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Objectives: To establish and validate a nomogram integrating radiomics signatures from
ultrasound and clinical factors to discriminate between benign, borderline, and malignant
serous ovarian tumors.

Materials and methods: In this study, a total of 279 pathology-confirmed serous ovarian
tumors collected from 265 patients between March 2013 and December 2016 were used.
The training cohort was generated by randomly selecting 70% of each of the three types
(benign, borderline, and malignant) of tumors, while the remaining 30%was included in the
validation cohort. From the transabdominal ultrasound scanning of ovarian tumors, the
radiomics features were extracted, and a score was calculated. The ability of radiomics to
differentiate between the grades of ovarian tumors was tested by comparing benign vs
borderline and malignant (task 1) and borderline vs malignant (task 2). These results were
compared with the diagnostic performance and subjective assessment by junior and
senior sonographers. Finally, a clinical-feature alone model and a combined clinical-
radiomics (CCR) model were built using predictive nomograms for the two tasks.
Receiver operating characteristic (ROC) analysis, calibration curve, and decision curve
analysis (DCA) were performed to evaluate the model performance.

Results: The US-based radiomics models performed satisfactorily in both the tasks,
showing especially higher accuracy in the second task by successfully discriminating
borderline and malignant ovarian serous tumors compared to the evaluations by senior
sonographers (AUC � 0.789 for seniors and 0.877 for radiomics models in task one; AUC
� 0.612 for senior and 0.839 for radiomics model in task 2). We showed that the CCR
model, comprising CA125 level, lesion location, ascites, and radiomics signatures,
performed the best (AUC � 0.937, 95%CI 0.905–0.969 in task 1, AUC � 0.924, 95%
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CI 0.876–0.971 in task 2) in the training as well as in the validation cohorts (AUC � 0.914,
95%CI 0.851–0.976 in task 1, AUC � 0.890, 95%CI 0.794–0.987 in task 2). The calibration
curve and DCA analysis of the CCR model more accurately predicted the classification of
the tumors than the clinical features alone.

Conclusion: This study integrates novel radiomics signatures from ultrasound and clinical
factors to create a nomogram to provide preoperative diagnostic information for
differentiating between benign, borderline, and malignant ovarian serous tumors,
thereby reducing unnecessary and risky biopsies and surgeries.

Keywords: radiomics, serous ovarian tumor, ultrasound, classification, nomogram, image analysis

INTRODUCTION

Histologically, serous tumors are the most prevalent ovarian
tumors, representing 70% of the cases. (Javadi et al., 2016;
Brett et al., 2017; Lheureux et al., 2019; Lisio et al., 2019). Such
tumors can be classified into benign, borderline, and
malignant lesions that exhibit distinct clinicopathological
characteristics owing to which they exhibit differences in
terms of therapeutic schemes, and prognoses. Benign tumors,
which are usually slow-growing, respond well to conventional
treatments. In contrast, the borderline serous ovarian tumors
might be malignant potential, necessitating fertility-sparing
surgery for fertile women who desire it. (du Bois et al., 2016;
Chui et al., 2019). Moreover, therapy for ovarian cancer
usually involves surgery and platinum/taxane doublet-
based chemotherapy. (Lisio et al., 2019; Kuroki and
Guntupalli, 2020). The diagnosis of serous ovarian tumors
is difficult without incisional or aspiration biopsy. However,
the varied characteristics of the serous ovarian tumors make
it challenging to diagnose between borderline and malignant
ovarian tumors using fine-needle aspiration. (Kuroki and
Guntupalli, 2020). Therefore, it is crucial to develop a
non-invasive and accurate preoperative identification
technique for ovarian tumors for appropriate treatment
planning by avoiding inadequate excision or surgical
overtreatment, especially for premenopausal patients
wanting to retain their fertility.

Adnexal ultrasound, a non-invasive, low-cost, and safe
procedure, is currently the first-line imaging modality for
ovarian tumor screening and diagnosis. Even though such
pattern-recognition-based classification of ovarian masses into
benign or malignant tumors demands much expertise, (Van
Holsbeke et al., 2010; Dakhly et al., 2019), there is a shortage
of expert examiners. Radiomics offers automatic extraction of
mineable high-dimensional quantitative data from clinical
images, thereby bypassing the need for human intervention,
and shows great promise in tumor detection, diagnosis, and
prognostic evaluation. (Chiappa et al., 2020; Mayerhoefer
et al., 2020). Several researchers have recently employed
radiomics features based on MRI, CT and ultrasound to
evaluate the clinical outcomes of ovarian cancer patients.
(Rizzo et al., 2018; Lu et al., 2019; Zhang et al., 2019;
Veeraraghavan et al., 2020; Yao et al., 2021).

This study utilizes a two-step radiomics classification of serous
ovarian tumors based on the imaging and builds a nomogram
combining the clinical factors to distinguish benign, borderline,
and malignant ovarian tumors.

MATERIALS AND METHODS

Patients and Study Design
This study was in accordance with the Declaration of Helsinki.
The Ethics Committee of Tianjin Medical University Cancer
Hospital approved this retrospective study (Approval No.
bc2021114), and informed consent was waived. All the clinical
and biodatas have been anonymized. We enrolled 412 patients
with ovarian tumor from Tianjin Medical University Cancer
Institute and Hospital (Tianjin, China). All patients were
enrolled between March 2013 to December 2016. Patients with
mucinous tumor, endometrioid tumor, clear cell cancer,
metastatic cancer and the tumor with poor quality ultrasound
images were excluded from the study. In total, 265 patients
meeting the inclusion criteria were enrolled consecutively in
our study. The samples comprised 106 ovarian cystadenomas,
65 borderline tumors, and 108 ovarian malignancies, all of which
were pathologically confirmed to be serous. Of the tumors we
eventually included, the ultrasound images of 28 tumors were
from 14 patients who had bilateral ovarian tumor (7 patients with
bilateral borderline serous tumors, seven patients with bilateral
ovarian serous cancer). The patient data included age, age at
menarche, CA125 level (range: 5.11–5000 IU/L), location of the
lesion (unilateral or bilateral), family history of cancer, and
ascites. The inclusion criteria were as follows: 1) histological
diagnosis of benign, borderline, and malignant ovarian serous
tumors; 2) availability of preoperative US images suitable for
diagnostic analysis; 3) US scanning performed before
neoadjuvant therapy or surgical resection. The exclusion
criteria included the following: 1) no US results or the ovarian
mass was not completely visible in the image; 2) mucinous, clear
cell, endometrioid, metastatic cancer (Figure 1).

In a two-step decision-making approach, two tasks were
performed to train and validate the ability to distinguish
between benign vs borderline and malignant (task 1) and
borderline vs malignant (task 2). A clinical-feature alone
model and a combined clinical-radiomic (CCR) model were
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built using predictive nomograms for each task. During the
development of these tasks, we used a fixed 70%/30% training/
validation cohort split. A 10-fold cross-validation was done to
evaluate the true diagnostic potential of this method.

Ultrasound Imaging and Segmentation
All ultrasound images were acquired using a Philips iU22/
HD11 (California, United States) ultrasound machine with a
5–12 MHz probe and retrieved from the picture archiving and
communication systems (PACS) for image segmentation and
analysis at our institution (Figure 2A). The boundary of
lesions manually segmented using ImageJ (https://imagej.
nih.gov/ij/) by a sonographer with more than 8 years of
experience. When the boundary was not determined,
another experienced sonographer was consulted for a final
opinion. The two sonographers were blind to the pathological
and clinical information.

Radiomics Signature Construction
Eight hundred and fifty-five radiomics features, including shape,
gray-scale histograms, texture, and wavelet features, were extracted
automatically from each segmented region of interest using an in-
house software written in MATLAB R2018b (MathWorks, Inc.,
Natick, Massachusetts). Detailed information on the feature
extraction algorithms is provided in Supplemental Table S1.

For each task, we followed a three-step procedure to
identify the reliable radiomic features. First, the Wilson

test was used to identify features highly related to the
biomarkers with a significance of less than 0.05 (p < 0.05).
Pearson correlation matrices were used to assess the
correlation between the features where a correlation
coefficient greater than 0.8 was considered redundant. One
of two features with a lower p-value was excluded. Next, the
minor absolute shrinkage and selection operator (LASSO)
regression method was used to select the most useful
prognostic combination of features followed by the
computation of the radiomics score (Radscore) for each
patient through a linear combination of selected features
weighted by their respective coefficients.

Human Readout
All images from the validation cohort were in random order
subjected to critical evaluation by a senior (LCX, with 8 years of
working experience) and a junior sonographer (LJH, with 2 years
of working experience) in the ultrasound department, where each
of them had carried out over 200 scans of ovarian ultrasound
images per year. Both readers were blinded to the clinical
information, study design, and background.

Nomogram Construction
Clinical factors, including age, CA125 level, lesion location,
family history of cancer, ascites, and Radscore, were evaluated
using univariate analysis in the training set. Variables with p <
0.05 in the univariate analysis were included in the multivariate

FIGURE 1 | Flowchart of patient recruitment and experiments design.
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logistic analysis. The clinical and CCR models were built using
these clinical variables with or without a Radscore for each task.
These models were presented in the form of a nomogram.

Statistical Methods
In this study, the continuous variables were presented as the mean
(± standard deviation), and categorical variables were recorded as
numbers and percentages. The chi-square test, Fisher’s exact test,
or Wilcoxon sum-rank test were used to identify categorical
variables for the univariate analysis. Binary logistic regression
analysis was used for multivariate analysis. Based on the factors
mentioned above, the multivariate logistic regression model was
adopted to establish two nomograms for diagnosing ovarian
neoplasms: clinical-feature alone model vs CCR model. The
performance of the nomogram was evaluated based on
diagnostic accuracy, sensitivity, and specificity of receiver
operating characteristic (ROC) curves and calibration curves.
The difference in the area under the curve (AUC) between the
training and validation datasets was tested using the p-value of
integrated discrimination improvement (IDI) and Delong’s (D)
test, and the 95% confidence intervals (CI) were calculated.

All statistical analyses were conducted using the R software
(version 6.1, R Foundation for Statistical Computing, Vienna,
Austria). A two-tailed differencewas considered significant at p< 0.05.

RESULTS

Evaluation of the Clinical Parameters of the
Patients
The clinical features of patients in the training and validation
cohorts for the two tasks were summarized in Tables 1, 2. We
observed a significant difference in the CA125 level, lesion
location, and ascites between benign and non-benign serous
ovarian lesions in the training cohort (Table 1). As shown in
Table 2, age, CA125 level, and ascites significantly differed
between the borderline and malignant serous ovarian tumors.

A Comparative Analysis of the Diagnostic
Performances of the Radiomics Model, the
Senior and Junior Sonographer
In task 1, LASSO was used to evaluate the diagnostic capability of
17 potential informative predictors (Supplementary Figures
S1A, C), and the outputs were to Radscore calculation
formula (Supplemental Material). We observed that the
differences in the Radscore values between the benign and
non-benign serous ovarian tumors in the training and
validation cohorts were statistically significant (p < 0.001,
Supplementary Figures S2A, B). The ROC curve analysis of

FIGURE 2 | Representative ultrasound images of benign, borderline and malignant ovarian serous tumors (A). The asterisk indicates the tumor boundary. The red
marker line indicates the region of interest (ROI). ROC curve analysis comparing the diagnosis of the senior and junior sonographer and radiomics in task 1 (B) and
task 2 (C).
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the radiomics model showed AUCs of 0.907 (95% CI
0.863–0.950) and 0.877 (95% CI, 0.798–0.957) in the training
and validation sets, respectively revealed no significant
differences (D � 0.633; p � 0.5278). Next, we evaluated the
diagnostic capability of the two sonographers to draw our
comparative analysis. Figure 2B; Table 3; Supplementary
Table S2 showed the diagnostic performance of the junior
sonographer, senior sonographer, and radiomics model,
respectively. A statistically significant difference between the
junior sonographer and the radiomics model (D � 3.611; p <
0.001) was observed. However, there was no statistically
significant difference between the performances of the senior
sonographer and the radiomics model (D � 1.473; p � 0.141).

In Task 2, 22 potential informative predictors were explored
using the LASSO method (Supplementary Figures S1B, D).
Differences in the Radscore value between the borderline and
malignant serous ovarian tumors in the training and validation
cohorts were statistically significant (p < 0.001, Supplementary
Figures S2C, D). The ROC curves of the radiomics model showed
AUCs of 0.891 (95% CI 0.833–0.950) and 0.839 (95% CI
0.725–0.952) in the training and validation cohorts,
respectively, with no significant difference between them (D �
0.607; p � 0.546). Figure 2C; Table 3; Supplementary Table S2
showed the diagnostic performance of the junior sonographer,
senior sonographer, and radiomics model, respectively. There
was a statistically significant difference between the performances

TABLE 1 | Clinical characteristics of patients in training and validation cohorts in task 1

Characteristics Training cohorts p-value Validation cohorts p-value

Benign (n = 76) Non-benign (n = 120) Univariate
analysis

Multivariate
analysis

Benign (n = 30) Non-benign (n = 53)

Age# 51.2 ± 13.4 48.0 ± 13.5 0.102 — 49.1 ± 16.1 49.7 ± 11.2 0.861
Age at menarche# 14.6 ± 1.77 14.6 ± 1.85 0.869 — 14.6 ± 1.52 14.7 ± 1.69 0.119
CA125 level (IU/L), No (%) — — <0.001* <0.001* — — <0.001*
0 75 (98.7) 73 (0.6) — — 0 (0.0) 26 (49.1) —

1 1 (1.3) 47 (0.4) — — 30 (100.0) 27 (50.9) —

Tumor side, No (%) — <0.001* 0.002* — — <0.001*
Bilateral 15 (19.7) 69 (56.7) — — 4 (13.3) 34 (64.5) —

Unilateral 61 (80.3) 52 (43.3) — — 26 (86.7) 19 (35.9) —

Family history of cancer, No (%) — 0.161 — — — 0.789
Yes 14 (18.4) 34 (28.3) — — 8 (26.7) 17 (32.1) —

No 62 (81.7) 86 (71.7) — — 22 (73.3) 36 (67.9) —

Ascites, No (%) — — <0.001* <0.001* — — 0.001*
Yes 0 (0.0) 39 (32.5) — — 30 (100.0) 36 (67.9) —

No 76 (100.0) 81 (67.5) — — 0 (0.0) 17 (32.1) —

Note: Non-benign, borderline and malignant tumors, # mean ± SD, ≤500 IU/L, 0; >500 IU/L, 1. SD, standard deviation. *p value < 0.05.

TABLE 2 | Clinical characteristics of patients in training and validation cohorts in task 2

Characteristics Training cohorts p-value Validation cohorts p-value

Borderline (n = 45) Malignant (n = 77) Univariate analysis Multivariate
analysis

Borderline (n = 20) Malignant (n = 31)

Age# 43.8 ± 14.0 52.3 ± 9.06 <0.001* <0.001* 36.7 ± 13.0 53.7 ± 12.2 <0.001*
Age at menarche# 14.2 ± 2.02 14.8 ± 1.49 0.084 — 14.0 ± 1.86 15.2 ± 1.95 0.039*
CA125 level (IU/L), No (%) — 0.001* 0.003* — — 0.312
0 35 (77.8) 35 (45.4) — — 6 (30.0) 15 (48.4) —

1 10 (22.2) 42 (54.5) — — 14 (70.0) 16 (51.6) —

Tumor side, No (%) — 0.432 — — — 1
Bilateral 24 (53.3) 48 (62.3) — — 12 (60.0) 18 (58.1) —

Unilateral 21 (46.7) 29 (37.7) — — 8 (40.0) 13 (41.9) —

Family history of cancer, No (%) — 0.639 — — — 0.201
Yes 12 (26.7) 25 (32.5) — — 3 (15.0) 11 (35.5) —

No 33 (73.3) 52 (67.5) — — 17 (85.0) 20 (64.5) —

Ascites, No (%) — — <0.001* 0.006* — — 0.125
Yes 5 (11.1) 33 (42.9) — — 16 (80.0) 17 (54.8) —

No 40 (88.9) 44 (57.1) — — 4 (20.0) 14 (45.2) —

Note: # mean ± SD. ≤500 IU/L, 0; >500 IU/L, 1. SD, standard deviation. *p value < 0.05.
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of the junior/senior sonographer and the radiomics model
(senior: D � 3.5, p < 0.001; junior: D � -4.640, p < 0.001).

By comparing the results from the 10-fold cross-validation run
of the models built above to the results obtained on the fixed
training/validation split, we found that the performance estimates
were comparable for both the tasks with no indication of
substantial overfitting (Supplementary Table S3).

Construction and Validation of the
Nomogram
Next, we utilized the features mentioned above for each task to
perform multivariate logistic regression analysis to construct the
two models for diagnosing ovarian neoplasms, thereby leading to
the generation of two nomograms, the clinical-feature alone
model (Figure 3D and Figure 4D) and the combined clinical-
radiomic (CCR) model (Figure 3A and Figure 4A).

For task 1, Figure 3, Figure 5 and Table 3 showed the
calibration curve and performance of the clinical-alone and
CCR models. The ROC curves of the clinical-alone model
showed AUCs of 0.817 (95% CI 0.765–0.868) and 0.855 (95%
CI 0.786–0.924) in the training and validation cohorts,
respectively (Figures 5A,C), with no significant difference
between them (D � -0.88079; p � 0.3796). The ROC curves of
the CCRmodel showed AUCs of 0.937 (95% CI 0.905–0.969) and
0.914 (95% CI 0.851–0.976) in the training and validation
cohorts, respectively (Figures 5A,C), with no significant
difference between them (D � 0.6394; p � 0.524). The
calibration curve indicating the prediction from the two
models (solid line) closely followed the 45-degree line in the
training and validation cohorts, suggesting good diagnostic
accuracy (Figures 3B,C for the CCR model and Figures 3E,F
for the clinical alone model).

For task 2, the CCR performed satisfactorily in the training (AUC
0.924 [95%CI 0.876–0.971]) and the validation (AUC 0.890 [95%CI
0.794–0.987]) cohorts, respectively (Figures 5B,D), with no
significant difference between them (D � 0.607; p � 0.546). The
ROC curves of the clinical-feature alone model showed AUCs of
0.815 (95% CI 0.740–0.890) and 0.829 (95% CI 0.706–0.950) in the
training and validation cohorts, respectively, with no significant
difference between them (D � −0.189, p � 0.85). The calibration

curve suggested good diagnostic accuracy for the CCR model
(Figures 4B,C), which was slightly worse for the clinical-feature
alone model (Figures 4E,F).

Difference in the Prediction Performance
Between the Clinical Alone Model and
Combined Clinical-Radiomic Model
As shown in Table 3 and DCA curves (Figure 6), the CCRmodel
showed a relatively better predictive performance than the
clinical-feature alone model for two tasks (task 1: IDI � 0.154,
95% CI: 0.078–0.231, p < 0.001; task 2: IDI � 0.815, 95% CI:
0.066–0.303, p � 0.002). The decision curves indicated that using
the clinical features combined radiomics nomogram to predict
types of serous ovarian cancer adds more benefit than the clinical-
feature alone model.

DISCUSSION

In this study, we divided the three-class classified (benign vs
borderline vs malignant tumors) ovarian neoplasms into two
categories, i.e., benign vs borderline and malignant (task 1) and
borderline vs malignant (task 2). First, two US-imaging-based
radiomics models were established for each task. The diagnostic
efficiency of the radiomics models was compared with that of
junior and senior sonographers to evaluate their integrity. Both
tasks of radiomics analysis showed satisfactory performance,
especially in task 2, indicating higher accuracy than the
experienced sonographer at identifying borderline ovarian
tumors. Then, the combined clinical-radiomics CCR model
was established for each task, where the CCR models
significantly outperformed the clinical models.

To date, US-based examinations were considered the
primary imaging technique for preoperative prediction of
ovarian tumors. (Di Legge et al., 2017). Benign serous ovarian
tumors are typically simple smooth-walled unilocular or
multilocular cystic masses, (Virgilio et al., 2019), whereas
serous borderline ovarian tumors tend to form cystic masses
with profuse papillary projections. (Timor-Tritsch et al.,
2019). Moreover, serous ovarian tumors form large,

TABLE 3 | Diagnostic performance comparison among the senior sonologist, the junior sonologist, radiomics, clinics and combination of radiomics and clinics in the
validation cohort of each task.

AUC
(95%CI)

ACC
(95%CI)

SEN
(95%CI)

SPE
(95%CI)

Task 1 senior 0.789 (0.695–0.883) 0.795 (0.692–0.876) 0.697 (0.511–0.838) 0.860 (0.726–0.937)
junior 0.699 (0.595–0.803) 0.699 (0.588–0.795) 0.568 (0.396–0.725) 0.804 (0.656–0.901)
Radiomics 0.877 (0.798–0.957) 0.843 (0.747–0.914) 0.758 (0.574–0.883) 0.900 (0.774–0.963)
Clinics 0.855 (0.786–0.924) 0.807 (0.706–0.886) 0.684 (0.512–0.820) 0.911 (0.779–0.971)
Combination 0.914 (0.851–0.976) 0.880 (0.790–0.941) 0.813 (0.630–0.821) 0.922 (0.803–0.975)

Task 2 senior 0.612 (0.478–0.747) 0.647 (0.501–0.776) 0.563 (0.306–0.792) 0.686 (0.506–0.826)
junior 0.521 (0.392–0.650) 0.569 (0.423–0.707) 0.429 (0.188–0.703) 0.622 (0.448–0.771)
Radiomics 0.839 (0.725–0.952) 0.824 (0.691–0.916) 0.923 (0.621–0.996) 0.790 (0.622–0.899)
Clinics 0.829 (0.706–0.950) 0.784 (0.647–0.887) 0.714 (0.477–0.878) 0.833 (0.645–0.937)
Combination 0.890 (0.794–0.987) 0.863 (0.737–0.943) 0.842 (0.595–0.958) 0.875 (0.701–0.959)

AUC area under the receiver operator characteristic curves, ACC accuracy, SEN sensitivity, SPE specificity.

Frontiers in Genetics | www.frontiersin.org September 2021 | Volume 12 | Article 7539486

Qi et al. Tumor Diagnosis Using Ultrasound-Based Radiomics

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


complex, solid, and cystic masses irregular, thick cystic walls
with septations, necrosis, and solid mural nodules. (Moro
et al., 2017). However, these imaging features are not specific
and, to a certain extent are subject to the diagnostic
experience of the sonographer. Nevertheless, conventional
imaging evaluation by manual assessment of lesions by expert
sonographers relying on semantic features provides a wealth
of information on tumor heterogeneity, despite having a few
drawbacks.

In this era of personalized and targeted oncology, radiomics
enabled digitally encrypted medical images to be transformed
into numerous quantitative features that provide information on
tumor pathophysiology. (Bolton et al., 2012; Jiang et al., 2018;
Mayerhoefer et al., 2020; Jian et al., 2021). To date, only one study
has reported discriminating between benign and malignant
ovarian tumors by computerized ultrasound image analysis
using deep neural networks (DNNs). (Christiansen et al.,
2021). However, distinguishing the borderline tumors using

FIGURE 3 |Nomograms and calibration curves of the combined clinical-radiomic (CCR) and clinical alonemodel in task 1. The nomograms were constructed in the
training cohort. (A)Nomogram in the CCRmodel. (B, C)Calibration curves in the training and validation cohort of the CCR nomogram, respectively. (D)Nomogram in the
clinical alone model. (E, F) Calibration curves in the training and validation cohort of the clinical alone nomogram, respectively.

Frontiers in Genetics | www.frontiersin.org September 2021 | Volume 12 | Article 7539487

Qi et al. Tumor Diagnosis Using Ultrasound-Based Radiomics

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


DNNs remains largely unexplored. Additionally, some reports
have indicated that the MRI radiomics model can achieve higher
accuracy in discriminating benign ovarian lesions from
malignancies and between type I and type II ovarian epithelial
cancer. (Zhang et al., 2019; Qian et al., 2020). Pan et al. developed
a nomogram model that combined CT radiomics and semantic
features, which could be used for imaging biomarkers (radiomic
and semantic features) to classify serous and mucinous types of

ovarian cystadenomas. (Pan et al., 2020). Song and colleagues
established classification predictive tasks constructed from
radiomics features extracted from dynamic contrast-enhanced
magnetic resonance imaging (DCE-MRI) pharmacokinetic
protocol from 104 ovarian lesions to discriminate between
benign, borderline, and malignant ovarian tumors. In
consistence with our results, radiomics analysis based on the
DCE-MRI pharmacokinetic protocol demonstrated good

FIGURE 4 | Nomograms and calibration curves of the CCR and clinical alone model in task 2. The nomograms were constructed in the training cohort. (A)
Nomogram in the CCRmodel. (B, C)Calibration curves in the training and validation sets of the CCR nomogram, respectively. (D)Nomogram in the clinical alone model.
(E, F) Calibration curves in the training and validation cohort of the clinical alone nomogram, respectively.
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differentiation between benign, borderline and malignant ovarian
tumors in both two- and 3-class classification predictive tasks.
(Song et al., 2020). To our knowledge, this is the first attempt to
predict benign, borderline, and malignant ovarian serous tumors
using radiomics features based on US images. The results of the
10-fold cross-validation confirmed those performance estimates,
indicating no substantial overfitting.

Imaging features alone are often insufficient to determine the
diagnosis and management of ovarian neoplasms. Hence,
clinicians also consider the clinical context, including age,
serological indicators, and familial risk factors, to make
decisions. CA125 could serve as a critical serum biomarker for
diagnosing and monitoring the relapse of serous ovarian cancer.
(Matulonis et al., 2016). Ascites contain various cellular and
acellular components that are known to facilitate metastasis
and contribute to chemoresistance in ovarian serous cancer.
(Ford et al., 2020). It is known that age is one of the most
important poor prognostic markers for ovarian cancer. The
incidence of ovarian cancer in women under 55 years of age is
lower than that in women older than 55 years (Ma et al., 2019).
Borderline and malignant serous ovarian tumors are more likely
to occur in both ovaries. As expected, in this study cohort, the
CA125 level was higher in the borderline and malignant serous

ovarian tumor group than in the benign group. More borderline
and malignant serous ovarian tumor cases were associated with
ascites and showed involvement of both ovaries. (Jayson et al.,
2014; Gershenson, 2017). We included these easily obtained
clinical risk factors and US-based radiologic factors together
with CA125 levels in our model development process. The
improved nomogram model performed significantly better
than the radiomics model or clinical model alone. The success
of the nomogram model supported the idea that combining
imaging features with complementary information from
clinical reports that reflect the global outlook of the tumor is
more helpful in the differential diagnosis of benign, borderline,
and malignant serous ovarian tumors.

It is worth noting that the associations between the clinical
variables and pathological diagnosis were discrepant in the
training and validation cohorts. For example, CA125 level and
ascites showed p values less than 0.05 in the training cohort, but
they were not significantly associated with pathological diagnosis
in the validation cohort of task 2. This result shows that clinical
factors may be vulnerable to variations in data sets. However,
radiomics features were consistently associated with pathological
diagnosis and had accurate discriminative ability across all
datasets.

FIGURE 5 | ROC curves of the training and validation cohort in task 1 (A, C) and task 2 (B, D).
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However, the present study has some limitations. First, this
was a retrospective study conducted in a single hospital with
limited sample size. External multi-center validation in a larger
cohort is needed in the future to improve the radiomics analysis.
Second, because ovarian tumors comprise benign, borderline, and
malignant lesions, discrimination results among the three
categories need to be obtained directly. Therefore, the need of
the hour is a 3-class classification task of radiomics analysis based
on US imaging, which will be developed in the future.

CONCLUSIONS

In conclusion, the current study presents a nomogram
constructed from the US-based radiomics signature, clinical
risk factors, and serum biomarkers. It could provide
complementary diagnostic information to differentiate between
benign, borderline, andmalignant ovarian serous tumors, thereby
contributing to reducing the number of unnecessary and risky
biopsies and surgeries.
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FIGURE 6 | The decision curve analysis for the clinical alone model and
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