline results provided by the CAFA challenge: CAFA-Prior, CAFA-Seq, and GOtcha. The confidence threshold
used for each classifier is shown under its name in the respective column. The confidence threshold for Text-kNN, GOtcha, and CAFA-Prior are, respectively, set at
0.75, 0.14, and 0.01 since these classifiers make no predictions for over 75% of the classes at higher confidence thresholds.

The columns P, R, and S refer, respectively, to the Precision, Recall, and Specificity of the classifier over individual classes. Precision and recall values of 0 for a
class indicate that all the proteins belonging to that class are misclassified (at the respective confidence level). CAFA-Prior always has a specificity value of 0,
because it assigns all the proteins to each class, and as such the number of true negatives is always 0.

A specificity value that is close to 1, for a class whose precision and recall are both 0, indicates that most proteins in the dataset are not in the class (true
negatives) and are indeed not assigned to the class. A few proteins from other classes are misclassified into the class (false positives), hence the specificity is
slightly less than 1.
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specificity on those is still very close to 1. This is
because the vast majority of proteins belong to other
classes and are assigned to other classes, thus keeping
true negatives correctly labelled as negatives.
For the ’signalling’ class, our classifier has a significantly

(p < 0.05) higher precision than all other three classifiers,
while for the ’binding’ class, our classifier has the second
highest precision after CAFA-Seq. Compared to CAFA-
Prior, our classifier has a significantly (p < 0.05) higher
precision for four of the 14 classes and a slightly higher
precision for three of the 14 classes. (We note again
though that this comparison is done where the confidence
score for our classifier is 0.95 while for CAFA-Prior it is
only 0.01. When both classifiers are compared at the 0.95
confidence level CAFA-Prior makes no predictions, and
thus the text-based classifier vacuously outperforms it on
all classes). In terms of recall, GOtcha once again has the
highest recall (second to CAFA-Prior which has a recall of
1) while both CAFA-Seq and our classifier demonstrate
poor recall on all the classes.

Discussion
The cross-validation results above reflect our first attempt
at functional classification of proteins while using text as a
source of features for representing proteins. These results
demonstrate that our classifier performs significantly bet-
ter (p < 0.05, based on the 2-sample t-test) than a simple
baseline classifier, Base-Prior, which makes its predictions
based solely on the class distribution of the training data-
set. Compared to Base-Seq, which uses sequence similar-
ity, our text-based classifier has significantly higher
precision (p < 0.05), with a lower recall for half of the
molecular function classes; comparable performance - with
no statistically significant difference - for three clas-
ses: ’binding’ (GO:0005488), ’electron carrier activity’
(GO:0009055), and ’translation regulator activity’
(GO:0045182); and lower precision and recall for two
classes: ’transcription regulator activity’ (GO:0030528), and
’structural molecular activity’ (GO:005198).
With respect to biological process classes, our classifier

does not perform as well as Base-Seq for most classes
except for ’reproductive process’ (GO:0022414), ’multi-
organism process’ (GO:0051704), ’cell wall organization
or biogenesis’ (GO0071554), and ’rhythmic process’
(GO:0048511), where our classifier performs signifi-
cantly better (p < 0.05).
The results obtained over the textless proteins, demon-

strating a level of performance similar for the most part
to the one obtained in the cross-validation studies, vali-
dates that our strategy for handling textless proteins is
indeed effective.
The results provided by the CAFA evaluation also show

that our text-based classifier Text-kNN consistently has a
significantly higher precision than the prior-based

classifier, CAFA-Prior, for molecular function classes, and
a higher precision for half of the biological process
classes. However, the sequence-based classifiers, CAFA-
Seq and GOtcha, outperform the text-based classifier on
most molecular function and biological process classes.
The exceptions are the biological process classes ’biologi-
cal regulation’, where Text-kNN has a significantly higher
precision than the GOtcha, classifier; Text-kNN also
shows a higher precision than both sequence-based clas-
sifiers on the ’signalling’ class. Notably, the CAFA results
are obtained over a small set of only 596 proteins, while
the cross-validation dataset consists of more than 36,000
proteins.
Both the cross-validation and the CAFA evaluations

show that our text-based classifier generally has a lower
overall precision and recall than a sequence-based classi-
fier. We note that while the classifier based solely on text
features does not yield top performance, there are still cer-
tain classes on which the text-based classifier shows a
higher level of performance than the other classifiers. This
suggests that text contains valuable information for identi-
fying particular function classes, and that combining text
features with other types of features to make predictions
has the potential to lead to improved performance.
As we have noted, the cross-validation results demon-

strate poor performance of all three classifiers over most
of the small function classes (function classes with fewer
than 100 proteins). For our text-based classifier, we note
that the average number of characteristic terms associated
with small function classes (average of 121 characteristic
terms for both molecular function and biological process
classes) is significantly higher than the average number of
distinguishing terms for larger function classes (average of
27 characteristic terms for molecular function classes and
average of 14 characteristic terms for biological process
classes). However, the larger set of characteristic terms
includes many common, uninformative terms.
For instance, the set of characteristic terms associated

with ’electron carrier activity’ (GO:0009055, which has 68
associated proteins, 299 associated abstracts, and 109 char-
acteristic terms) include human, bovine, chronic, demon-
strate, and library. Similarly, ’translation regulatory activity’
(GO:0045182, which has 26 proteins, 110 associated
abstracts, and 196 characteristic terms) is associated with
father, male, and sperm. This phenomenon is caused by
the low number of proteins - and the correspondingly low
number of abstracts - associated with the smaller classes.
To illustrate this point, the term human, has a probability
close to 0.6 to appear in the small number of abstracts
associated with the class ‘electron carrier activity’, while
having a probability of 0.37 to occur in other classes. Thus,
even though the term human is a frequent one and is not
highly informative, it still appears to be over-represented in
the small class, and as such viewed as characteristic to it.
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The inclusion of such uninformative terms in the
representation, leads to a particularly poor performance
in small function classes, as the representation of proteins
in these classes is dominated by high weights for terms
that are often found in abstracts associated with many
other classes. The use of the k-Nearest-Neighbours classi-
fier in our system, coupled with this representation, leads
to misclassifying proteins of small function classes into
the larger classes (resulting in low recall), and vice versa
(leading to low precision). This is due to high levels of
cosine-similarity among protein representations across
the different classes, brought about by the abundance of
highly popular terms. It is likely that the use of a different
classifier rather than k-nearest-neighbours, (for instance,
Naïve Bayes or Support Vector Machines, which use a
summarizing model to represent each class as opposed to
comparison to individual members), will alleviate this
problem; this will be done in a follow-up study.
As for the Base-Seq classifier, the precision and the

recall for the smaller classes are both 0 because the pro-
teins from the small function classes are consistently
being misclassified into the larger classes based on the
BLAST results.
Notably, all three classifiers perform much better on

molecular function classes than on biological process
classes. This behaviour is consistently demonstrated using
both cross-validation studies and the CAFA evaluation
dataset. A possible explanation for the poorer performance
on biological process classes is that proteins with similar
chemical properties and similar molecular functions can
often be involved in a broad range of biological processes.
For example, protein kinases are involved in ’cellular pro-
cess’ (GO:0009987), ‘metabolic process’ (GO:0008152), ’bio-
logical regulation’ (GO:0065007), and ’cellular component
organization or biogenesis’ (GO:0071840). Therefore, while
both the Text-KNN classifier and the Base-Seq classifier
can rely on the similarity in text features or in sequence
(respectively) to identify proteins with similar chemical
properties (which often implies similar molecular func-
tion), proteins similar in all these respects may still not
share the same biological processes. Consequently, the
molecular process of the nearest-neighbouring proteins is
often not necessarily the one that should be assigned to
the newly classified protein.
We note that this issue does not affect the performance

of the molecular function classifiers, because the molecu-
lar function classes are more specific in nature, thus pro-
teins that belong to the same molecular function class are
often discussed using similar characteristic terminology,
and may often have similar sequences,

Conclusions
We have presented a new system that we have developed
toward the CAFA challenge, which is a first attempt to

use text features as a basis for classifying proteins into
functional categories. This preliminary study demon-
strates how a text-based classification system may be
used to predict the molecular function and biological pro-
cesses of proteins from all organisms. It also utilizes an
effective strategy for assigning text to proteins that have
no associated text ("textless” proteins), enabling text-
based function prediction for such proteins. The current
results suggest that text features, and the statistics we
employ to select them, can be used successfully when
there is a sufficient amount of training data (large classes
of proteins, with over 100 proteins per class), and are
more suitable for predicting molecular function of pro-
teins that for predicting their biological process.
The cross-validation results, which use a set of 36,536

proteins, show that on a few of the molecular function and
biological process classes, our system has comparable pre-
cision to the sequence-based baseline classifiers. On mole-
cular function classes, the results suggest that using text
features can yield higher precision and higher overall accu-
racy. As for biological process classes, our classifier does
not perform as well as Base-Seq on most classes except for
’reproductive process’ (GO:0022414), ’multi-organism
process’ (GO:0051704), ’cell wall organization or biogenesis’
(GO:0071554), and ’rhythmic process’ (GO:0048511),
where our classifier performs significantly better (p <
0.05).
The CAFA evaluation results (obtained on a set of 596

of proteins) also show that even though our text-based
classifier, Text-KNN has a lower recall than the sequence-
based classifiers, it has significantly higher precision than
at least one of the sequence-based classifiers on the classes
’binding’, ‘signalling’ and ’biological regulation’.
It is important to note that from the onset, we view text

as an important source of available information, but not
necessarily as the best source of information for classify-
ing proteins. As such, our experiments and their results
strongly suggest that integrating text-based classifiers
with other classifiers (e.g. sequence- or structure-based
ones) is likely to lead to a significant improvement in
computational function prediction, in a way similar to
that demonstrated for protein subcellular localization
[26]. We shall explore such an integrative approach in
upcoming work.
The results also suggests that text features are more sui-

table for predicting the molecular function of proteins
than the biological process of proteins, and that the results
are strongly affected by how informative the selected char-
acteristic terms are. An immediate next step in this
research (on which we are currently working) is the eva-
luation of several statistics for selecting effective character-
istic terms, in a way that would accommodate accurate
classification even for categories with only a small number
of associated proteins. Moreover, the procedure through
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which the k-nearest-neighbour classifier assigns classes to
items makes it particularly sensitive to the feature values
that represent each item. We expect that some of the pro-
blems stemming from the feature selection procedure
would be alleviated through the use of model-based classi-
fiers such as the naïve Bayes or Support Vector Machines.
This is another direction that we are actively pursuing.
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