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Epithelial mesenchymal transition (EMT) is a contributing factor in remodeling events of
chronic obstructive pulmonary disease (COPD). Hydrogen sulfide (H2S) has been
implicated in the pathogenesis of COPD, but the effect of H2S in regulating EMT and
the underlying mechanisms is not clear. In this study, we assessed endoplasmic reticulum
(ER) stress markers, EMT markers and associated signal molecules in rat lungs, bronchial
epithelial cells, and human peripheral lung tissues to investigate the effect of H2S in
regulating EMT and the underlying mechanisms. We found that EMT and ER stress
occurred in lung epithelial cells, especially in the bronchial epithelial cells of smokers and
COPD patients. In cigarette smoke (CS)-exposed rats, intraperitoneal injection of NaHS
significantly alleviated CS-induced lung tissue damage, small airway fibrosis, ER stress,
and EMT, while intraperitoneal injection of propargylglycine (cystathionine-gamma-lyase
inhibitor) aggravated these effects induced by CS. In the nicotine-exposed 16HBE cells, an
appropriate concentration of H2S donor not only inhibited nicotine-induced ER stress, but
also inhibited nicotine-induced enhancement of cell migration ability and EMT. ER stress
nonspecific inhibitors taurine and 4-phenyl butyric acid also inhibited nicotine-induced
enhancement of cell migration ability and EMT. Both H2S and inositol-requiring enzyme 1
(IRE1) activation inhibitor 4μ8C inhibited nicotine-induced activation of IRE1, Smad2/3 and
EMT. These results suggest that H2S inhibits CS- or nicotine-induced ER stress and EMT
in bronchial epithelial cells and alleviates CS-induced lung tissue damage and small airway
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fibrosis. The IRE1 signal pathway and Smad2/3 may be responsible for the inhibitory effect
of H2S.

Keywords: hydrogen sulfide, chronic obstructive pulmonary disease, epithelial mesenchymal transition, bronchial
epithelial cell, endoplasmic reticulum stress

INTRODUCTION

Chronic obstructive pulmonary disease (COPD) has the
characteristics of persistent airflow limitation and respiratory
symptoms that result from exposure to noxious gases or
particles. Among COPD patients, the small airways have the
characteristics of epithelial changes, thickening of the small
airway wall, inflammatory and mucous exudates induced
airway obstruction, inflammatory cell infiltration into the
airway wall, proliferation of airway smooth muscle, and
progressive peribronchiolar fibrosis (Van den Berge et al.,
2011). Small airway dysfunction is an early feature of lung
disease and preceded both the detection of emphysema by
imaging methods and spirometric evidence of COPD (Hogg
et al., 2004). Moreover, there is convincing pathological
evidence that a large number of small airways have been lost
before the pathological changes of emphysema (Stockley et al.,
2017). Small airway remodeling leads to irreversible small airway
dysfunction, participating in the pathogenesis of COPD.
Cigarette smoke (CS) induced epithelial-mesenchymal
transition (EMT) is one of the mechanisms involved in small
airway remodeling (Nowrin et al., 2014). In addition, more in vivo
(Sohal et al., 2010; Sohal et al., 2011) and in vitro (Liu et al., 2010;
Veljkovic et al., 2011; Eurlings et al., 2014) studies showed that
CS-induced EMT in lung epithelial cells contributed to tissue
remodeling in patients with COPD. There is convincing evidence
that endoplasmic reticulum (ER) stress can activate classic Smad,
Wnt/β-catenin and Src protein kinase families, thus inducing
EMT in alveolar epithelial cells (Tanjore et al., 2011; Zhong et al.,
2011; Zhang et al., 2012). In ER, glucose-regulated protein: 78
(GRP78) binds to three transmembrane sensor protein inositol
requiring enzyme 1 (IRE1), activating transcription factor-6
(ATF6), and PKR-like ER kinase (PERK), maintaining each in
its inactive state (Osorio et al., 2013; Lindholm et al., 2017;
Chadwick and Lajoie, 2019). During ER stress, GRP78 is
released from IRE1, ATF6 and PERK, so these three
transmembrane sensor proteins can assume their activated
state (Lin et al., 2008; Tanjore et al., 2012; Marciniak, 2017).
P-IRE1 splices the mRNA of x-box binding protein 1 (XBP1) to
the mature form sec-XBP1, which can activate a series of genes
involved in ER-associated protein degradation or protein folding,
thus playing a protective role in ER stress. However, the
downstream effects of the phosphorylation of IRE1 include
activation of c-Jun N-terminal kinase (JNK), which mediates
some of the harmful effects such as proliferation, differentiation,
carcinogenesis, or apoptosis (Tabas and Ron, 2011; You et al.,
2013). Recent studies also reported that CS induced-ER stress
plays a very important role in the occurrence and development of
COPD (Alam et al., 2014; Geraghty et al., 2016). This notion was
confirmed by findings that ER stress markers significantly

correlated with lung function in COPD patients (Min et al.,
2011). Nicotine, as an important component of cigarette
smoke extract, is directly associated with COPD. Evaluation of
electronic nicotine delivery systems in different models has
demonstrated involvement in pathways related to chronic
pulmonary diseases (Canistro et al., 2017; Singh et al., 2019;
Mikheev et al., 2020). Inhaled nicotine induces bronchial
epithelial cell apoptosis and senescence via reactive oxygen
species mediated autophagy impairment in COPD (Bodas
et al., 2016). Nicotine can promote EMT in lungs. Maternal
nicotine exposure induces EMT in rat offspring lungs (Chen et al.,
2015). Nicotine can increase malignancy through EMT in lung
cancer (Dasgupta et al., 2009; Pillai et al., 2015; Zhang et al., 2016;
Du et al., 2018). Nicotine can directly induce ER stress response
(Pelissier-Rota et al., 2015; Barra et al., 2017; Gonzales et al., 2021;
Jiang et al., 2021). In our previous study, we confirmed that
nicotine concentration and time dependently increased the
expression of ER stress associated apoptosis marker in human
bronchial epithelial cells (Lin et al., 2017).

Hydrogen sulfide (H2S), known for its poisoning effect, is now
recognized as an endogenous gaseous transmitter in health and
disease (Wang, 2002). H2S is involved in regulating the tension in
airway smooth muscle and has anti-oxidation, anti-
inflammation, and anti-apoptosis effects in COPD (Suzuki
et al., 2021). According to our previous research, exogenous
administration of H2S protected against CS-induced bronchial
epithelial cell apoptosis through inhibiting ER stress (Lin et al.,
2017). H2S may play a protective role in bronchial epithelial cells
through regulating ER stress. Recent research reported that H2S
can inhibit EMT and oxidative stress, thus preventing the airway
remodeling induced by CS in mouse lungs. H2S can also attenuate
CS-induced EMT by inhibiting the activation of the transforming
growth factor β1 (TGF-β1) -Smad3 signaling pathway (Guan
et al., 2020). Furthermore, Fang LP found that exogenous
administration of H2S suppressed TGF-β1 mediated EMT and
preincubation with H2S decreased the phosphorylation of Smad2/
3 induced by TGF-β1 in human lung carcinoma (A549) cells
(Fang et al., 2010). Our previous research found that exogenous
H2S could also inhibit TGF-β1 induced human bronchial
epithelial cell morphological changes and EMT (Liao et al.,
2015). All these results suggest that exogenous administration
of H2S can inhibit EMT in the lung. H2S is mainly produced by
cystathionine-gamma-lyase (CSE) in respiratory organs. Our
group has proposed for the first time that CSE expression is
decreased in the lungs of smokers and COPD patients compared
with nonsmokers (Sun et al., 2015). The effect of endogenous H2S
in the lung and its role in the pathogenesis of EMT and airway
remodeling induced by CS remains unclear.

We therefore hypothesized that endogenous H2S might inhibit
CS-induced EMT in the lung and that H2S might regulate ER
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stress to suppress bronchial epithelial cell EMT, which plays an
essential role in the small airway fibrosis of COPD. Therefore, we
assessed the ER stress and EMT markers in human lung tissues,
rat lung tissues from a COPD rat model established by passive CS
exposure, and 16HBE cells exposed to nicotine in order to
investigate whether H2S can inhibit EMT of bronchial
epithelial cells by regulating ER stress and possible signal
pathways.

MATERIALS AND METHODS

Patients
Human peripheral lung tissue samples from 21 patients who
underwent thoracic surgery at Peking University Third Hospital
from April 2012 to July 2014 were included in this research. The
protocol was authorized by Peking University Third Hospital
Ethics Committee (IRB00006761-2012029). All participants were
fully informed of the purpose and duration of the research and
provided written informed consent. The diagnosis of COPD was
made according to the GOLD (Global Initiative for Chronic
Obstructive Lung Disease) criteria (GOLD, 2009). Subject age,
smoking index, height, weight, and the pulmonary function
indexes of forced expiratory volume in 1 s (FEV1), forced vital
capacity (FVC) % predicted, and FEV1/FVC were listed in
Supplementary Table S1 to describe the clinical features of
patients. All the patients were clinically stable for 4 weeks
without acute pulmonary infection, had not received any
chemotherapy before the study, and did not have metastasis,
obstructive atelectasis, other pulmonary diseases, or severe
diseases in other systems. All of the human lung tissues were
obtained at least 5 cm away from the tumor margin. The
pathological examination confirmed that these samples
presented lung structure without inflammation or metastasis.

Animal Model
All animal care and experimental protocols were in compliance
with the ethical procedures and policies approved by the Animal
Care and Use Committee of the National Research Center and the
Third Hospital, Peking University Guide for the Care and Use of
Laboratory Animals.

Adult male Sprague–Dawley rats were supplied by the Animal
Center, Peking University Health Science Center. All rats were
housed in groups of 4 to a cage with sufficient oxygen, at a room
temperature of 18–25°C and a roomhumidity of 35–50%. A total of
32 adult male Sprague–Dawley rats, weighing about 200–250 g,
were randomly allocated into four groups (each n = 8) for
treatment: control, CS, propargylglycine (PPG) + CS and NaHS
+ CS. Except in the control group, the rats in other groups were
exposed whole-body to CS generated by 20 commercial unfiltered
cigarettes daily. Exposure time was 4 h a day for 7 days a week in
the 4 months. The CS group rats intraperitoneally injected with
PPG (CSE inhibitor) was considered to the PPG + CS group.
Freshly prepared PPG (37.5 mg/kg body weight/day) was
intraperitoneally administered 30min before CS-exposure in the
PPG + CS group since the beginning of the third month. The CS
group rats intraperitoneally injected with NaHS (H2S donor) was

considered part of the PPG + CS group. Freshly prepared NaHS
(14 μmol/kg body weight/day) was intraperitoneally administered
30min before CS-exposure in the NaHS + CS group since the
beginning of the third month. The control and CS groups
comprised rats with an intraperitoneal injection of saline.

Cell Culture and Treatment
The 16HBE14o- (16HBE) human bronchial epithelial cell line was
purchased from Shanghai Bogoo Biotechnology Co., Ltd. (China).
16HBE cells were maintained in a complete RPMI1640 growth
medium supplemented with 10% fetal bovine serum (Gibco,
Waltham, MA, United States), 100 mg/ml streptomycin (Gibco,
Waltham, MA, United States), 100 U/ml penicillin (Gibco,
Waltham, MA, United States), and 2 mM L-glutamine (Gibco,
Waltham,MA, United States) in a humidified atmosphere with 5%
CO2 at 37°C. Cells were starved in serum-free medium for 24 h
before drug treatment. Taurine (10 mM), 4-phenyl butyric acid
(4PBA) (5 mM), morpholin-4-ium-4-methoxyphenyl-
(morpholino)-phosphinodithioate (GYY4137), and NaHS were
dissolved in phosphate buffer solution, nicotine, and 4μ8C were
prepared in dimethyl sulfoxide (DMSO).

Immunohistochemistry
Lung tissue specimens were fixed in formalin, embedded in
paraffin, then cut into 4–6 μm sections and stained with
haematoxylin-eosin. The sections were incubated with primary
antibodies anti-E-cadherin (1:200), anti-GRP78 (1:200), anti-
alpha-smooth muscle actin (alpha-SMA) (1:50), anti-p-IRE1
(1:50) or anti-Vimentin (1:50) at 4°C for 24 h. Anti-goat IgG-
conjugated with DAB was used as the secondary antibody at a
dilution of 1:100. Pre-immune IgG isotope served as a negative
control.

Western Blot Analysis
Protein samples prepared from lung tissue samples and the human
bronchial epithelial cell line 16HBE were resolved by SDS-PAGE
(10% acrylamide gel) and then transferred to a nitrocellulose
membrane. The nitrocellulose membrane was then incubated
with the primary antibodies anti-CSE (1:2,000), anti-zonula
occludens-1 (ZO-1) (1:1,000), anti-E-cadherin (1:2,000), anti-
alpha-SMA (1:500), anti-p-IRE1 (1:1,000), anti-IRE1 (1:1,000),
anti-GRP78 (1:3,000), anti-sec-XBP1 (1:500), anti-ATF6 (1:500),
anti-p-Smad2/3 (1:500), anti-Smad2/3 (1:500), anti-p-JNK (1:500),
anti-JNK (1:500), anti-β-actin (1:3,000) or anti-glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) (1:5,000) overnight, then
secondary antibody for 1 h. The enhanced chemiluminescence
was applied to visualize the reaction. Expression levels of
proteins were normalized to those of GAPDH or β-actin.

Hematoxylin and Eosin and Picrosirius Red
Staining
The histopathological changes of lung tissue were measured by
Hematoxylin and Eosin (HE) staining. The pathological scores of
small airways were measured by separate evaluation of eight
variables according to CosioM (Cosio et al., 1978). The airways of
2 mm or less in diameter were measured by the separate
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evaluation of eight variables, including the degree of cell and
mucus-induced airway lumen occlusion, which was corrected for
lung inflation and expressed as a percent of occluded airway
lumen. The presence or absence of mucosal ulcers in small
airways was observed and recorded for each airway. The data
is shown as a percentage of airways with mucosal ulcers. The
remaining variables included squamous-cell metaplasia and
goblet-cell metaplasia of the epithelium and changes in the
airway wall, which included the amount of connective tissue,
muscle, and pigment, and the degree of inflammatory-cell
infiltration. Each of these changes was assigned a score
ranging from 0 to 3, and these scores were summed to achieve
an overall score. Then we expressed the sum as a percent of the
maximum possible scores. The final pathological score was

assigned by the simple addition of a score for each of the
eight variables in each case.

The collagen deposition in small airways was measured by
Picrosirius red staining. The prepared sections were
photographed under transmitted or polarized light on a Leica
DM IRB fluorescence microscope. Color photographic slides
made with tungsten film were converted to digital images by
scanning (Wang et al., 2000). By using this technique, loosely
packed collagen fibers appear green, whereas tightly packed
collagen fibers appear yellow-red and less mature. All these
images are then analyzed by Image Pro-plus 6.0 image
analysis software. This procedure was applied to a total of five
fields per sample on a minimum of four animals per group. All
these data were compiled for statistical analyses (Wang et al.,

FIGURE 1 | The expression of mesenchymal differentiation markers increased in the lung tissue of smokers and COPD patients. (A,B)Western blotting analysis of
ZO-1, E-cadherin and alpha-SMA protein expression in the lung tissue of nonsmokers, smokers, and COPD patients, and relative intensity normalized to the expression
of β-actin (n = 3, respectively, in each group). The alues are expressed asmean ± SEM. *p < 0.05, **p < 0.01 vs. non-smoker group. (C) Immunolocalization of E-cadherin
in human lung tissues. E-cadherin (red arrow) was localized to the cytoplasm of lung epithelial cells with lighter staining in lung tissue of smokers and COPD patients
as compared to non-smokers. Representative images (n = 4, respectively, in each group). Original magnification ×100 and ×400. The expression of ER stress markers
increased in the lung tissue of smokers and COPD patients. (D,E) Western blotting analysis of p-IRE1, GRP78 and CHOP protein expression in lung tissue of
nonsmokers, smokers, and COPD patients, and relative intensity normalized to the expression of β-actin (n = 3, respectively, in each group). Values are expressed as
mean ± SEM. *p < 0.05, **p < 0.01 vs. non-smoker group. (F) Immunolocalization of p-IRE1 in human lung tissues. P-IRE1 (red arrow) was expressed in lung epithelial
cells and smooth muscle cells, and p-IRE1 staining was significantly more intense and frequent in the lung tissue of smokers and COPD patients as compared to non-
smokers. Representative images (n = 4, respectively, in each group). Original magnification ×100 and ×400.
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2000). The ratio of collagen area to the whole lung tissue area in
each image reflected the collagen content.

Wound Healing Assay
The migration ability of human bronchial epithelial cells was
measured by a wound healing assay. 16 HBE cells were plated
on 60mmPetri dishes and grew to a confluent monolayer. A single
layer of cells was scraped in a straight line with the tip of a sterile
pipette (1 ml) on every Petri dish. Then the dishes were washed
twice with PBS and replaced with 5 ml of medium containing
different drugs. 16 HBE cells were pretreated with NaHS (200 µM)
for 0.5 h and then stimulated with nicotine in the Nicotine + NaHS

group, and 16 HBE cells were pretreated with taurine (10 mM) for
0.5 h and then stimulated with nicotine in the Nicotine + Taurine
group. All the dishes were placed at 37°C for 12 h (Liang et al.,
2007). The images were photographed using an inversion
fluorescence microscope. Six independent experiments were
conducted. The largest migration distance and the closure rate
were calculated by IPP software after the wound healing assay. The
percentage of the wound healing was calculated as the largest
migration distance (the shortest width of the wound at 0 h—the
shortest width of the wound at 12 h/the width of the wound at 0 h)
and the closure rate (the area of the wound at 0 h—the area of the
wound at 12 h/the area of the wound at 0 h).

FIGURE 2 |Changes in lung pathology and small airway fibrosis in rats. (A) Lung tissue sections were stained with hematoxylin and eosin and examined under light
microscopy. Original magnification ×100 and ×400. (B) Lung tissue sections were stained with Picrosirius red staining and examined on bright field microscopy (above
panels) and polarization microscopy (down panels). Original magnification ×100. (C) Airway obstruction, necrotic epithelium, goblet metaplasia, inflammatory cell
infiltration, and collagen deposition were seen in the CS group. Emphysema, such as thin or faulted alveolar walls, was seen in the COPD group. Compared with the
control group, the pathological score of the small airway was significantly elevated by 42.7% in the CS group (p < 0.01), but decreased by 17.9% after NaHS intervention
(p < 0.05). Results are presented for n = 8 mice per group and of 3 independent experiments (n = 3, respectively, in each group). *p < 0.05, CS group and PPG + CS
group vs. Control group. #p < 0.05, NaHS + CS group vs. CS group. &p < 0.05, PPG +CS group vs. CS group. (D)Bar graphs summarizing quantification of small airway
fibrosis depended on the Picrosirius red staining and examined on polarization microscopy. Compared with the control group, the collagen deposition around the airway
wall was significantly increased in the CS group and the PPG +CS group. The NaHS +CS group had less collagen deposition compared with the CS group. *p < 0.05 vs.
Control group and #p < 0.05 vs. CS group.
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FIGURE 3 | Endogenous H2S protects against EMT and ER stress in the lung tissues of CS-exposed rats. (A) E-cadherin is localized to the respiratory epithelial cell.
Compared with the control group, E-cadherin was lighter in the CS group and the PPG + CS group. The NaHS + CS group had more intense E-cadherin compared with
the CS group. Alpha-SMA is localized in the cytoplasm of mesenchymal cells, and Vimentin is localized in the cytoplasm of mesenchymal cells and epithelial cells.
Compared with the control group, alpha-SMA and Vimentin were more intense in the CS group and the PPG +CS group, especially in bronchial epithelial cells. The
NaHS + CS group had lighter alpha-SMA and Vimentin compared with the CS group. (B,C)Western blotting analysis of ER stresses markers p-IRE1, GRP78, ATF6 and
sec-XBP1 protein expression in the lung homogenates of rats. Results are presented of 3 independent experiments (n = 3). Values are expressed as mean ± SEM. *p <

(Continued )
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Statistical Analysis
The data is expressed as mean ± SD (for normally distributed
data) or median (for non-normally distributed data). For
normally distributed data, comparisons among more than 2
groups were analyzed by one-way analysis of variance followed
by the Student-Newman-Keuls test. For non-normally
distributed data, the Wilcoxon signed rank test was used. p <
0.05 was considered statistically significant.

RESULTS

The Expression and Localization of
Epithelial Mesenchymal Transition Markers
and Endoplasmic Reticulum StressMarkers
in Human Lung Tissues
Human peripheral lung tissues were obtained from 21 patients,
including 7 smokers with COPD, 7 non-COPD smokers who had
normal lung function, and 7 non-smokers who had never smoked.
The average age of participants was 65.62 years old. There was no
difference in age and weight among the three groups. The smoking
index did not differ between non-COPD smokers and smokers
with COPD. Forced expiratory volume in the first second/forced
vital capacity (FEV1/FVC) and FEV1% were significantly lower in
smokers with COPD compared with non-COPD smokers and
non-smokers (Supplementary Table S1).

The epithelial cell markers E-cadherin and ZO-1 were decreased
and the mesenchymal phenotypic marker alpha-SMAwas increased
in the lung tissues of smokers and COPD patients compared to non-
smokers (Figures 1A,B). Immunohistochemistry showed that
E-cadherin was located in bronchial and alveolar epithelial cells.
It was strongly stained in non-smokers and decreased in non-COPD
smokers and smokers with COPD (Figure 1C). P-IRE1 and GRP78
were increased in the lung tissue of non-COPD smokers and
smokers with COPD compared with non-smokers (Figures
1D,E). Immunohistochemistry showed that p-IRE1 was expressed
in lung epithelial cells and smooth muscle cells. It was stronger in
stained non-COPD smokers and smokers with COPD compared
with non-smokers (Figure 1F).

H2S Alleviated Chronic Cigarette Smoke
Exposure Induced Lung Pathological
Damage and Small Airway Fibrosis
A western blot showed the protein level of CSE significantly
decreased in the lung tissue of the PPG + CS group compared
with the other three groups. There was no significant difference in

CSE protein expression between control, CS, and NaHS + CS
groups (Supplementary Figure S1).

Our previous study found that the NaHS + CS and NaHS
alone groups showed increased plasma H2S levels than the
control group. Whereas, the PPG + CS group showed a
decreased plasma level of H2S compared to the CS-alone
group. The CS group showed higher CSE protein expression
in lung tissue and plasma H2S levels as compared to the control
group. However, there was no significant difference in the level of
H2S in rat lung tissue in groups (Chen et al., 2011).

HE staining and the pathological scores of small airways
showed that compared with the control group, the lung tissue
of passive smoking rats showed pathological damage. Compared
with CS alone, the PPG + CS group showed more severe
pathological damage to lung tissue, and the NaHS + CS group
showed milder pathological damage to lung tissue (Figures
2A,B). The degree of small airway fibrosis (collagen I and III)
as determined by the Piscosirius-red polarization method was
significantly higher in the COPD rat model established by passive
smoking exposure. Intraperitoneal injection of NaHS in the
NaHS + CS group significantly alleviated small airway fibrosis
compared with CS alone, while intraperitoneal injection of PPG
in the PPG + CS group exacerbated small airway fibrosis
compared with CS alone (Figures 2C,D).

Endogenous H2S Inhibited CS-Induced
Lung Epithelial Cell Epithelial Mesenchymal
Transition in Rats
Immunohistochemistry showed that E-cadherin was decreased in
the CS group and the PPG + CS group compared with the control
group. The NaHS + CS group had more intense E-cadherin
compared with the CS group. Vimentin and alpha-SMA are
localized mainly in the cytoplasm of mesenchymal cells.
Compared with the control group, alpha-SMA and Vimentin
were more intense in the CS group and the PPG + CS group,
especially in bronchial epithelial cells. The NaHS + CS group had
decreased alpha-SMA and Vimentin compared with the CS group
(Figure 3A).

Endogenous H2S Inhibited CS-Induced
Lung Epithelial Cell Endoplasmic Reticulum
Stress in Rats
Western blot showed the ER stress markers p-IRE1, GRP94,
ATF6 and sec-XBP1 were increased in the lung tissue of the CS
group compared with the control group. Intraperitoneal injection
of NaHS in the NaHS + CS group significantly decreased these

FIGURE 3 | 0.05, **p < 0.01 vs. control group and #p < 0.05 vs. CS group. (D) GRP78 (red arrow) is localized in the cytoplasm of respiratory epithelial cells and
mesenchymal cells, especially the bronchial epithelial cells. Compared with the control group, GRP78 positive staining in the lung tissues of the CS group was
significantly increased, characterized by plenty of brown granules. Compared with the CS group, GRP78 positive staining in the lung tissues of NaHS + CS group was
significantly decreased, and GRP78 positive staining in the lung tissues of PPG + CS group was increased. (E) P-IRE1 (red arrow) is localized to the cytoplasm of
respiratory epithelial cells and mesenchymal cells. Compared with control group, p-IRE1 positive staining in the lung tissues of the CS group was significantly increased,
characterized by a plenty of brown granules. Compared with CS group, p-IRE1 positive staining in the lung tissues of the NaHS + CS group was significantly decreased,
and p-IRE1 positive staining in the lung tissues of the PPG + CS group was increased. Representative images (n = 4, respectively, in each group). Original magnification
×100 and ×400.
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markers compared with the CS group (Figures 3B,C).
Meanwhile, intraperitoneal injection of PPG in the PPG + CS
group increased these markers compared with the CS group
(Figures 3B,C). Immunohistochemistry showed that GRP78
was expressed mainly in lung epithelial cells, and p-IRE1 was
expressed in lung epithelial cells and smooth muscle cells. They
were all strongly stained in the CS group and the PPG + CS group,
and lightly stained in the control group and the NaHS + CS group
(Figures 3D,E).

H2S Inhibited Nicotine-Induced
Endoplasmic Reticulum Stress in Human
Bronchial Epithelial Cells In vitro
Because no standard methods for the preparation of cigarette
smoke extract have been established and nicotine, as an

important component of cigarette smoke extract, can directly
induce EMT (Dasgupta et al., 2009; Pillai et al., 2015; Zhang et al.,
2016; Du et al., 2018) and ER stress (Lin et al., 2017) in the lung,
we employed a pure nicotine cell model for the mechanistic work.
Nicotine concentration dependently increased the expression of
ER stress markers and alpha-SMA, and nicotine also
concentration dependently decreased E-cadherin in 16HBE
cells (Supplementary Figure S2). And it has been reported in
our previous study that nicotine also time-dependently increased
the protein level of the ER stress marker (Lin et al., 2017).
40 μmol/L nicotine treated for 72 h significantly induced ER
stress and EMT in 16HBE cells.

Preincubation of 16HBE cells with NaHS and then treating
them with nicotine resulted in a concentration-related inhibition
of ER stress markers p-IRE1, sec-XBP1 and GRP78 formation
compared with nicotine alone, appropriate concentration of

FIGURE 4 | H2S and ER stress inhibitor taurine suppressed nicotine-induced ER stress in 16 HBE cells. (A,B) Nicotine (40 μmol/L) was used. Western blotting
analysis of ER stress markers p-IRE1, sec-XBP1, and GRP78 protein expression in 16HBE cells, and relative intensity normalized to the expression of β-actin (n = 3,
respectively, in each group). Values are expressed as mean ± SEM. *p < 0.05 vs. the DMSO group. #p < 0.05, ##p < 0.01 vs. nicotine group.
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NaHS (200 µM) reduced p-IRE1, sec-XBP1 and GRP78
formation to the greatest extent (Figures 4A,B).

H2S Inhibited Nicotine-Induced Human
Bronchial Epithelial Cell Epithelial
Mesenchymal Transition by Regulating
Endoplasmic Reticulum Stress In vitro
Preincubation of 16 HBE cells with H2S donor NaHS or GYY4137
and then treating with nicotine resulted in a concentration-
related down regulation of alpha-SMA and up regulation of
ZO-1 and E-cadherin compared with nicotine alone. An
appropriate concentration of NaHS (200 µM) reduced the
expression of alpha-SMA and increased the expression of ZO-
1 and E-cadherin to the greatest extent (Figures 5A,B).
Appropriate concentration of GYY4137 (100 µM) reduced the
expression of alpha-SMA and increased and the expression of
E-cadherin to the greatest extent (Figures 5C,D). Pre-exposure
16HBE cells to ER stress inhibitor taurine or 4PBA all
significantly reduced alpha-SMA expression and increased ZO-
1 and E-cadherin expression (Figure 5).

H2S Inhibited Nicotine-Induced
Enhancement of the Migration Ability of
Human Bronchial Epithelial Cells by
Regulating ER Stress In vitro
Wound healing assay showed nicotine stimulation promoted cell
migration of 16HBE cells, and preincubation of 16HBE cells with
taurine or NaHS significantly retarded cell migration compared
with nicotine alone (Figure 6).

H2S Inhibited Human Bronchial Epithelial
Cell Epithelial Mesenchymal Transition via
Suppressing IRE1 Signal Pathway and the
Activation of Smad2/3
IRE1 activation inhibitor 4μ8C decreased the phosphorylation of
IRE1 and increased the protein expression level of E-cadherin
compared with nicotine alone in a concentration-dependent
manner (Figures 7A,B). The 200 μM NaHS or 6 μM 4μ8C
preincubation of the 16HBE cells significantly reduced the
formation of p-JNK and p-Smad2/3 (Figures 7C,D).
Prolonged ER stress increases the phosphorylation of IRE1,
which increases the phosphorylation of JNK, in our research,
6 μM 4μ8C or 200 μM NaHS inhibited nicotine-induced the
activation of IRE1-JNK pathway and Smad2/3.

FIGURE 5 |H2S and ER stress inhibitors taurine and 4-PBA suppressed
nicotine-induced changesin the expression of EMT markers in 16HBE cells.
(A,B) Western blotting analysis of ZO-1, E-cadherin, and alpha-SMA protein
expression in 16 HBE cells, and relative intensity normalized to the

(Continued )

FIGURE 5 | expression of GAPDH (n = 3, respectively, in each group).
200 μmol/L NaHS reversed nicotine induced-EMT to the greatest extent.
Values are expressed as mean ± SEM. *p < 0.05 vs. the DMSO group. #p <
0.05, ##p < 0.01 vs. nicotine group. (C,D) Western blotting analysis of ZO-1,
E-cadherin, and alpha-SMA protein expression in 16HBE cells, and relative
intensity normalized to the expression of GAPDH (n = 3, respectively, in each
group). 100 μmol/L GYY4137 reversed nicotine induced-EMT to the greatest
extent. Values are expressed as mean ± SEM. *p < 0.05 vs. the DMSO group.
#p < 0.05, ##p < 0.01 vs. nicotine group.
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DISCUSSION

The peripheral airways are the most vulnerable areas of the
respiratory tract to CS, pollutants, and toxic substances.
Therefore, inflammation, injury, and differentiation
pathological changes are more common in the peripheral
airways (Higham et al., 2019). Recently, a large-scale
epidemiological research of 50,479 adults in China reported
that the small-airways dysfunction associated to the presence
of COPD (Xiao et al., 2020). Small-airways, dysfunction preceded
both the detection of emphysema by imaging methods and
spirometric evidence of COPD (Hogg et al., 2004). CS induced
EMT in lung epithelial cells can contribute to COPD remodeling
events (Sohal et al., 2010; Liu et al., 2010; Sohal et al., 2011;
Veljkovic et al., 2011; Eurlings et al., 2014). The results that were
found in this research showed EMT occurred in non-COPD
smokers’ and COPD patients’ lung epithelial cells, especially in
the bronchial epithelial cells (Figure 1). We got a similar result to
the previous studies (Sohal et al., 2010) that showed EMT was
indeed active in smokers’ airways, in particular in the airways of
smokers with COPD. EMT markers significantly correlated with

pulmonary function in COPD patients (Takizawa et al., 2001;
Sohal et al., 2010). EMT markers significantly elevated in non-
COPD smokers implies that EMT may be involved in the
occurrence of COPD. But it still needs further work to
investigate the specific connection, especially the signal
pathway, between EMT and COPD, and there is a lack of an
effective drug to reverse EMT and the occurrence and
development of COPD.

H2S has been confirmed to play a protective role in tissue
damage in the lungs, heart, brain, gastrointestinal tract, liver, and
other organs caused by a variety of stressors. According to our
previous research, the level of H2S in serum was significantly
higher in non-smokers compared with smokers, and it was
significantly higher in smokers with stable COPD and healthy
smokers than in smoking patients who suffer from acute
exacerbations of COPD (Chen et al., 2005). We also identified
that H2S significantly alleviated CS-induced lung pathological
damage and lung function damage. Exogenous H2S reduced the
pathology scores of lung tissue and was antioxidant and anti-
inflammatory (Chen et al., 2011). The results that were found in
this research showed exogenous administration of NaHS in a

FIGURE 6 | NaHS and ER stress inhibitor taurine reduced nicotine-induced enhancement of cell migration ability in 16HBE cells. (A) Wound healing assay on the
migration of 16 HBE cells. The percentage of the wound healing was calculated as the largest migration distance (the shortest width of wound at 0 h—the shortest width
of the wound at 12 h/the width of the wound at 0 h) and the closure rate (the area of the wound at 0 h—the area of wound at 12 h/the area of the wound at 0 h).
(B,C) The largest migration distance and the closure rate calculated by IPP software after wound healing assay. Results are presented from 6 independent
experiments (n = 6, respectively, in each group). Values are expressed as mean ± SEM. ***p < 0.001 vs. the DMSO group. ###p < 0.001 vs. nicotine group.
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COPD rat model established by passive smoking exposure
significantly reversed the pathological damage in lung tissue
and small airway fibrosis, whereas exogenous administration
of PPG aggravated lung tissue damage and small airway
fibrosis, so the endogenous H2S played an inhibitory effect on
small airway fibrosis (Figure 2).

Inhibition of endogenous H2S by CSE inhibitor PPG resulted
in EMT-like features, increased the protein expression of
vimentin and decreased the protein expression of E-cadherin.
Exogenous administration of H2S decreased these effects in the
non-small cell lung cancer cell line A549 stimulated by TGF-β1

(Fang et al., 2010). In our previous research, H2S inhibited EMT
occurrence in human bronchial epithelial cell line 16HBE
induced by TGF-β1 (Liao et al., 2015). The results that were
found in this research showed exogenous administration of NaHS
in the COPD rat model established by passive smoking exposure
significantly reversed EMT, whereas intraperitoneal injection of
PPG aggravated EMT in lung epithelial cells (Figure 3). This is
consistent with the trend of small airway fibrosis in these groups.
These results suggest that in lung epithelial cells, endogenous H2S
may have an inhibitory effect on EMT related small airway
fibrosis.

FIGURE 7 | NaHS and IRE1 activation inhibitor 4μ8C inhibited the phosphorylation of IRE1 and Smad2/3 to inhibit EMT in 16HBE cells. (A,B) Western blotting
analysis of p-IRE1 and E-cadherin protein expression in 16HBE cells, and relative intensity normalized to the expression of β-actin (n = 3, respectively, in each group).
Values are expressed as mean ± SEM. *p < 0.05 vs. the DMSO group and #p < 0.05 vs. nicotine group. (C,D) Western blotting analysis of the ratio of p-IRE1/IRE1,
p-Smad2/3/Smad2/3 and p-JNK/JNK in 16HBE cells. Results are presented from 3 independent experiments (n = 3, respectively, in each group). Values are
expressed as mean ± SEM. *p < 0.05, **p < 0.01 vs. the DMSO group. #p < 0.05, ##p < 0.01 vs. nicotine group.

Frontiers in Molecular Biosciences | www.frontiersin.org April 2022 | Volume 9 | Article 82876611

Lin et al. H2S, EMT and ER Stress

https://www.baidu.com/link?url=RjnMhCjKh0P6wv6ocKZNRSrbDpcdVzvCUcz4Eo3Zw5-ZSczMParAvJY7gJIQO3zXVJ82WplJYs9wm69gc0HxU3VZ2FLDhAe-mPkkZgemnIW&ie=utf-8&f=8&tn=baiduhome_pg&wd=%E7%A3%B7%E9%85%B8%E5%8C%96%20%20%E7%BF%BB%E8%AF%91&inputT=6511
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


It has been confirmed that the main mutagenicity components
of CS condensates exist in alkaline and slightly acidic parts, while
the mutagenicity was not detected in neutral parts containing
polycyclic aromatic hydrocarbons (Kier et al., 1974; Hutton and
Hackney, 1975). It suggests that mutagenic components in CS
condensates mainly exist in the water-soluble part, and the water-
soluble part of CS is more easily dissolved and absorbed by the
mucus on the alveolar surface (Ji and Chen, 1996). Acrolein,
nicotine, and acetylaldehyde are among the most important and
relevant chemicals in CS (Comer et al., 2014). Acrolein is highly
toxic, a large number of studies have shown that acrolein can
induce apoptosis (Kern and Kehrer, 2002; Roy et al., 2010), but
few studies have shown that it can induce EMT and ER stress.
When tobacco smoke reaches the small airways and alveolar
surface, the nicotine is rapidly absorbed. On average, about
1–0.5 mg of nicotine is absorbed systemically during smoking
on average (Benowitz and Iii, 1984). Nicotine is directly
associated with COPD. Evaluation of electronic nicotine
delivery systems in different models has demonstrated
involvement in pathways related to chronic pulmonary
diseases (Canistro et al., 2017; Singh et al., 2019; Mikheev
et al., 2020). Inhaled nicotine induced bronchial epithelial cell
senescence and apoptosis via ROS-mediated autophagy
impairment in COPD patients (Bodas et al., 2016). Nicotine
can promote EMT in the lungs. Maternal nicotine exposure
induces EMT in rat offspring lungs (Chen et al., 2015).
Nicotine can increase malignancy through EMT in lung
cancer (Dasgupta et al., 2009; Pillai et al., 2015; Zhang et al.,
2016; Du et al., 2018). Nicotine can directly induce ER stress
response (Pelissier-Rota et al., 2015; Barra et al., 2017; Gonzales
et al., 2021; Jiang et al., 2021). In our previous study, we used a
nicotine exposure model to investigate whether H2S can inhibit
cigarette smoke-induced ERS and apoptosis in bronchial
epithelial cells (Lin et al., 2017). Our previous study confirmed
that nicotine concentration and time-dependently increased the
expression of ER stress associated apoptosis marker in human
bronchial epithelial cells, participating in the progression of
COPD (Lin et al., 2017).

ER stress can activate classic Smad, Wnt/β-catenin and Src
protein kinase families, thus inducing EMT in alveolar epithelial
cells (Tanjore et al., 2011; Zhong et al., 2011; Zhang et al., 2012)
ER stress participates in EMT and oncogenesis (Sheshadri et al.,
2014). The results that were found in this research showed H2S
inhibited lung epithelial cell ER stress and EMT in a COPD rat
model established by passive smoking exposure (Figure 3). In the
16HBE cells exposed to nicotine, a suitable concentration of
GYY4137 or NaHS not only inhibited nicotine-induced ER
stress, but also inhibited nicotine-induced enhancement of cell
migration ability and EMT (Figure 5). ER stress nonspecific
inhibitor taurine or 4-PBA also suppressed the enhancement of
cell migration ability and EMT in 16HBE cells exposed to nicotine
(Figure 6). A suitable concentration of H2S can simulate this
effect. The results shown above indicate that H2S can inhibit EMT
through regulating ER stress.

We also investigated the signaling pathways of ER stress to
influence the occurrence of EMT in bronchial epithelial cells by
H2S. We found that the inhibition of IRE1 signaling pathways

significantly alleviated the nicotine-induced down-regulated
expression of E-cadherin (Figure 7). This finding is
supported by a previous report of alveolar epithelial cells
(Zhong et al., 2011), which suggests that inhibition of IRE1
signaling pathways can reverse EMT. Furthermore, we
identified that both 4μ8C and H2S suppressed the activation
of IRE1, Smad2/3, and JNK (Figure 7). Excessive ER stress
results in kinase activity of IRE1 along with phosphorylation of
JNK. In our research, H2S and 4μ8C inhibited nicotine-induced
IRE1 kinase activation, thus inhibiting the activation of IRE1
downstream signal molecules including JNK and Smad2/3. Our
finding is supported by previous reports of alveolar epithelial
cells (Zhong et al., 2011), which suggest that p-IRE1 and EMT-
related signal molecule Smad2/3 play an essential role in EMT
mediated by ER stress, and pretreatment of H2S suppressed the
phosphorylation of Smad2/3 stimulated by TGF-β1. Both
Smad2/3 inhibitor and H2S could inhibit ER stress-induced
EMT (41). In this research, we identified that H2S could inhibit
bronchial epithelial cell EMT through suppressing the
activation of IRE1 and its downstream signal molecule
Smad2/3. Our finding suggested that H2S could also inhibit
ATF6 activation. Another report reported that activation of
PERK and ATF can cause EMT (Sheshadri et al., 2014).
Therefore, it is not clear that H2S can directly act on IRE1 or
regulate the upstream signal pathway of ER stress. According to
recent reports, H2S can regulate ER stress in different organ
systems through different action sites. H2S can directly
persulfidate protein kinase and regulate the protein kinase
activity (Du et al., 2021). H2S may reduce ER stress via
regulation of Ca2+ channel sulfhydration (Hennig and
Diener, 2009; Luciani et al., 2009; Moccia et al., 2011). H2S
may regulate ER stress through its antioxidant effect. Some
studies have revealed that H2S can both regulate oxidative stress
and ER stress (Hu et al., 2017; Majumder et al., 2018; Yi et al.,
2018). In addition, H2S can inhibit homocysteine-induced
neurocyte ER stress and apoptosis by up-regulation of the
brain-derived neurotrophic factor (BDNF)-TrkB pathway
(Wei et al., 2014). Our research identified that H2S
significantly inhibiting CS-induced ER stress, thus inhibited
ER stress-mediated EMT.

There are several limitations to our investigation. Firstly, we
have not figured out the specific signal pathway of H2S on ER
stress. Knock out the gene in the IRE1 signal pathway or Smad2/3
may be a better way to figure out the importance of these signal
molecules in ER stress mediated EMT. Secondly, the number of
lung tissue samples was too small. We are ready to recruit more
patients, including non-smoking COPD patients and COPD
patients in different GOLD stages, in the future study.
Immunofluorescence staining and co-staining with EMT
marker and ER stress marker is a better way than
immunohistochemical staining to identify the cells that
undergo EMT and ER stress. Further studies are needed to
overcome these shortcomings.

In conclusion, it is proved for the first time that H2S can inhibit
CS- or nicotine-induced ER stress and EMT in bronchial
epithelial cells. The IRE1 signal pathway and its downstream
signal molecule p-Smad2/3 may be responsible for the inhibitory
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effect of H2S. These findings suggest a possible protective role of
anti-fibrosis for H2S in the pathogenesis of COPD.
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