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Abstract

The assessment of polymorphonuclear leukocyte (PMN) proportions (%) of endometrial

samples is the hallmark for subclinical endometritis (SCE) diagnosis. Yet, a non-biased,

automated diagnostic method for assessing PMN% in endometrial cytology slides has not

been validated so far. We aimed to validate a computer vision software based on deep

machine learning to quantify the PMN% in endometrial cytology slides. Uterine cytobrush

samples were collected from 116 postpartum Holstein cows. After sampling, each cytobrush

was rolled onto three different slides. One slide was stained using Diff-Quick, while a second

was stained using Naphthol (golden standard to stain PMN). One single observer evaluated

the slides twice at different days under light microscopy. The last slide was stained with a

fluorescent dye, and the PMN% were assessed twice by using a fluorescence microscope

connected to a smartphone. Fluorescent images were analyzed via the Oculyze Monitoring

Uterine Health (MUH) system, which uses a deep learning-based algorithm to identify PMN.

Substantial intra-method repeatabilities (via Spearman correlation) were found for Diff-

Quick, Naphthol, and Oculyze MUH (r = 0.67 to 0.76). The intra-method agreements (via

Kappa value) at�1% PMN (κ = 0.44 to 0.47) were lower than at >5 (κ = 0.69 to 0.78) or

>10% (κ = 0.67 to 0.85) PMN cut-offs. The inter-method repeatabilities (via Lin’s correlation)

were also substantial, and values between Diff-Quick and Oculyze MUH, Naphthol and Diff-

Quick, and Naphthol and Oculyze MUH were 0.68, 0.69, and 0.77, respectively. The agree-

ments among evaluation methods at�1% PMN were weak (κ = 0.06 to 0.28), while it

increased at >5 (κ = 0.48 to 0.81) or >10% (κ = 0.50 to 0.65) PMN cut-offs. To conclude,

deep learning-based algorithms in endometrial cytology are reliable and useful for simplify-

ing and reducing the diagnosis bias of SCE in dairy cows.

Introduction

Subclinical endometritis (SCE) is the most prevalent uterine disease in dairy cows. It can be

defined as the superficial inflammation of the endometrium without signs of purulent
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discharge in the vagina [1]. Unfortunately, it remains largely undiagnosed by veterinarians

and farmers, mainly because of a lack of cow-side diagnostic tests [2]. Considering that SCE

significantly impairs reproductive performance, its accurate and fast diagnosis has become

essential when striving for successful therapy.

Subclinical endometritis can be diagnosed using histopathology, ultrasonography, and

endometrial cytology. Endometrial cytology is an inexpensive and reliable technique, thus con-

sidered the most used tool for diagnosing SCE [3, 4]. Endometrial cytology can be performed

via cytobrush (CB), low volume uterine lavage, or the cytotape [5–7]. The CB technique is a

feasible and robust method that provides high-quality samples and is, as such, the most applied

procedure to obtain endometrial cytology samples [7, 8]. After sampling, endometrial cytology

slides need to be air-dried and stained. The modified Wright-Giemsa dye is the most used

method to stain endometrial cytology slides [7, 9]. However, the Naphthol-AS-D-chloroace-

tate-esterase (Naphthol) staining is considered as the gold standard to identify polymorphonu-

clear leucocytes (PMN) since they appear bright red after staining [10, 11]. However, due to its

high costs and complex procedure, Naphthol is rarely used in practice.

After staining, endometrial slides are evaluated by manually counting the per cell propor-

tion of PMN under conventional light microscopy. This process is not only laborious and

cumbersome, but it is also highly subjective. Even in microscopic evaluations performed by

expert screeners, it is difficult to achieve optimal repeatability and reproducibility. Moreover,

evaluations are often done several hours (or days) after sampling. Thus, due to its technicality,

SCE is rarely diagnosed in the bovine in daily veterinary practice. Therefore, using a non-

biased and automated diagnostic system might become advisable to evaluate endometrial

cytology slides, tackling the tediousness and subjectivity of the manual counting method.

With the advent of artificial intelligence technologies, deep learning-based algorithms are

increasingly applied as a powerful and promising tool for evaluating cytological images [12–

15]. One of the main advantages of a deep learning-based system is that no technical knowl-

edge of cell-type recognition is needed. Hence, automation of the PMN counting via deep

learning technology may facilitate and stimulate the diagnosis of SCE in daily veterinary prac-

tice. Additionally, there is no human bias associated with identifying and counting cells [16].

Furthermore, with their high throughput, such technologies can significantly improve the effi-

ciency of evaluation of PMN by eliminating operator variability and minimizing operation

hours. No previous study has examined the use of artificial intelligence for the identification

and counting of PMN in endometrial cytology slides. Thus, we aimed to validate the accuracy

and efficiency of a state-of-the-art deep learning-based system to assess the per cell proportion

of PMN in endometrial cytology slides. To do so, diagnostic values of a deep learning-based

automation software were compared with manually counted samples stained with modified

Wright-Giemsa and Naphthol staining.

Materials and methods

General

This diagnostic test validation study included 116 multiparous Holstein cows from one com-

mercial dairy farm in Flanders, Belgium. Cows were fed a totally mixed ration and milked

twice daily in a conventional parlor reaching an average milk production of 10,000 kg/cow/

305 days. Endometrial cytology samples were collected in the fifth week postpartum (the pro-

cedure is described below). Although the presence of purulent vaginal discharge (PVD) was

not used as an exclusion criterion, all animals were clinically healthy (no fever or systemic

signs of disease) and not yet inseminated. A veterinarian collected samples during weekly
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visits. The sampling procedure was approved by the Animal Ethics Committee of the Faculty

of Veterinary Medicine at Ghent University (EC 2013/174).

Sample collection

Endometrial cytology samples were collected using the CB technique (CooperSurgical, Berlin,

Germany) as described by Pascottini et al. (2015) [7]. Briefly, a human use Cytobrush Plus GT

(CooperSurgical, Berlin, Germany) was adapted to a stainless-steel stylet of a universal insemi-

nation gun (Agtech, Manhattan, KS, USA) and covered with a 12"-long Sani-Shield Rod

(Agtech, Manhattan, KS, USA). Cows were restrained, and their vulva and perineum were

rinsed with fresh water and dried with a paper towel. Next, the CB rod was inserted into the

vagina and gently passed through the cervix by rectal handling. Upon reaching the uterine

lumen, the CB was exposed and rolled twice against the dorsal part of the uterine body. Then,

the CB was retracted into the Sani-Shield Rod and carefully removed from the reproductive

tract.

Preparation and staining of the slides

Slides for cytologic examination were prepared by gently rolling the CB onto three different

microscope slides (triplicate set of samples) immediately after sampling. All slides were air-

dried and placed in a slide box. According to the manufacturer’s instructions, the first set of

samples (n = 116) was stained using a commercially available modified Giemsa staining (Diff-

Quick, Fisher Diagnostics, Newark, DE, USA) (Fig 1A1–1D1). The second set of samples

(n = 116) was stained using Naphthol, which is considered the gold standard to stain PMN

since they appear in bright red under the microscope (Fig 1A2–1D2).

Preparation of Naphthol staining was carried out as previously reported by Leder et al.

(1970) and Overbeck et al. (2013) [10, 11]. Briefly, two stock solutions were prepared: a sub-

strate solution and a hexasodium solution. For preparing the substrate solution, 3.58 mg of

Naphthol-AS-Dichloroacetate (Sigma, ref. no. N0758, St. Louis, USA) was diluted in 0.9 mL of

Fig 1. Endometrial cytology smears evaluated by light microscopy (× 400 magnification). Images A1, B1, C1, and D1: Cytology slides stained with the Diff-Quick

method, black arrows point polymorphonuclear leucocytes (PMN). Images A2, B2, C2, and D2: Cytology slides stained with the Naphthol method, PMN appearing in

bright red. Images A1 and A2 represent 0% PMN; B1 and B2 represent�1% PMN; C1 and C2 represent>5% PMN; D1 and D2 represent>10% PMN.

https://doi.org/10.1371/journal.pone.0263409.g001
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dimethyl sulfoxide (Sigma, ref. no. D5879, St. Louis, USA) and 0.1 mL Triton X-100 (Sigma,

ref. no. X100, St. Louis, USA). For the hexasodium solution, a sodium nitrite solution 1 mol/L

was prepared by diluting 345 mg of sodium nitrite (Carl-Roth, ref. no. 8604.1, Karlsruhe, Ger-

many) in 5 mL of distilled water. Once the sodium nitrite solution was prepared, pararosani-

line hydrochloride (Sigma, ref. no. P3750, St. Louis, USA) was diluted in 3 mL of 1 mol/L HCl

(Chem-lab, ref. No. CL05.0311.1000, Zedelgem, Belgium). Then, 0.5 mL of nitrite solution was

added to the pararosaniline-HCl solution. The substrate and the hexasodium solution rested

for 5 minutes to reach stabilization. To prepare the final Naphthol solution, 1 mL of substrate

solution and 0.5 mL of hexasodium solution were added to 100 mL of phosphate-buffered

saline (pH = 7.2) and vortexed until a light pink color appeared. Then, slides were incubated

for 90 minutes at 37˚C in the Naphthol solution. After incubation, slides were rinsed for 2

minutes with tap water and for 5 minutes with distilled water. For counterstaining, slides were

submerged in a hemaluin Gill staining solution for 7 minutes. Finally, slides were rinsed with

tap water for 10 minutes and distilled water for 5 minutes.

Once the Diff-Quick and the Naphthol slides were dry, coverslips (Marienfeld, Lauda-

Königshofen, Germany) were mounted on the stained glass slides using Eukitt (O. Kindler

GmbH, Freiburg, Germany) as the mounting medium. Once the mounting medium dried up,

Diff-Quick and Naphthol slides were stored in slide boxes until further evaluation.

The third set of samples (n = 116) was stained using a ready-to-use fluorescent solution

(Oculyze GmbH, Germany), which is a cyanine-based nucleic acid staining emitting green

light at 520 nm. To do so, two drops of the fluorescent staining were placed in the center of the

microscope glass slide and directly mounted with coverslips (Marienfeld, Lauda-Königshofen,

Germany). These slides are referred to as Oculyze Monitoring Uterine Health (Oculyze MUH)

slides and were evaluated within 15 min after mounting. A schematic illustration of the sample

preparation process for Oculyze MUH is depicted in Fig 2.

Diff-Quick and Naphthol evaluation

Diff-Quick and Naphthol slides were examined by a single, experienced observer under light

microscopy (Kyowa Optical, Tokyo, Japan) at × 400 magnification. The slide examination pro-

cedure was repeated twice on two different days (by the same observer) for each slide to assess

the intra-method repeatability. The per-cell proportions of PMN were assessed by counting a

total of 300 nucleated cells as described by Melcher et al. (2014) [8]. For each examination, the

slide number was blinded to the observer before evaluation. The slide number was revealed to

the observer only after the assessment of the PMN%, and results were written down in a

Fig 2. Schematic illustration for the sample preparation process for the Oculyze Monitoring Uterine Health (Oculyze MUH) system. After sampling, the cytobrush

was immediately rolled onto a glass slide, air-dried, and placed in a box for transportation. Once at the lab, two drops of fluorescent dye were added, and the slide was

subsequently analyzed with a fluorescent microscope connected to a smartphone.

https://doi.org/10.1371/journal.pone.0263409.g002

PLOS ONE Automated image analysis system to diagnose subclinical endometritis in dairy cows

PLOS ONE | https://doi.org/10.1371/journal.pone.0263409 January 28, 2022 4 / 14

https://doi.org/10.1371/journal.pone.0263409.g002
https://doi.org/10.1371/journal.pone.0263409


Microsoft Excel spreadsheet (Microsoft Corp., Redmond, WA). The first examination results

were also blinded to the observer when reporting the second examination results (two different

Microsoft Excel spreadsheets were used).

Oculyze MUH system

The Oculyze MUH system is a computer vision algorithm based on deep machine learning. A

detailed video depicting the step-by-step guide on how to use Oculyze MUH can be accessed

through the following link https://www.youtube.com/watch?v=BIxNHBmc7yc. For the pres-

ent experiment, a fluorescence microscope (Science ADL-601 F LED, Bresser, Germany) was

equipped with a 5MP USB C-Mount Microscope Camera (Banggood.com, China) and con-

nected to a smartphone (Mi A2, Xiaomi, China) with the Oculyze MUH application version

1.2.7 installed (https://play.google.com/store/apps). For image acquisition, the Oculyze MUH

application was initialized, and the microscope was adjusted at × 400 magnification. Pictures

from the slide were taken in different, randomly selected high-power fields until 300 cells were

recognized (automatically counted by the software). The recorded images were uploaded to a

cloud-based image analysis platform backend with a specifically deployed computer vision sys-

tem to analyze the PMN counts of each slide. Within 5 seconds, results were downloaded and

displayed in the Oculyze MUH application. Slides were examined twice in a row (in different

high-power fields) by the same operator in order to determine the intra-method agreement.

Bioinformatic approach

The captured images were analyzed via the Oculyze MUH software (Oculyze GmbH, Wildau,

Germany). The software’s architecture includes three main components: image enhancement

preprocessing, deep learning detection analysis, and classification and postprocessing for data

formatting and output (Fig 3).

For the image enhancement preprocessing, the red/green/blue (RGB) input of the fluores-

cent image is first processed. Then, noise reduction is performed by bilateral filtering, and con-

trast enhancement is applied to isolate cells from the background. The pixel-based processing

is carried out using the OpenCV [17] library. To cope with the high range of image noise and

distortion variables, a large number of images were previously selected for deep learning

training.

The network structure used for the construction of the deep-learning analysis was based on

tiny YOLO3, which consists of 13 convolution layers, 6 max-pooling layers, 2 route layers, 1

up-sampling layer, and 2 YOLO layers [18]. Briefly, convolution between images and filters

efficiently extracts salient features for object detection. The leaky rectified linear unit (ReLu)

was utilized to fire the neurons of the neural network in tiny YOLO3. The max-pooling resizes

the feature mapping while increasing the stability and robustness of the network structure.

The up-sample layer increases the resolution of the image for scale invariance of the detection.

Two route layers concatenated the data from other layers to boost information for the predic-

tions. The YOLO layers performed the final task of defining the bounding boxes and probabili-

ties. The number of epochs was set at 15000. The class probability threshold was set at 0.9.

Batch size, image size, and other hyperparameters were set at the tiny YOLO default [18].

A Neural Network detection model based on YOLO-V3 [19] was trained with 5000 images

containing samples with different challenging attributes (e.g., high blur, low contrast, and clus-

tering cells) for the deep learning analysis. The training images contained a comparable num-

ber of cells of each detection target, i.e., given three types of cells, each type ideally

representing 33% of the total number of cells found in the images. The detection targets are

PMN, endometrial cells, and a third type set of disintegrated cells or contaminating particles
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(Figs 4 and 5). Given the monochromatic nature of the image and the use of nuclear dye, the

main discrimination feature is the shape of the nucleus in relation to the size of the cells. When

annotating the dataset for training, the polymorphic nature of the PMN nucleus was annotated

as the main target class. Endometrial cells and disintegrated cells are the other classes. The rela-

tion to the average cell size in the image is needed to discriminate PMN from clusters of nor-

mal endometrial cells. The system scans the image three times using modified versions of the

trained YOLO-V3 model to maximize the number of detections. At each step of scanning,

local image enhancement is performed to portions of the images affected, for instance, by over-

exposure or low contrast. Each detection element consists of an array of values represented by

a class of detection, confidence score, and location data. The class is defined as an integer for

each target defined in the training stage. The confidence value is a score that the Neural Net-

work assigns to an object according to how it matches with a class detection. Finally, the loca-

tion data is defined as a bounding box containing the cell in x-y coordinates.

The results of the separated scanning steps are joined into a single array of detections, to

which non-maximum suppression is applied to discard overlapping results with lower

Fig 3. Graphical representation of the levels of image recognition and the analysis process used by the Oculyze

Monitoring Uterine Health (Oculyze MUH) system to identify and quantify polymorphonuclear leucocytes (PMN)

in endometrial cytology slides.

https://doi.org/10.1371/journal.pone.0263409.g003
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confidence scores. A second outlier filtering is then performed to refine the output confidence

value for each detected cell. This consists of a second classification applied to each detected cell

through a Neural Network classifier based on Tensorflow [20]. The model for this classifica-

tion has been obtained by transfer learning based on the Tensorflow Model Inception V3. A

large dataset of cells of the different classes has been used to obtain the retrained model. After

computer vision analysis of all pictures is finalized, single image results are aggregated, sum-

marizing total cell count and PMN% for all pictures of the respective slide.

Sample size calculation and statistical analyses

Collected data were merged into a Microsoft Excel file (Microsoft Corp., Redmond, WA). Sta-

tistical analyses were performed in R Studio version 4.0.4 (R Inc., Boston, USA). For all evalua-

tion methods described above, PMN counts were reported as a percentage. Moreover, we

determined three different PMN cut-off points (�1, >5, and>10% PMN; represented in Fig

1) as diagnostic thresholds for SCE [5, 21, 22]. Sample size calculations were done using the R

packages pwr [23] and kappaSize [24]. One hundred and sixteen samples per experimental

Fig 4. Endometrial cytology smears were evaluated by fluorescence microscopy (× 400 magnification). Cytology slides were stained using a

ready-to-use fluorescent solution (Oculyze, GmbH, Germany; A1 and B1). Images were acquired using a smartphone attached to a camera (A2 and

B2). Images were analyzed via the Oculyze Monitoring Uterine Health (Oculyze MUH) system, and the detection targets were: polymorphonuclear

leukocytes (PMN; red squares), endometrial cells (green squares), and a third-class set to contain disintegrated cells or contaminating particles

(yellow squares). Scale bar: 50 μm.

https://doi.org/10.1371/journal.pone.0263409.g004
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group are sufficient to detect a correlation of at least r = 0.3 with a 95% confidence

interval (CI) and 80% power. To achieve a correlation of r = 0.61 (sufficient for a validation

test), 19 samples per experimental group are necessary. To identify a (substantial) Cohen’s

kappa agreement of κ = 0.61 (with a precision of 0.1 on each side) with an expected SCE preva-

lence of 30%, a total of 93 samples per experimental group is necessary (95% CI and 80%

power).

Descriptive statistics were computed using the function summary of the R coding system

(package Base). The Spearman correlation test on the percentage of PMN was calculated

within each evaluation method to assess the intra-method repeatability (function cor of the

package Hmisc) [25]. Lin’s concordance correlation coefficient (CCC, ρc) was calculated using

the function epi.ccc of the package epi.R [26] to assess the inter-method agreement on the per-

centage of PMN among evaluation methods. The function confusionMatrix of the package

caret [27] was used to determine Cohen’s kappa agreement, sensitivity (Se), specificity (Sp),

positive predictive value (PPV), negative predictive value (NPV), and accuracy to assess the

agreement within and among evaluation methods at three different PMN cut-off points (�1,

>5, and >10% PMN). The CCC was interpreted as: 1 reflects total positive correlation, 0 no

correlation, and −1 total negative correlation [28]. The κ value agreement was interpreted as:

less than 0.21 poor agreement, 0.21 to 0.40 fair agreement, 0.41 to 0.60 moderate agreement,

0.61 to 0.80 substantial agreement, and greater than 0.80 almost perfect agreement [29]. For

the intra-method agreements, the first read was considered as the golden standard. For the

inter-method agreements, the golden standard was Naphthol, or in its absence, it was Diff-

Fig 5. Endometrial cytology smears were evaluated by fluorescence microscopy (× 400 magnification). The cytology slide was stained using

a ready-to-use fluorescent solution (Oculyze, GmbH, Germany; A). Image A was acquired using a smartphone attached to a camera. Image A1,

A2, and A3 represent different shapes of cell nuclei that were used to train the Oculyze Monitoring Uterine Health (Oculyze MUH) system.

Image A1 is a polymorphonuclear leukocyte (red square), image A2 is an endometrial cell (green square), and image A3 is a third-class of shape

containing a disintegrated cell or contaminating particle (yellow square).

https://doi.org/10.1371/journal.pone.0263409.g005
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Quick. Correlation and Bland-Altman plots were created to visualize the comparison within

and among evaluation methods (packages ggplot2 and epi.R) [26, 30].

Results

Descriptive statistics

From the total set of 348 cytology slides, fourteen were excluded due to a low-quality or an

insufficient number of cells (< 300 cells). From the remaining 334 slides, 116 Naphthol, 110

Diff-Quick, and 108 were evaluated by the Oculyze MUH. Descriptive data of PMN propor-

tions are shown in Table 1. All staining methods yielded similar PMN proportions resulting in

a comparable endometritis prevalence among the 3 different groups.

Correlations and agreements within evaluation methods

The correlation coefficients of PMN% within evaluation methods were all r> 0.6 and P< 0.01

(Fig 6). Interestingly, the correlation coefficient of the PMN% within the Oculyze MUH sys-

tem (r = 0.76) was slightly higher than for Naphthol (r = 0.73) and Diff-Quick (r = 0.67). The

intra-method agreements, Se, Sp, PPV, NPV, and accuracies using�1, >5, and >10% PMN

cut-off points are shown in Table 2. For all evaluation methods, the intra-method agreements

at�1% PMN (κ = 0.44 to 0.47) were lower than when using >5 (κ = 0.69 to 0.78) or>10% (κ
= 0.67 to 0.85) PMN cut-off points (Table 2).

Agreements among evaluation methods

Graphical representations of the relationships among evaluation methods are shown in the

Bland-Altman plots of Fig 7. The CCC of PMN% between Naphthol and Oculyze MUH was ρc

Table 1. Descriptive statistics and subclinical endometritis incidences at different polymorphonuclear leukocytes (PMN) thresholds from endometrial cytology

samples collected using the cytobrush technique in the fifth week postpartum from Holstein cows and evaluated by three different methods.

Method Total samples Mean SD Range � 1% PMN threshold > 5% PMN threshold >10% PMN threshold

Naphthol 116 4.89 9.73 0–50 61.2% (n = 71) 29.3% (n = 34) 12% (n = 14)

Diff-Quick 110 6.02 15.77 0–90 56.3% (n = 62) 17.2% (n = 19) 8.1% (n = 9)

Oculyze MUH 108 5.17 8.88 0–50 67.5% (n = 73) 25% (n = 27) 8.3% (n = 9)

Values expressed as percentage of PMN. SD is standard deviation.

https://doi.org/10.1371/journal.pone.0263409.t001

Fig 6. Correlation plots illustrating the intra-method repeatability of polymorphonuclear leukocytes (PMN) percentages of endometrial cytology samples. Naphthol

(A) and Diff-Quick (B) slides were evaluated twice by one single observer on different days under light microscopy (× 400 magnification). Oculyze Monitoring Uterine

Health system (Oculyze MUH) slides (C) were assessed twice by using a fluorescence microscope connected to a smartphone and analyzed with a deep learning-based

algorithm to identify PMN. The black diagonal lines and the gray shadings represent the regressions and the 95% confidence intervals between each read.

https://doi.org/10.1371/journal.pone.0263409.g006
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= 0.77 (95% CI: 0.68–0.83), which was slightly higher than between Diff-Quick and Oculyze

MUH (ρc = 0.68, 95% CI: 0.60–0.74) or between Naphthol and Diff-Quick (ρc = 0.69, 95% CI:

0.60–0.76). In general, the agreements among evaluation methods when using�1% PMN as

SCE cut-off were low (κ = 0.06 to 0.28), while the agreements for all evaluation methods

increased at cut-offs >5 (κ = 0.48 to 0.81) and>10% PMN (κ = 0.50 to 0.65) (Table 3).

Discussion

Deep learning-based technologies have been applied to use automated image analysis of cytol-

ogy samples in human medicine [14, 15, 31, 32]. For the first time in reproductive veterinary

medicine, we showed that a deep learning-based software combined with a fluorescent micro-

scope connected to a smartphone could accurately and efficiently identify and quantify PMN

in endometrial cytology specimens harvested in cattle. The Oculyze MUH system presented a

slightly higher intra-method repeatability than Naphthol or Diff-Quick. Moreover, the inter-

method agreement between Naphthol (considered the gold standard to stain PMN) and Ocu-

lyze MUH was slightly higher than Naphthol and Diff-Quick. The inter- and intra-agreements

Table 2. Intra-method diagnostic characteristics and Cohen’s Kappa values for agreement beyond chance of binomial outcomes for the diagnosis of subclinical

endometritis using distinct endometrial cytology evaluation methods and polymorphonuclear leukocytes (PMN) thresholds. Samples were collected using the cyto-

brush technique in the fifth week postpartum from Holstein cows.

Method1 PMN threshold Sensitivity Specificity PPV2 NPV2 Accuracy Kappa

Naphthol � 1% 0.71 0.74 0.64 0.80 0.73 0.44

Diff-Quick 0.67 0.77 0.72 0.72 0.72 0.45

Oculyze MUH 0.63 0.83 0.65 0.82 0.76 0.47

Naphthol > 5% 0.97 0.66 0.87 0.91 0.88 0.69

Diff-Quick 0.97 0.70 0.92 0.89 0.91 0.74

Oculyze MUH 0.96 0.80 0.92 0.88 0.91 0.78

Naphthol > 10% 0.95 0.68 0.92 0.78 0.90 0.77

Diff-Quick 0.96 0.93 0.98 0.82 0.96 0.85

Oculyze MUH 0.98 0.82 0.96 0.93 0.96 0.85

1Samples were evaluated twice at different days by a single observer. The first read was considered as the golden standard.
2Positive predictive value (PPV) and negative predictive value (NPV).

https://doi.org/10.1371/journal.pone.0263409.t002

Fig 7. Bland-Altman plots illustrating the relationship of polymorphonuclear leukocytes (PMN) percentages (%) of endometrial cytology slides evaluated via

Naphthol, Diff-Quick, and Oculyze Monitoring Uterine Health (Oculyze MUH) system. Lin’s concordance correlation coefficients (CCC) with their respective 95%

confidence interval (CI) on the percentage of PMN between evaluation methods are shown on the top of each plot. The solid horizontal lines represent the mean

difference, and the dashed lines represent the upper and lower limits of difference.

https://doi.org/10.1371/journal.pone.0263409.g007
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were similar among evaluation methods, and when using�1% PMN, the diagnostic agreements

were all weak. The Oculyze MUH system is at least as efficient as Naphthol and Diff-Quick but

has the advantage of simplifying and minimizing a potential bias to diagnose SCE in dairy cows.

Substantial intra-method repeatabilities were obtained for all methods evaluated in the

present study. Although differences were minimal, the Oculyze MUH system had a slightly

higher intra-method repeatability than Naphthol and Diff-Quick. Other studies [5, 33, 34]

found intra-observer correlations ranging from 0.77 to 0.85, similar to the values obtained

here. Nevertheless, the intra-method agreements at�1% PMN cut-off were only moderate for

all tested methods. However, when increasing the cut-off point to>5% PMN, we obtained

substantial agreements, similar to those reported by Dubuc et al. (2010). Interestingly, agree-

ment shifted to ‘almost perfect’ when the cut-off point was set at>10% PMN. Thus, our results

suggest that the Oculyze MUH system is repeatable and accurate to automatically count PMNs

with a substantial accuracy to diagnose SCE starting at the 5% PMN threshold.

To assess the Oculyze MUH system’s efficiency, its PMN% outcome was compared to both

the golden standard method to stain PMN (Naphthol) and the most used method to stain

cytology slides (Diff-Quick). The agreements (ρc) between the Oculyze MUH system and the

other two methods were substantial. This confirms that the deep learning approach used by

Oculyze MUH was able to reach the level of an expert screener to identify and count PMN

accurately. However, the κ for the inter-method agreement at different PMN% cut-offs were

variable. Like the intra-method repeatability, better agreements (κ) among evaluation methods

were achieved when using a higher threshold of PMN. Compared to Naphthol as the golden

standard, the Oculyze MUH system at cut-off point�1% PMN resulted in low Se, PPV, and

NPV. This means that the deep learning-based system yields a relatively large proportion of

false-positive readings. This may lead to overestimating the true prevalence of SCE by the Ocu-

lyze MUH system, as shown in Table 1. Nevertheless, it is essential to mention that the agree-

ment (κ) at�1% PMN between Naphthol and Diff-Quick was also weak. In contrast, when

using the>5 or 10% PMN cut-off points, the agreements between Naphthol and Oculyze

MUH improved, and their Se and PPV were high. These findings are consistent with the study

of Dimauro et al. (2019), in which a deep learning system was used to identify neutrophils and

eosinophils in human nasal cytology samples with a Se of 0.97 and 1, respectively [31].

Apart from the novelty of the deep learning-based system, it should be noted that the Ocu-

lyze MUH is still under development. Therefore, the system might incorrectly classify broken

Table 3. Inter-method diagnostic characteristics and Cohen’s Kappa values for agreement beyond chance of binomial outcomes for the diagnosis of subclinical

endometritis using distinct endometrial cytology evaluation methods and polymorphonuclear leukocytes (PMN) thresholds. Samples were collected using the cyto-

brush technique in the fifth week postpartum from Holstein cows.

Referent method1 Test method1 PMN threshold Sensitivity Specificity PPV2 NPV2 Accuracy Kappa

Naphthol Diff-Quick � 1% 0.61 0.66 0.59 0.68 0.64 0.28

Naphthol Oculyze MUH 0.42 0.77 0.60 0.62 0.61 0.20

Diff-Quick Oculyze MUH 0.48 0.58 0.36 0.70 0.55 0.06

Naphthol Diff-Quick > 5% 0.95 0.89 0.97 0.80 0.94 0.81

Naphthol Oculyze MUH 0.94 0.69 0.90 0.81 0.88 0.67

Diff-Quick Oculyze MUH 0.92 0.52 0.86 0.66 0.83 0.48

Naphthol Diff-Quick > 10% 0.94 0.70 0.94 0.70 0.90 0.65

Naphthol Oculyze MUH 0.91 0.64 0.94 0.52 0.87 0.50

Diff-Quick Oculyze MUH 0.92 0.69 0.95 0.56 0.89 0.55

1Samples were evaluated at different days by one single observer.
2Positive predictive value (PPV) and negative predictive value (NPV).

https://doi.org/10.1371/journal.pone.0263409.t003
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cells and background (debris or contaminating particles) as PMN. This may be the reason for

the weak results obtained in the present study while using the 1% PMN cut-off. However, the

benefit of a deep learning approach itself is its continuous process of improvement which can

only be reached by analyzing an extensive set of images from different qualities [15, 35]. There-

fore, it is essential to continuously train the system to the greatest extent possible. It can be

expected that the more data is being analyzed, the more accurate the results will become. Albeit

reading endometrial cytology slides via the Oculyze MUH reduces human bias, it is worth

mentioning that selecting the area of interest to acquire the images to be analyzed is not

entirely free of bias. The Oculyze MUH system can eventually be further improved by using a

whole slide image algorithm to eliminate the operator selection bias.

Conclusions

The Oculyze MUH system presented substantial intra-method repeatability. Nevertheless, the

intra- and inter-method agreements at�1% PMN cut-off to diagnose SCE were weak to mod-

erate for all tested methods. Adequate agreements between Naphthol and Oculyze MUH were

obtained at>5 or >10% PMN cut-off points, which are generally applied as reliable diagnostic

thresholds to diagnose SCE in dairy cows. Results of the present study are encouraging, and

the application of the deep learning technology in endometrial cytology is a promising tool to

simplify and reduce bias when diagnosing SCE, with results at least as good as Naphthol or

Diff-Quick. However, to improve the performance and robustness of the Oculyze MUH, an

expansion of the dataset to train the system with an extensive set of images is warranted.
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