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Abstract

Background: Pilots must process multiple streams of information simultaneously.

Mental workload is one of the main issues in man–machine interactive mode when

dealingwithmultiple tasks. This study aimed to combine functional near-infrared spec-

troscopy (fNIRS) and electrocardiogram (ECG) to detect changes in mental workload

duringmultitasking in a simulated flight.

Methods: Twenty-six participants performed three multitasking tasks at different

mental workload levels. These mental workload levels were set by varying the num-

ber of subtasks. fNIRS and ECG signals were recorded during tasks. Participants filled

in the national aeronautics and space administration task load index (NASA-TLX) scale

after each task. The effects of mental workload on scores of NASA-TLX, performance

of tasks, heart rate (HR), heart rate variability (HRV), and the prefrontal cortex (PFC)

activation were analyzed.

Results: Compared to multitasking in lower mental workload conditions, participants

exhibited higher scores of NASA-TLX, HR, and PFC activation when multitasking in

highmentalworkload conditions. Their performancewasworse during the highmental

workloadmultitasking condition, as evidenced by the higher average tracking distance,

smaller numberof response times, and longer response timeof themeter. The standard

deviation of the RR intervals (SDNN)was negatively correlatedwith subjectivemental

workload in the low task load condition and PFC activation was positively correlated

with HR and subjectivemental workload in themedium task load condition.

Conclusion:HR and PFC activation can be used to detect changes in mental workload

during simulated flight multitasking tasks.
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1 INTRODUCTION

With the development of aircraft automation and information technol-

ogy, pilots have an increasing amount of information to process during
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flight. They often need to process information on multiple tasks at the

same time andmental workload tends to be an issue in such cases (Hsu

et al., 2015). It is a major psychological construct, describeable as the

portion of limitedmental capacity that is actually required to performa
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particular task at the moment (O’Donnell & Eggemeier, 1986). Mental

workload usually results from tasks requiring lower physical demand

but higher demand on cognition, thinking, and judgment of the opera-

tor (Wickens et al., 2016). However, the cognitive resources of humans

are fundamentally limited (Wickens, 2002). In some conditions, pilots

must perform several tasks simultaneously, eachwith a different prior-

ity. The simultaneous appearance of multiple task information leads to

a highmental workload (Hsu et al., 2015). In fact, highmental workload

does not inherently have bad consequences, but high mental work-

load during multitasking can lead to less residual resources to perform

concurrent tasks, which may result in task management errors (Wick-

ens et al., 2016). In turn, task management errors may influence task

switching. In that case, pilotsmay omit vital information due to the cog-

nitive tunneling phenomenon, which was defined as “the allocation of

attention to a particular channel of information, diagnostic hypothe-

sis or task goal, for a duration that is longer than optimal, given the

expected cost of neglecting events on other channels, failing to con-

sider other hypotheses, or failing to perform other tasks” (Wickens,

2005). Many studies have highlighted that performance declines when

cognitive demands exceed the operator’s cognitive resources (Chenot

et al., 2021; Fallahi et al., 2016; Puma et al., 2018; Stojan and Voelcker-

Rehage, 2021). Therefore, it is of theoretical and practical significance

to evaluate the mental workload of pilots during multitasking. Accord-

ing toDehais et al. (2020), the objective ofmeasuring themental work-

load of pilots duringmultitasking is to predict the probability of perfor-

mance impairment.

Mental workload is an abstract attribute of man–machine inter-

action, which cannot be directly observed (Matthews et al., 2015).

The evaluation of mental workload is generally conducted through

various methods such as subjective reports, performance evaluations,

and physiological measurements (O’Donnell & Eggemeier, 1986).

One of the mostly used tools in the subjective report is the national

aeronautics and space administration-task load index (NASA-TLX)

scale (Hart, 2006). Performance evaluation can be divided into primary

and secondary task performance evaluations. The primary task is

the task that has the priority of processing when the operator needs

to complete multiple tasks at the same time. In the case of priority

completion of the primary task, the operator uses their residual capac-

ity to complete the other task, the secondary task (Liu & Wickens,

1994). Methods of physiological measurement to evaluate mental

workload include electroencephalogram (EEG), electrocardiogram

(ECG), eye movement, and functional near-infrared spectroscopy

(fNIRS). Mental workload cannot be estimated precisely with a single

index or method because individual and environmental factors will

affect the mental effort deployed to perform a given task (Wanyan

et al., 2014). Therefore, a comprehensive evaluation method is

necessary.

Lehrer et al. (2010) combined heart rate variability (HRV), NASA-

TLX, and task performance to evaluatemental workload during a simu-

lated flightwith aBoeing737B flight-800LevelD flight simulator. They

found cardiac assessment to be a useful addition to self-reportedmea-

sures for determining flight task mental workload and risk for perfor-

mance decrements. HRV is widely applied in the evaluation of mental

workload because the recording is noninvasive and the ECG signal is

easy to extract and analyze. HRV describes beat-to-beat variation in

heart rate (HR) or small differences in RR intervals, thus reflecting the

function of the autonomic nervous system (ANS). HRV comprises two

components, namely, sympathetic and parasympathetic components.

When humans are in a state of heavy mental workload, cardiac activ-

ity is controlledmainly by sympathetic nerves, whereas cardiac activity

is normally controlled mainly by the vagal nerves (Lean & Shan, 2012).

HR increases and the parasympathetic components of HRV decrease

in situations of higher mental workload (Lehrer et al., 2010). ECG is

one of the earliest physiological methods used to evaluate pilots’ men-

tal workload (Roscoe, 1992). In an early study, HR and HR irregularity

(HI) were used to assess mental workload at different flight phases in a

simulated flight andwere found to differ from phase to phase (Opmeer

&Krol, 1973).With the establishment of HRVmeasurement standards

(Task Force of The European Society of Cardiology& TheNorth Ameri-

can Society of Pacing & Electrophysiology, 1996) and the development

of acquisition and analysis techniques, ECG remains one of the physio-

logical methods commonly used to evaluate pilots’ mental workload to

date (Mansikka et al., 2016, 2016ab).Many recent studies showed that

HR and HRV are sensitive to different task demands and can distin-

guish between levels of mental workload in simulated flights (De Rive-

courta et al., 2008; Lehrer et al., 2010; Mansikka et al., 2016, 2016ab)

or actual flights (Bonner &Wilson, 2002; Skibniewski et al., 2015; Velt-

man, 2002;Wilson, 2002). However, some studies showed thatHRwas

not sensitive tomental workload (Lee& Liu, 2003;Wanyan et al., 2014)

and others showed the same about HRV (Gentili et al., 2014; Hidalgo-

Muñoz et al., 2018).

Compared with ANS, mental workload is more correlated with

the central nervous system (CNS) (Miura et al., 2016). fNIRS is a

functional brain imaging method that can be used to evaluate mental

workload by assessing CNS activity. Compared with other imaging

modalities, it has the advantages of safety, portability, low cost, and

high temporal resolution, and it is applicable in procedures involving

mobility and interactivity (Boas et al., 2014). It sends out near-infrared

light of 700−900 nm into the cerebral cortex tissue. The near-infrared

light is refracted and absorbed by tissue and then passes through

the cerebral cortex. The changes in the hemodynamic indices of

the cerebral cortex are then measured by calculating the spectral

changes of the near-infrared light through the cortex. The main

chromophores of near-infrared light in the tissue are oxygenated

hemoglobin (HbO) and deoxygenated hemoglobin (HbR) (Ferrari &

Quaresima, 2012). Therefore, it can convert the spectral changes to

the changes in hemoglobin concentration using themodified version of

the Beer-Lambert law (Boas et al., 2014). The changes in hemoglobin

concentration can reflect the metabolism of oxygen in the brain. The

prefrontal cortex (PFC) has a functional relationshipwithmental work,

and the allocation of attention resources across multiple tasks has also

been associatedwith activity in the PFC (Mckendrick et al., 2016). Pre-

vious fNIRS-based mental workload studies suggested that fNIRS was

sensitive to mental workload (Liu et al., 2017). The fNIRS technology

has been used in simulated-flight- and actual-flight-based assessments

to evaluate mental workload. In a simulated flight study of applying
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fNIRS, the difficulty of a secondary taskwas used tomanipulatemental

workload and a main effect of mental workload with a higher HbO

level under high mental workload condition was found (Mouratille

et al., 2020). Verdière et al. (2018) used fNIRS connectivity metrics

to discriminate between two different landing conditions (manual

vs. automated). Besides offline analysis, Gateau et al. (2015) adopted

an online fNIRS classifier based on support vector machine to detect

working memory load accurately during interaction tasks between a

pilot and air traffic control (ATC) within a simulated flight. In addition

to simulated flight settings, fNIRS has also been applied in actual

flights. Gateau et al. (2018) contrasted changes in the concentrations

of oxygenated hemoglobin in PFC between an actual and a simulated

flight, and the results showed that pilots in the actual flight condition

had higher anterior PFC activation than pilots in the simulator.

These studies suggest that ECG and fNIRS are suitable physio-

logical assessment methods for studying mental workload in flight

environments. In some flight phases, pilots need to deal with multiple

subtasks at the same time, so multitasking becomes more impor-

tant. Therefore, it is necessary to evaluate the mental workload

of multitasking in a specific flight environment. Hsu et al. (2015)

assessed mental workload during National Aeronautics and Space

Administration Multi-Attribute Task Battery, which includes four

subtasks: system monitoring, resource management, communication,

and tracking. The subtasks were completed at the same time and

three levels were set according to the frequency of event occurrence.

They found that the low frequency over high frequency ratio (LF/HF)

was sensitive to different high mental workload levels. However,

this result cannot reflect the respective effect of a subtask because

different subtasks have different neurocognitive needs (Stojan &

Voelcker-Rehage, 2021). Stojan and Voelcker-Rehage (2021) studied

the effects of age on brain hemodynamic activity when engaging in

three different types of subtasks (stating arguments [ARG], typing

numbers [TYPE], and memorizing and recalling information [WM])

while driving. They found that HbO increases and HbR decreases in

young drivers during the ARG task, but not during TYPE or WM. To

study the influences of specific subtasks on mental workload, a task

load gradient needs to be established by controlling the number of

subtasks. Puma et al. (2018), for example, elicited mental workload by

increasing the number of concurrent subtasks in a multitasking proto-

col employed in a French airline pilot recruitment process and found

that high mental workload can lead to an increase in the theta band

of electroencephalographic data. However, to our knowledge, fNIRS

has not been studied in a simulated flight multitasking model wherein

mental workload is set by increasing the number of subtasks. Our

main hypothesis postulates that oxygenation levels in PFC are more

activated as the number of subtasks increases during simulated flight

multitasking.

To test this hypothesis, the changes in subjects’ PFC hemodynam-

ics during an engaging flight multitasking task were monitored using

fNIRS, andPFCactivationwasdiscussed. The changes in theNASA-TLX

scores, multitasking performance, mean HR, and HRV were analyzed

at the same time. The MATB-II task is a classical simulated flight mul-

titasking model, but to eliminate the learning effect, the time of sub-

stantial training given to the participants in MATB-II task was more

than 80 min (Hsu et al., 2015). The classical psychological task has lit-

tle learning effects but is quite different from the flight activity. For

this purpose, we designed a semiecological multitask model that sim-

ulates flight operations abstractly and has smaller learning effects. The

model simulates the content of multiple tasks in actual flight such as

flight operation, instrumentmonitoring, and emergency handling.

2 METHODS

2.1 Participants

Twenty-six healthy Chinese male undergraduates (mean age, 20.5 ±

0.63 years) participated in the study. None of the participants had

previously participated in this task experiment. The Edinburgh Hand-

edness Inventory showed that participants were right-handed and

the average laterality quotient and Decile were 71.67 ± 18.67 and

4.13 ± 3.34, respectively. They had normal or corrected-to-normal

vision and hearing. All participants read and signed a consent form

before the experiment and were later paid for their participation. This

research complied with the tenets of the Declaration of Helsinki and

was approved by the Institutional Review Board of Air Force Military

Medical University.

2.2 Equipments and materials

2.2.1 Flight task

The taskmodel simulates themultitasking during flight. Themultitask-

ing task consists of four subtasks: the flight target tracking task, the

metermonitoring task, the emergencies handling task, and the residual

capacity task. The residual capacity task is a secondary task, and the

other three tasks are primary tasks. The program was run on a com-

puter and the task interface is shown in Figure 1. The upper part of the

interface is the task selection area, themiddle is the flight target track-

ing task area, the bottom is themetermonitoring task area, the left side

is the emergencies handling task area, and the right side is the residual

capacity task area.

2.2.2 Flight target tracking task

Participants were required to track an aircraft-shaped moving target

through a circular cursor by aiming it at the target. The cursor was

controlled with a joystick on the right-hand side. The demands of the

task were to aim the circular cursor at the target.

2.2.3 Meter monitoring task

There were four round dashboards in the meter monitoring task area.

Each dashboard had a red area defined as a warning area, and the
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F IGURE 1 The interface of themultitask
model

location of each warning area was different. At the beginning of the

task, the pointer of each dashboard began to rise clockwise from the

bottom at different speeds. Participants were asked to respond by

pressing a key when the pointer reached the warning area. Once the

subjects responded correctly, the pointer immediately fell back and

began to rise clockwise again. If subjects did not respond in time, the

pointer continued to rise, until it was over the warning area and then

fell back automatically and began to rise clockwise again.

2.2.4 Emergencies handling task

During the task, several red dots appeared sporadically in the emer-

gency handling task area. The number of red dots was a random num-

ber between 10 and 20. Participants were asked to count the number

of red dots and press the digit of the number. The red dots disappeared

once subjects gave the correct response and the next group of red dots

appeared 30 s later. If participants had not respond correctly in time,

the reddotsdisappearedautomatically 30 s after their appearance, and

the next group of red dots would appear.

2.2.5 Residual capacity task

There was always a number in the residual capacity task area dur-

ing the task. Participants were asked to prioritize primary tasks and

then respond by pressing the same number key. The number dis-

appeared once participants gave the correct response, and the next

number appeared immediately. If participants did not respond or

they responded incorrectly, the number remained until the end of

the task.

2.2.6 Subjective ratings

The National Aeronautics and Space Administration-task load index

(NASA-TLX), developed by NASA in 1988 is a multidimensional men-

tal workload assessment scale (Hart & Staveland, 1988). The NASA-

TLX scale includes six dimensions: MD, mental demand; PD, physi-

cal demand; TD, temporal demand; OP, own performance; EF, effort;

and FR, frustration. Participants were asked to make a mark on the

straight line representing each dimension, which were used as their

base scores. Then, the six dimensions were paired, and participants

chose the most important dimension of each pair. The weight of

each dimension was determined by the times of each dimension cho-

sen. The NASA-TLX score was calculated from the original score and

weight.

2.2.7 Data recording

An OctaMon (Artinis Medical Systems B.V, Netherlands) continuous-

wave fNIRS system (see Figure 2) was used to record prefrontal fNIRS

signals. This devicewas an eight-channelNIRSdevice and recorded at a

2 Hz sampling rate. The sensor included eight LED light sources (trans-

mitter) that emit light at 760 and 850 nm wavelength light and two

detectors (receiver). The system could distinguish the light sources,

and the principle is called the time-sequenced principle. The distance

between the light sources and detectors was 3.5 cm.

A chest band (Institute of Aerospace Medicine, China) was used to

record ECG signals. It had three electrodes: the positivewas at the fifth

rib in the left anterior axillary line, the negative in the right anterior

axillary line, and the reference 3 cm to the right of the positive elec-

trode. Signals were recorded using a data-recording box.
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F IGURE 2 TheOctaMon fNIRS system: (a) the sensor with eight light sources and two detectors and eight channels. (b) The position of the
sensor on participants’ head; (c) the standard configuration of OctaMon; (d) eight channels on brain surface image

2.3 Procedure

Before the experiment, participants were introduced to the content

andprocess of theexperiment andwere thenasked to readand sign the

informed consent form. Participants read the description of the Edin-

burghHandedness Inventory scale and completed the scale. They then

went through a practice round of the multitasking task, which lasted

about 10 min. During the practice, the participants’ operations were

observed to ensure that they learned how to complete the task. After

the practice, the participants wore the fNIRS device head band and

ECG device chest band. Care was taken that the light sources and the

detectors were completely touching the forehead skin, and hair from

the eyebrows or side of the head was kept away from the sources and

detectors.

Participants rested for 1 min and then began the multitasking task.

Three multitasking tasks of different task load levels need to be com-

pleted. In the low load condition phase, participants were asked to

accomplish the flight target tracking and residual capacity tasks simul-

taneously. In the medium load condition phase, they were asked to

accomplish the other three tasks simultaneously, excluding the emer-

gencies handling task. In thehigh load conditionphase, theywere asked

to accomplish four tasks at the same time. Each task lasted 180 s,

and the sequence was counterbalanced among the participants. After

the completion of each multitasking task, participants completed the

NASA-TLX scale and rested for 1 min. After completing the last multi-

tasking task, the head and chest bands were removed and the experi-

ment was complete. The experiment lasted approximately 1 h.

2.4 Statistical analysis

Raw fNIRS data (8 channels × 2 wavelengths) were preprocessed

using NIRS-SPM4 software, an SPM and MATLAB-based software

package for statistical analysis of near-infrared spectroscopy (NIRS)

signals. Statistical analysis of the NIRS data used a mass-univariate

approach based on the general linear model (GLM). Raw data were

smoothed using a wavelet transform, which can attenuate high fre-

quency noise components. A wavelet transformwas applied to decom-

pose NIRS measurements of hemodynamic signals and uncorrelated

noise components at distinct scales. The hemodynamic response func-

tion as a low-pass filter was used to reduce high-frequency physiolog-

ical noise such as heartbeats. We assessed the degree of PFC activa-

tion for each task using a GLM approach and acquired β-coefficients
of HbO signals for each condition and within each channel. The sign

and magnitude of each β-coefficient indicated the direction and inten-
sity of the change in blood oxygen levels during each condition.

Although we only used HbO for analysis, NIRS-SPM accurately local-

ized the HbO and HbR signals onto the cerebral cortex in the spa-

tial preprocess, and the HbO signal has a higher signal-to-noise ratio,

which ensured that we obtained valid activations (Sagiv et al., 2019;

Ye et al., 2009).

From the recorded ECG signals, the following features were cal-

culated using the software of the chest band (Institute of Aerospace

Medicine): the mean value of the HR (mean HR), standard deviation of

theRR intervals (SDNN), rootmean square of the successive difference

of the RR intervals (RMSSD), and LF/HF.
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F IGURE 3 NASA-TLX scores scale in different task load
conditions: (a) total scores, (b) scores of six dimensions. *p< .016, as
comparedwith low task load; #p< .016, as comparedwithmedium
task load. The error bars represent the standard error of themean

One-way repeated measures analysis of variance (ANOVA) with

within-participants’ factors and task load were carried out to test

whether the effects of task load were statistically significant on the

different measures (scores of NASA-TLX, performance of multitasking

tasks, oxygenation activation levels, HR, and HRV). Statistical analysis

was conducted using SPSS software, version 18.0. Post-hoc testingwas

conducted with Bonferroni. Pearson correlations were used between

different indices. ECG internal indices (i.e., HR and HRV) and perfor-

mance internal indices (i.e., average distance andmeter response time)

were not performed for correlation analysis. A 5% significance level

was adopted in all tests and Bonferroni correction was used for mul-

tiple comparison.

3 RESULTS

3.1 Subjective load

One-way repeated measures ANOVA conducted on NASA-TLX scores

revealed significant main effects of task load [F (2, 26) = 56.96,

p< .001]. High task loadhad thehighestNASA-TLX score (p< .016with

Bonferroni correction for multiple testing). Figure 3a shows the total

scores of NASA-TLX for the three different multitasking tasks.

The scores of each dimension are shown in Figure 3b. The effects

of task load on mental demand [F (2, 26) = 17.04, p < .001] and time

demand [F (2, 26) = 24.19, p < .001] were significant. High task load

had a higher score for mental demand than low task load and medium

task load (p< .016with Bonferroni correction formultiple testing). The

scores of time demand increased gradually with the increase in task

load (p< .016with Bonferroni correction for multiple testing).

3.2 Behavioral performance

Table 1 shows the behavioral performance of the three task loads. The

performance of the flight target tracking task included the average

tracking distance and the number of alarms. The tracking distance was

the distance between the circular cursor and target.When thedistance

was larger than 30 mm, the computer recorded an alarm. The aver-

age distance [F (2, 26) = 17.60, p <.001] and the number of alarms

[F (2, 26) = 32.77, p < .001] in the three different tasks were sig-

nificantly different. Post-hoc tests with Bonferroni showed that the

average distance and number of alarms increased gradually with the

increase in task load (p < .016 with Bonferroni correction for multiple

testing).

The number of numeral response of the residual capacity task were

significantly different [F (2, 26) = 120.47, p < .001]. The response

times decreased gradually with the increase in task load (p< .016 with

Bonferroni correction for multiple testing). The response time [F (1,

26)= 0.95, p > .05] and accuracy [F (1, 26)= 0.43, p >.05] of the meter

monitoring task was not significantly different. The average accuracy

and response time of the emergencies handling task in high task load

were 80.20± 18.46% and 18.16± 4.63 s, respectively.

3.3 PFC activation

The PFC activation (β) results in differentmultitasking tasks are shown

in Figure 4. The effects of task load on PFC activation (Figure 4a)

were significant [F (2, 26) = 8.04, p < .001]. High task load had higher

PFC activation than low task load (p < .016 with Bonferroni correc-

tion for multiple testing). Figure 4b shows the average PFC activa-

tion of each channel in different task loads. The effects of task load on

PFC activation of channel 1[F (2, 26) = 3.50, p = .038], channel 3[F (2,

26)= 7.07, p= .002], channel 4 [F (2, 26)= 6.32, p= .004], channel 5 [F

(2, 26) = 6.62, p =.003], channel 6 [F (2, 26) = 4.28, p = .019], channel

7 [F (2, 26) = 6.14, p = .004], and channel 8 [F (2, 26) = 3.70, p = .032]

were significant.

3.4 Heart rate variability

Table 2 shows the HR and HRV in different tasks. The effects of task

load on SDNN [F (2, 26) = 0.13, p = .875], RMSSD [F (2, 26) = .18,

p = .840], and LF/HF [F (2, 26) = 0.52, p = .595] were not signifi-

cant. However, the effects of task load on mean HR were significant

[F (2, 26) = 6.27, p = .004]. While post-hoc tests showed no significant

HR differences between each task load after p-value correction, HR

was higher during high task load than low task load with uncorrected

p-values at α= .05.
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TABLE 1 Behavioral performance in different task load conditions (x̄ ± s)

Feature Low task load Medium task load High task load

Average distance (mm) 21.67 ± 3.71 23.48 ± 4.86* 26.07 ± 6.50*#

Number of alarms 71.81 ± 36.00 91.92 ± 45.87* 116.23 ± 50.27*#

Number of numeral response 104.00 ± 31.68 76.62 ± 35.99* 40.58 ± 30.89*#

Meter response time(s) none 3.37 ± 1.26 3.57 ± 1.58

Meter response accuracy (%) none 83.92 ± 21.70 82.30 ± 22.92

Emergency response time(s) none none 18.16 ± 4.63

Emergency response accuracy (%) none none 80.20 ± 18.46

*p< .016, as comparedwith low task load.
#p< .016, as comparedwithmedium task load.

F IGURE 4 PFC activation in different task load conditions.
*p< .016, as comparedwith low task load. The error bars represent
the standard error of themean

TABLE 2 Heart rate and heart rate variability in different task
load conditions (x̄ ± s)

Feature Low task load Medium task load High task load

MeanHR

(beat/min)

67.15 ± 9.35 67.96 ± 10.53 69.58 ± 12.50

SDNN 48.12 ± 13.00 48.85 ± 11.11 49.21 ± 14.85

RMSSD 47.10 ± 20.80 46.23 ± 19.50 46.99 ± 23.03

LF/HF 1.36 ± 1.19 1.41 ± 1.26 1.56 ± 1.02

Abbreviations: LF/HF, ratio of the low frequency over the high frequency;

RMSSD, root mean square of the successive difference of the RR intervals;

SDNN, standard deviation of the RR intervals.

3.5 Correlation analysis

The analysis showed significant correlations in three tests. Figure 5a

showsanegative correlationbetweenSDNNandNASA-TLX in lowtask

load [R (26) = −0.43, p = .029]: the higher subjective mental workload

F IGURE 5 The scatterplot with regression lines

was, the smaller the SDNN became. Figure 5b shows a positive cor-

relation between brain activation and NASA-TLX in medium task load

[R (26) = 0.44, p = .024]: the higher subjective mental workload was,

themore the PFCwas activated. Figure 5c shows a positive correlation

between brain activation and HR in medium task load [R (26) = 0.44,
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p = .025]: the higher the PFC activation was, the higher HR became.

None of the other correlations were significant (R< 0.40 and p> .05 in

all cases).

4 DISCUSSION

The purpose of this experiment was to use fNIRS and ECG to measure

the functional activation of the PFC and HR variability to evaluate

the mental workload of multitasking during a simulated flight. The

program simulated flight characteristics such as target tracking,

meter monitoring, and emergency handling. The difficulty of the

multitasking tasks was set by the number of subtasks completed at the

same time.

NASA-TLX scores increased as the number of subtasks increased,

indicating that different levels of cognitive demand in multitasking

tasks were successfully elicited. As one of the most used subjective

assessment scales, NASA-TLX can reflect mental workload from six

dimensions, so it can diagnose the source of mental workload (Rubio

et al., 2004). In this experiment, the differences in NASA-TLX scores in

different taskswere reflected inmental demandand temporal demand.

This indicated that thehighmentalworkloadof participantswasmainly

a result of time pressure, which was different from the task model that

said mental workload resulted from difficulty of operation or memory

(Fallahi et al., 2016). In the experiment, there was no significant differ-

ence in subjective effort or frustration with the increase in task diffi-

culty. Thismaybebecause the participants had a subjective feeling that

they had completely paid the remaining cognitive resources to the sec-

ondary task after completing the primary tasks.

As indicated by an increase in the average tracking distance and

number of alarms, the performance of the flight target tracking wors-

ened as the number of subtasks increased. It showed that other sub-

tasks affected the tracking task performance. Other subtasks took up

the participants’ cognitive resources, and the cognitive resources avail-

able to the tracking task were reduced, leading to a decline in their

tracking task performance. However, the performance of the meter

monitoring task was not affected by the emergency handling task. This

may be because subjects had a resource allocation policy when com-

pleting the emergencies handling task. The resource allocation policy

is a propensity that is adopted by the performer regarding which task

was favored (Wickens, 2002). The average reaction time of the emer-

gency handling task was 18.16 s. The long response time indicated

that subjects chose to prioritize the meter monitoring task over to the

emergencies handling task. In fact, emergency handling is often priori-

tized over meter monitoring in real-world situations. However, multi-

ple task demands may influence operators’ strategies, such as delay-

ing priority tasks (Wickens et al., 2016). Reversed priorities, for exam-

ple, prioritizing ATC communications over maintaining flight stabil-

ity can lead to an accident (Schutte & Trujillo, 1996). As a secondary

task, the residual capacity task performance had the same result as

that of the flight target tracking task. The theoretical basis of the

secondary task was the operator’s limited attention resources, which

can be used to assess the mental workload associated with simulated

flight or driving (Heine et al., 2017). In the experiment, participants

were asked to complete the primary tasks preferentially and com-

plete the secondary task with their remaining cognitive resources. As

the task load increased, their residual capacity decreased, leading to a

decrease in thenumberof numeral response in the secondary task. This

is consistent with Wicken et al. (2016) that the higher mental work-

load is, the less residual capacity from the primary task there is avail-

able for the secondary task, which leads to a worse secondary task

performance.

fNIRS has been widely used in the field of brain research including

cerebral structure and function research, brain-computer interface,

adaptive interface,mentalworkload assessment, etc. (Boas et al., 2014;

Pan& Jiao, 2013). fNIRS is sensitive to changes inmental workload (Liu

et al., 2017;Mouratille et al., 2020). Changes in task difficulty, including

difficulty with memory or information processing load, can lead to

changes in the activation degree in relevant brain regions (Foy et al.,

2016). Brain areas sensitive to mental workload have been shown to

elicit activations during time-limited cognitive activities (Barch et al.,

1997). In this experiment, with the increase in the number of subtasks,

the information load increased and the PFC activation increased.

These findings were similar to those of previous studies, showing that

the PFC was particularly sensitive to mental workload (Ayaz et al.,

2012). As a collection of interconnected neocortical areas, PFC is

mainly related to high cognitive functions such as working memory,

decisionmaking, executive control (Mckendrick et al., 2016). According

to the location of the regions, PFC can be divided into the rostral PFC,

dorsolateral PFC, ventrolateral PFC, medial PFC, and orbitofrontal

PFC (Miller & Cohen, 2001). Although different regions of PFC have

different and specific functions (Miller, 2000), mental workload, espe-

cially in flight, influence selective attention, spatial attention, episodic

memory, cognitive control, task switching, attention allocating, and

decision-making (Chenot et al., 2021), which need close and interactive

relationship of different regions of PFC. Therefore, the activation

of the whole PFC—instead only specific areas—was usually used for

assessing mental workload (Causse et al., 2017; Causse et al., 2019;

Gateau et al., 2015). The results of this experiment showed that PFC

activation can be used to evaluate the mental workload caused by

the number of subtasks in multitasking tasks. The theoretical basis

is the multiple resources model. According to Wickens (2008), the

multiple resources model has four dimensions (processing stages,

perceptual modalities, visual channels, and processing codes) and each

dimension has separate and distinct pools of attentional resources.

Tasks completed at the same time received resources from the same

attentional resources pool, which generated resource competition.

In the multitasking task, each subtask needed the resources of focal

vision and the competition of cognitive resources existed between

each subtask. Therefore, the increase in subtasks can mobilize more

cognitive resources of subjects, which may lead to an increase in

the activation of the PFC. Further work is required to investigate

whether activations observed in the PFC were induced sustainably or

transiently.

SDNN and RMSSD are time-domain features of HRV. SDNN is

treated as a reflection of the overall autonomic nervous system
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function while RMSSD is treated as a reflection of the parasympa-

thetic function (Malik, 1996). As frequency domain features of HRV,

LF is mainly associated with sympathetic activity and HF is associated

with parasympathetic activity (Kamath & Fallen, 1993). When mental

workload increased, sympathetic activities increased while parasym-

pathetic activities decreased (Fallahi et al., 2016). Regrettably, sensi-

bility of HRV and HR to assess mental workload in flight was not con-

sistent as we introduced above. In this experiment, there were no sig-

nificant differences in HRV among differentmultitasking tasks, but the

mean HR increased with the increase in mental workload, which was

consistent with some simulated flight studies (e.g., Gentili et al., 2014;

Hidalgo-Muñoz et al., 2018). A possible explanation for these changes

is thatHRV is less sensitive in certain practical circumstances (DeRive-

courta et al., 2008). De Rivecourta et al. (2008) indicated that HRV is

less sensitive to measuring gradual changes in task demands at rela-

tively high mental workload levels. In this study, multitasking required

the completion of at least two subtasks at the same time, so the men-

tal workload is relatively high. As was done in Hidalgo-Muñoz et al.’s

(2018) study, a secondary task was added to the program and consis-

tent results were obtained. Some studies indicated that althoughmen-

tal effort affected both HR and HRV, the effects on HR were more

robust (Veltman, 2002).

PFC activation at high task load was higher than PFC activation at

low task load in the post-hoc analysis, while no significant differences

of PFC activation and HR between the other contrasts were found.

This could be explained by theory of reserve capacity (Wickens et al.,

2016). In this study, the subjects were required to use all their remain-

ing capacity to complete the secondary task so as to maintain perfor-

mance in that task. In fact, an increase in task load can still generate

more cognitive resources, but the participants used up their mental

effort subjectively during each multitasking task, which was reflected

by the subjective effort scores. Therefore, gradual changes in the gen-

erated cognitive resources shrink during different multitasking. PFC

activation and indices of ECGwere not correlated to task performance

in the study. This dissociation between performance and nervous sys-

tem activity was also found by other studies (Ayaz et al., 2012; Causse

et al., 2017) and can be explained by the neural efficiency hypothe-

sis of intelligence, which states that intelligent individuals show higher

brain activation efficiency when performing cognitive tasks (Neubauer

& Fink, 2009). However, SDNNwas negatively correlated with subjec-

tive mental workload in the low task load condition, while PFC activa-

tionwas positively correlatedwithHR and subjectivemental workload

in the medium task load condition. Correlational relationships were

not found in the high task load condition. That may be related to a

plateau in high task load, which represents a processing limit (Causse

et al., 2019); that is, physiological indices can predict subjective men-

tal workload across participant to a certain extent. In addition, the PFC

activation and HR showed effects on task load, suggesting that com-

bining fNIRS and ECG to evaluate mental workload during multitask-

ing in flight may be an effective approach. Of course, future studies on

in-flightmultitasking should exploremore advancedmethods of fNIRS,

suchaswavelet coherenceanalysis andmethodsof graph theory,which

could provide a rich picture of large scale distributed neural sources

(Leff et al., 2015).

5 CONCLUSIONS

In this study, we found that task performance decreased with increas-

ing mental workload during multitasking. The increased mental work-

loadwas primarily due to time pressure. HR and the PFC activation can

be used to detect changes in mental workload during multitasking in

simulated flight. These results can provide an effective reference for

evaluating or quantifying the mental workload of pilots during multi-

tasking. Future work should be carried out to provide a criterion for

evaluatingmental workload.
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