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Sarcospan: a small protein with large potential for
Duchenne muscular dystrophy
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Abstract

Purification of the proteins associated with dystrophin, the gene product responsible for Duchenne muscular
dystrophy, led to the discovery of the dystrophin-glycoprotein complex. Sarcospan, a 25-kDa transmembrane
protein, was the last component to be identified and its function in skeletal muscle has been elusive. This review
will focus on progress over the last decade revealing that sarcospan is an important regulator of muscle cell
adhesion, strength, and regeneration. Investigations using several transgenic mouse models demonstrate that
overexpression of sarcospan in the mouse model for Duchenne muscular dystrophy ameliorates pathology and
restores muscle cell binding to laminin. Sarcospan improves cell surface expression of the dystrophin- and
utrophin-glycoprotein complexes as well as α7β1 integrin, which are the three major laminin-binding complexes in
muscle. Utrophin and α7β1 integrin compensate for the loss of dystrophin and the finding that sarcospan increases
their abundance at the extra-synaptic sarcolemma supports the use of sarcospan as a therapeutic target. Newly
discovered phenotypes in sarcospan-deficient mice, including a reduction in specific force output and increased
drop in force in the diaphragm muscle, result from decreased utrophin and dystrophin expression and further
reveal sarcospan’s role in determining abundance of these complexes. Dystrophin protein levels and the specific
force output of the diaphragm muscle are further reduced upon genetic removal of α7 integrin (Itga7) in
SSPN-deficient mice, demonstrating that interactions between integrin and sarcospan are critical for maintenance of
the dystrophin-glycoprotein complex and force production of the diaphragm muscle. Sarcospan is a major
regulator of Akt signaling pathways and sarcospan-deficiency significantly impairs muscle regeneration, a process
that is dependent on Akt activation. Intriguingly, sarcospan regulates glycosylation of a specific subpopulation of α-
dystroglycan, the laminin-binding receptor associated with dystrophin and utrophin, localized to the neuromuscular
junction. Understanding the basic mechanisms responsible for assembly and trafficking of the dystrophin- and
utrophin-glycoprotein complexes to the cell surface is lacking and recent studies suggest that sarcospan plays a
role in these essential processes.
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Identification of sarcospan
Muscular dystrophies represent a group of progressive
muscle disorders characterized by extensive muscle
wasting and weakness. Duchenne muscular dystrophy
(DMD) is caused by mutations in the dystrophin gene
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that result in loss of dystrophin, a protein that is nor-
mally localized to the subsarcolemma [1-5]. Discovery of
dystrophin-associated proteins, referred to as the
dystrophin-glycoprotein complex (DGC), represent a
major advancement in the understanding of the DGC’s
function in skeletal muscle and provide further support
for the contraction-induced sarcolemma injury model
underlying DMD pathogenesis [1,2,4,5]. In addition to
dystrophin, the DGC is composed of α/β-dystroglycan
(DG), the sarcoglycans (SGs), the syntrophins, and dys-
trobrevin (for review, [6]). One of the last components
of the DGC to be identified was a 25-kDa dystrophin-
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associated protein (DAP), which was resistant to identifi-
cation, in part due to lack of polyclonal antibodies that
cross-reacted with the 25-kDa DAP (also called A5)
from goats and sheep, immunized with the DGC [7].
The hydrophobic probe, 3-trifluoromethyl-3-(m-[125I]
iodophenyl) diazirine or TID, bound very strongly to the
25-kDa DAP, suggesting that it might be an integral
membrane protein [5]. In fact, TID binding to the
25-kDa DAP was greater than its binding to the SGs or
β-DG, which possess a single transmembrane span, pro-
viding strong evidence that the 25-kDa DAP contained
multiple membrane-spanning regions and was unlikely
to be a protein degradation product, as had been specu-
lated based on its weak staining with Coomassie-
Brilliant blue [5,7]. Identification of the 25-kDa DAP
was accomplished by in-gel digestion and sequencing of
two amino acid peptides, leading to isolation of the
corresponding human cDNA [7] that was previously
identified in part as Kirsten ras associated gene (krag), a
gene that is co-amplified with Ki-ras in the Y1 murine
adrenal carcinoma cell line [8,9]. The gene was renamed
to sarcospan (SSPN) for its multiple sarcolemma span-
ning helices predicted from hydropathy analysis [7].
While SSPN is expressed in many non-muscle tissues
[10,11], its biochemical characterization was performed
in skeletal muscle where it is most abundant.

Rigorous criteria define components of the dystrophin-
glycoprotein complex
Although characterization of the 25-kDa DAP led to its
identification, there was much speculation that SSPN
was a contaminant of the purified complex rather than a
bona fide member of the DGC. Integral components of
the DGC are defined by four biochemical characteristics
and SSPN was rigorously tested with these established
criteria. First, purification of the DGC from skeletal
muscle membranes enriches proteins that are associated
in a complex with dystrophin. Campbell and colleagues
exploited the presence of several glycoproteins within
the DGC to enrich the complex using succinylated
wheat germ agglutinin (sWGA) lectin chromatography
of digitonin-solubilized skeletal muscle membranes
[1-5]. sWGA enrichments containing the DGC can be
further purified by diethylaminoethyl (DEAE)-cellulose
ion exchange chromatography, which separates the DGC
from abundant calcium channels. It was discovered that
SSPN elutes from DEAE columns at 175 mM NaCl,
along with purified DGC components [7]. A second
characteristic of DGC proteins is their migration as a
complex during high-speed centrifugation through
sucrose gradients. Only proteins that bind with high
affinity and specificity will be retained with dystrophin
during sucrose gradient fractionation where it migrates
as an 18S complex [2-4,12]. SSPN co-migrates with peak
DGC-containing fractions providing additional evidence
that SSPN is an integral component of the DGC
[5,7,13,14]. In contrast, while a fraction of caveolin-3
maintains association with the DGC during purification
by sWGA lectin affinity chromatography, it is localized
to heavier fractions during sucrose gradient centrifuga-
tion [7,13]. For the third criterion, the laminin binding
capacity of α-dystroglycan (α-DG) was exploited to
separate the DGC from other membrane-associated
proteins. Application of sWGA enrichments from ske-
letal muscle reveals that SSPN is entirely retained on
laminin-sepharose columns, but caveolin-3 is found only
in the void fraction [13,15-19]. Finally, it is well estab-
lished that core components of the DGC depend on
dystrophin for localization to the sarcolemma. In
dystrophin-deficient DMD patients and the mdx mouse
model, SSPN is absent from the sarcolemma while mem-
brane expression of caveolin-3 is not affected by loss of
dystrophin [7,13].

Structural analysis of sarcospan provides insight into
function
Topology algorithms predict that SSPN possesses four
transmembrane domains with a small extracellular loop
(between transmembrane domains 1 and 2), a large extra-
cellular loop (LEL; between transmembrane domains 3
and 4), and intracellular N- and C-termini (Figure 1) [7].
Although several protein families contain four transmem-
brane domains, dendrogram analysis suggests that SSPN
is related to the tetraspanins, although not all characteris-
tics are conserved. Like other tetraspanins, the LEL of
SSPN contains conserved Cys residues that are important
for tertiary structure, although SSPN lacks the hallmark
Cys Cys Gly motifs within the LEL and conserved sites for
N-linked glycosylation and palmitolyation that are charac-
teristic of tetraspanins [20]. Tetraspanins facilitate protein
interactions by forming tetraspanin-enriched microdo-
mains within the membrane to regulate intracellular cell
signaling (for review, [20-23]). Similarly, SSPN forms
higher ordered homo-oligomers by laterally associating
with one another in the sarcolemma of skeletal muscle
(Figure 1) [24].
Reconstitution of SSPN oligomerization using a heter-

ologous cell expression system and muscle lysates from
SSPN transgenic mice reveals the presence of pentamers
that were maintained during high-speed ultracentrifuga-
tion through non-reducing sucrose gradients (Figure 1)
[24]. Using a site-directed mutagenesis approach, SSPN-
SSPN interfaces were defined within the intracellular
(N- and C-termini) and extracellular regions of SSPN,
suggesting that the formation of SSPN oligomers occurs
through a complex set of protein interactions (Figure 1).
Alanine replacement of cysteine residues reveals that
intramolecular thiol bridges between Cys 162 and Cys



Figure 1 SSPN interacts with the sarcoglycans and forms oligomers characteristic of tetraspanins. SSPN is a tetraspanin-like protein, with
four transmembrane domains, which complexes with the DGC and UGC at the sarcolemmal membrane of skeletal muscle. Site directed
mutagenesis of SSPN revealed that the N- and C-termini as well as regions of the large extracellular loop (LEL, between transmembrane domains
3 and 4) are necessary for SSPN-SSPN and SSPN-SG interactions, respectively [24]. Deletion mutagenesis, in which regions of six amino acids were
removed at a time, was performed to identify regions within SSPN that are important for protein interactions (left). The N-terminus and C-
terminus (green) are critical for SSPN dimer formation and the LEL is important for trimer and tetramer oligomers. SSPN-SG interactions were
identified in the LEL (purple) and mutations in the LEL disrupt SSPN monomer formation, likely due to disruption of thiol bonds (orange) critical
for stabilizing the structure of SSPN. Immunoblot analysis of skeletal muscle lysates from SSPN transgenic mice demonstrates that SSPN forms
homo-oligomers under non-reducing (NR) conditions (middle) [24]. In reducing conditions (R), SSPN exists solely in monomeric form. Similar to all
tetraspanins, SSPN forms higher ordered structures through homo-oligomerization. We propose a model whereby SSPN-SSPN oligomers form a
scaffold on which the DGC and UGC complexes are assembled (right). DGC, dystrophin-glycoprotein complex; DG, α/β dystroglycan; SG,
sarcoglycans; UGC, utrophin-glycoprotein complex.
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164 within the LEL are critical determinants of SSPN
structure [24]. In fact, mutation of any cysteine within
the LEL disrupts cysteine packing within the LEL, lea-
ding to destabilization of SSPN monomer formation
[24]. Based on structural and functional analysis of SSPN
overexpression in several mouse models, it is reasonable
that multiple SSPN proteins may interact with each
adhesion complex, thereby mediating cross-talk between
transmembrane glycoprotein complexes. The biological
significance of SSPN oligomers mediating protein-
protein interactions between adhesion complexes is
appealing, but requires further investigation.
Although SSPN exhibits many tetraspanin-like charac-

teristics, it may be more structurally similar to the CD20
family of proteins, which includes the beta subunit of
the high affinity receptor for IgE Fc [25]. Members of
the CD20 family span the plasma membrane four times
and possess a LEL (between transmembrane domains 3
and 4) as well as intracellular N- and C-termini [26-29].
The regions of homology that define the CD20 family
are largely within the transmembrane domains. Similar
to tetraspanins, CD20 forms multimeric oligomers
within the plasma membrane and is unlikely to exist
solely in a monomeric state [30]. The specific function
of CD20 has not been elucidated, but CD20 localizes to
lipid rafts where it may play a role in regulating cell
cycle progression, tyrosine kinase-dependent signaling,
and B-cell differentiation (for review, [31]).

Sarcospan and the sarcoglycans form a subcomplex
The SGs are single pass transmembrane glycoproteins
referred to as α-, β-, γ-, and δ-SG (for review, [6]). The
first evidence that the DGC is composed of bioche-
mically distinct subcomplexes came from experiments in
which purified DGC was subjected to alkaline conditions
that dissociate pH-sensitive protein interactions [4]. The
finding that SSPN tightly associates with the SG sub-
complex is supported by sucrose gradient analysis of
alkaline-treated preparations revealing that SSPN
co-sediments exclusively with the SGs [32]. Further-
more, treatments with denaturing agents such as sodium
dodecyl sulfate [33] and n-octyl β-D-glucoside [34] fail
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to disrupt the integrity of the SG-SSPN subcomplex.
Finally, the SG-SSPN subcomplex can be reconstituted
in an in vivo cell culture model system lacking expres-
sion of DGs and dystrophin [32]. SSPN also associates
with the SGs in smooth muscle purified from kidney
and lung tissues [35-38] as well as epididymal white adi-
pose tissue [11].
Mutations in the α-, β-, γ-, or δ-SG genes cause auto-

somal recessive limb-girdle muscular dystrophy (AR-
LGMD) type 2D, 2E, 2C, and 2F, respectively (for review,
[39]) leading to absence or a significant reduction in the
SG subcomplex from the sarcolemma (for review, [40]).
Genetic ablation of individual SG genes in mice has gen-
erated robust animal models for the SG-deficient AR-
LGMDs in which the entire SG complex is absent from
the sarcolemma (for review, [40]). Similarly, a large dele-
tion in the δ-SG gene causes cardiomyopathic and myo-
pathic features in the BIO14.6 hamster model [41,42].
Consistent with its tight biochemical association with
the SGs, SSPN is absent from the sarcolemma of mice
deficient in α-, β-, and δ-SG as well as the δ-SG deficient
BIO14.6 hamster [32,36,43-46]. SSPN expression is
restored to normal levels in BIO14.6 muscle after deli-
very of an adenovirus encoding δ-SG [32]. Furthermore,
investigation of over 30 AR-LGMD muscle biopsies with
primary mutations in α-, β-, or γ-SG genes that result in
either complete or partial absence of the SGs revealed
that SSPN was absent from the sarcolemma [46]. The
levels of SSPN expression were not analyzed in γ-SG
deficient mice [47], but it would be interesting to deter-
mine if the trend was similar to the observations made
in human AR-LGMD biopsies. Interaction between the
SGs and SSPN is very sensitive to structural perturba-
tions within the LEL of SSPN, as revealed by alanine
scanning and deletion mutagenesis within the LEL
(Figure 1) [24]. SSPN interaction with the SGs is not
unique to skeletal muscle. The SSPN-SG subcomplex
has been characterized in many tissues, including the
smooth muscle from lung and kidney [11,35,48-51]. In
this context, SSPN interacts with a modified SG sub-
complex consisting of β-, γ-, and ε-SG (a homolog of
α-SG). Interestingly, the SSPN-SG subcomplex does not
co-migrate in sucrose gradient fractions of sWGA puri-
fied DG from epithelial cells derived from lung or kidney
tissue [35]. SSPN is not conserved in Drosophila mela-
nogaster and Caenorhabditis elegans, thus the resulting
DGC equivalent lacks SSPN and is predicted to be com-
posed of DGs, SGs, and dystrophin [52,53].

Sarcospan uniquely increases abundance of laminin-
binding complexes
The functional replacement of utrophin for dystrophin is
one of many attractive therapeutic strategies for the
treatment of Duchenne muscular dystrophy. Utrophin is
an autosomal homolog of dystrophin and forms a func-
tionally similar utrophin-glycoprotein complex (UGC)
where utrophin replaces dystrophin [54-56]. In normal
muscle, the UGC is located at the postsynaptic mem-
brane of neuromuscular junctions (NMJ) [55,57,58].
Overexpression of both full-length utrophin and mini-
constructs ameliorates dystrophic pathology in the mdx
mouse model of DMD [59-68]. Mice engineered to over-
express threefold levels of human SSPN driven by the
muscle-specific human skeletal actin promoter increased
ectopic expression of utrophin, dystrophin, and α7β1
integrin at the sarcolemma (Figure 2) [19,69]. In fact,
analysis of SSPN transgenic mice overexpressing 0.5-
and 1.5-fold levels of SSPN reveals that these molecular
events occur in a SSPN dose-dependent manner
(Figure 2). Introduction of SSPN (threefold) ameliorates
dystrophy in the mdx mouse model of DMD by reducing
cycles of degeneration/regeneration and preventing
sarcolemma damage (Figure 3). Biochemical purification
of the UGC complex using lectin affinity chromatog-
raphy followed by sucrose gradient ultracentrifugation
revealed that SSPN is a component of the UGC [19,69].
Consistent with the role of SSPN in regulating adhesion
complexes at the cell surface, overexpression of 10-fold
levels of SSPN causes formation of insoluble protein
aggregates at the sarcolemma, resulting in muscle path-
ology [70]. To date, thirteen human SSPN transgenic
lines have been created and only one line expressed
tenfold levels of SSPN. In both 3- and 1.5-fold lines of
SSPN expression, internal down regulation of endoge-
nous SSPN was observed, suggesting that the levels of
SSPN are tightly controlled within the cell [19]. Based
on this data, it may be unlikely to achieve tenfold levels
of SSPN in a clinical setting. Future studies are needed
to determine whether SSPN amelioration of dystrophic
pathology occurs in aged mdx mice and whether SSPN
ameliorates disease in mouse models of laminin-
deficient congenital muscular dystrophy and SG-
deficient LGMD.

Sarcospan affects glycosylation of α-dystroglycan
The cytotoxic T cell (CT) GalNAc transferase (Galgt2) is
confined to the NMJ and catalyzes addition of the ter-
minal β1,4 GalNAc residues onto the CT carbohydrate
of a subset of α-DG proteins [71,72]. α-DG is the pre-
dominant glycoprotein modified with the CT carbohy-
drate in skeletal muscle where it is enriched at the
postsynaptic membrane of the NMJ [73]. Overexpression
of Galgt2 in mdx mice increases abundance and extrasy-
naptic expression of α-DG modified with the CT anti-
gen, resulting in improved laminin-binding activity
[72,73]. Overexpression of SSPN in mdx mice increases
GalNAc modifications in a similar manner to the over-
expression of Galgt2, as revealed by the increased cell



Figure 2 SSPN increases abundance of laminin-binding complexes at the sarcolemma. Several lines of SSPN-transgenic mice with 0.5-, 1.5-,
and 3-fold levels of SSPN overexpression were generated to investigate the dose-dependent effects of SSPN expression. SSPN transgenic mice on
C57/Bl6 background (WT, WT0.5, WT1.5, WT3.0) as well as 0.5-, 1.5-, and 3-fold SSPN transgenic on mdx background (mdx, mdx0.5, mdx1.5, mdx3.0)
were analyzed [19,70]. (A) Transverse cryosections of quadriceps muscle from six-week old SSPN-transgenic mice were stained with antibodies to
dystrophin (Dys) and hSSPN to reveal exogenous SSPN expression (hSSPN Tg). (B) Muscle sections from SSPN-transgenic mdx mice were also
stained with utrophin (Utr) and hSSPN. Sections overlayed with Wisteria floribunda agglutinin (WFA) lectin reveal increased cell surface
glycosylation with elevations in SSPN overexpression [19]. WFA lectin binds terminal GalNAc residues and serves as a marker for the CT antigen
modification of α-DG that normally occurs at the NMJ [19]. Note that SSPN increases cell surface expression of dystrophin, utrophin, and
glycosylation in a manner dependent on SSPN abundance. Bar, 50 μm. CT, cytotoxic T cell; NMJ, neuromuscular junction.
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surface binding of the lectin Wisteria floribunda agglu-
tinin (WFA) [19], which is a marker for NMJ-specific
CT carbohydrate modification of α-DG (Figure 2)
[72,74-77]. WFA binding is localized to NMJs in normal
muscle and is increased around the extra-synaptic sarco-
lemma of mdx muscle cryosections [19,78]. WFA bind-
ing to SSPN-transgenic mdx (mdx3.0) muscle was
significantly increased around the extra-synaptic sarco-
lemma similar to utrophin expression [19]. Increased
Galgt2 activity in mdx mice results from a two-fold ele-
vation of Galgt2 mRNA levels in mdx muscle relative to
wild-type controls [73]. However, SSPN does not affect
Galgt2 transcript abundance, raising the possibility that
SSPN increases Galgt2 activity or improves α-DG as a
substrate for Galgt2 [19]. SSPN also increases laminin at
the sarcolemma as well as levels of plectin-1, which
binds cytoskeletal proteins including β-DG, dystrophin,
utrophin, and F-actin [79-82], supporting the conclusion
that SSPN strengthens the structural connection be-
tween actin and laminin across the sarcolemma [19].
Furthermore, laminin binding to α-DG was restored to
normal levels in threefold SSPN overexpressing mdx
muscle [19]. Transgenic overexpression of 0.5- and 1.5-
fold levels of SSPN increased glycosylation of α-DG, Akt
signaling, and utrophin levels, but failed to restore
laminin binding or reduce muscle degeneration/regener-
ation, revealing a minimum (threefold) level of SSPN
needed for ‘rescue’ (Figure 2) [19].
The ‘dystroglycanopathies’ are a group of disorders resul-

ting from hypoglycosylation of α-DG that abolishes its
laminin-binding function. A spontaneous mutation in the
LARGE gene, which encodes an enzyme with xylosyltransfe-
rase and glucuronyltransferase activities, causes muscular
dystrophy in the myodystrophy (myd) mouse [83]. In myd
muscle, α-DG is hypoglycosylated and exhibits severely
reduced ligand binding activity due to loss of the glycan-
laminin binding domain on α-DG [84,85]. LARGE elongates
phosphorylation dependent glycosylaminoglycan modifica-
tions on the central mucin domain of α-DG by direct inter-
action with α-DG [86,87]. Loss of LARGE increases
utrophin and SSPN staining and WFA binding around the
extra-synaptic sarcolemma of myd muscle [19]. Introduction
of the SSPN transgene into skeletal muscle of myd mice fur-
ther elevated WFA binding along with broad, extra-synaptic
localization of utrophin, while removal of SSPN from myd
muscle reduced utrophin and GalNAc-glycan modification
of α-DG [19]. Pathology of myd muscle was unaffected by
the loss of SSPN or SSPN overexpression, demonstrating
that alterations in GalNAc glycosylation of α-DG or utrophin
abundance do not affect absence of the main laminin-



Figure 3 SSPN overexpression ameliorates dystrophic pathology in mdx mice. Transverse cryosections of quadriceps muscle from six-week
old mdx and SSPN transgenic mdx (mdx3.0) mice were stained with hematoxylin and eosin (H&E) and visualized at low magnification to reveal the
extensive areas of necrosis, denoted in white, in mdx muscle (A). Necrosis was significantly diminished in SSPN transgenic mdx muscle [69].
Sections were also viewed at higher magnification for evaluation of degeneration/regeneration, which is marked by central nucleation of
myofibers (B). Overexpression of SSPN in mdx muscle dramatically reduced central nucleation [69]. Bar, 50 μm.
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binding domain on α-DG [19]. The conclusion from these
experiments is that Galgt2 (or enzyme with similar function)
modifies α-DG in the absence of ‘LARGE’ glycans, demon-
strating that GalNAc modification of α-DG can occur inde-
pendently of O-mannose-linked glycans. Additionally, these
data reveal that GalNAc carbohydrate structures on α-DG
are unable to compensate for the loss of LARGE glycans,
which constitute the major laminin-binding motif.

A newly discovered phenotype for sarcospan-null mice
Evidence that SSPN loss may affect skeletal muscle was
first suggested from comparative microarray analysis re-
vealing a mild decrease in mRNA levels of dystrophin
and α-SG in SSPN-null muscle [88]. Furthermore, the
authors reported increased expression of two genes,
osteopontin and the S100 calcium-binding protein cal-
granulin B, that have been implicated in immunological
function and fibrosis [89-91]. A second gene expression
study compared hippocampus and cortex of mice
exposed to chronic constant hypoxia (CCH) and chronic
intermittent hypoxia (CIH). CCH occurs in chronic lung
diseases or at high altitudes while CIH develops from
disorders such as sleep apnea or sickle cell disease. SSPN
was one of two identified genes down-regulated in the
hippocampus and cortex after both treatments [92].
SSPN knockdown in a cultured glioma cell line
(LN-229) did not affect cell division as determined by
bromodeoxyuridine (BrdU) incorporation, but did in-
crease vulnerability of glioma cells to hypoxia [92].
Genetic ablation of SSPN did not appear to alter

muscle physiology or strength in young mice [93]. How-
ever, when SSPN-null mice were analyzed at older ages
(4.5 month old), several deficiencies emerged. Reduction
in the levels of the UGC and DGC as well as diminished
NMJ-specific glycosylation of α-DG and decreased
laminin-binding was observed in aged SSPN-nulls [14].
Diaphragms from older SSPN-null mice exhibited dimi-
nished specific force generating capacity and were more
susceptible to eccentric-contraction induced damage as
evidenced by the increased percentage drop in force
compared to wild-type controls [14]. These physiological
phenotypes were not observed in extensor digitorum
longus (EDL) or soleus muscles, suggesting that decrea-
sed DGC expression in EDL or soleus muscles is insuffi-
cient to manifest in loss of muscle strength or sarcolemma
damage [14,93].

Sarcospan genetically interacts with integrins
It is well established that all tetraspanins interact with
integrin partners to regulate cell signaling, adhesion, and
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laminin-binding capacity of integrins (for review, [94,95]).
The primary integrin expressed in adult skeletal muscle
is α7β1 integrin, whichis localized at the NMJ and myo-
tendinous (MTJ) regions within the sarcolemma [96-99].
The relatively mild phenotype of mdx mice has been at-
tributed to increased, compensatory expression of both
utrophin and α7β1 integrin in response to loss of dys-
trophin that, when ablated, exacerbates mdx pathology
[100-102]. Overexpression of Itga7 in mdx:utrophin-null
mice and β1 integrin in mdx mice ameliorates pathology
[103-105]. The recent observation that α7β1 integrin
levels are increased in response to SSPN deficiency is
intriguing as it suggests that α7β1 integrin compen-
sates for SSPN function and moderates the severity of
muscle phenotypes in SSPN-nulls [14]. Analysis of
SSPN-deficient and Itga7-deficient double knockout
(DKO) mice supports this hypothesis. In comparison
to controls at 4.5-months of age, DKO mice exhibit
increased kyphosis and premature lethality at one month
of age, which is significant given that the single-nulls
display no overt signs of pathology or lethality (Table 1)
[14]. Furthermore, DKO muscle appears severely dys-
trophic with extensive fibrosis surrounding individual
hypertrophic muscle fibers, in a manner identical to
histological images of DMD biopsies [14]. Genetic re-
moval of Itga7 from SSPN-nulls further reduced levels
of the DGC at the sarcolemma, diminished laminin-
binding to α-DG, and consequently decreased specific
force output in the diaphragm (Table 1) [14]. The con-
clusion from this work is that SSPN is a necessary com-
ponent of dystrophin and utrophin function and that
SSPN modulation of integrin signaling is required for
growth, extracellular matrix attachment, and muscle force
development.
Table 1 Sarcospan- and α7 integrin-double nulls display seve

Genotype Survival
Analysisa

Kyphosisa Myofiber
CSAa

Central
Nucleationa

Utrophina Dy

Wild type 100% No Normal Normal 100%

SSPN null 100% No Normal Normal 31%

Itga7 null 95% Minor Normal Normal 102%

DKO 60% Severe Decrease Increase 44%

aMeasurements represented relative to wild type. DKO, double knockout; Itga7, α7
The table summarizes phenotypic and biochemical data
from 4.5-month old SSPN-null, Itga7-null, and SSPN-null:
Itga7-null double knockout (DKO) mice. All comparisons
are relative to age-matched wild-type mice. Survival stu-
dies were carried out to eight months of age. At this time
point, 40% of the DKO mice had succumbed to death
compared to less than 5% of the controls. The extent of
kyphosis was documented in 4.5-month and 6-month old
mice. Itga7-null mice exhibited minor kyphosis and the
additional loss of SSPN caused severe kyphosis in DKO
mice. Myofiber cross-sectional area (CSA) quantified from
the quadriceps and diaphragm muscles at 4.5 months of
age are represented. DKO muscles exhibited an increase
in myopathy and increase in very small (0 to 500 μm2)
myofibers. Central nucleation is provided as an indicator
of overall muscle phenotype. Analysis of sarcolemmal
damage (Evans blue dye assay) and fibrosis (Van Geison)
of the quadriceps and diaphragm muscles at 4.5 months of
age are exacerbated in DKOs [14]. The levels of utrophin,
dystrophin, laminin-binding to α-DG, and β1 integrin
were analyzed by densitometry of sWGA eluates from
digitonin-solubilized total skeletal muscle lysates. SSPN-
deficient mice exhibit a reduction in the UGC, DGC, and
laminin-binding to α-DG and a corresponding compensa-
tory increase in β1 integrin [14]. Loss of Itga7 results in a
reduction in the levels of the DGC and laminin-binding to
α-DG. Importantly, combined loss of Itga7 and SSPN
causes further reduction of the DGC, UGC, and laminin-
binding to α-DG compared to all controls. The relative
levels of P-Akt/Akt and P-IGFR/IGFR are provided. Spe-
cific force measurements of the diaphragm muscles reveal
a loss of specific force in SSPN-null and Itga7-null that is
additive in DKO mice. Interestingly, specific force produc-
tion of the EDL and soleus muscles are unaffected by the
re growth and muscle phenotypes

strophina Integrina Laminin-
Bindinga

Signalinga Specific Forcea

100% 100% 100% P-Akt/Akt:
100%

Normal (EDL, Soleus,
Diaphragm)

P-IGFR/IGFR:
100%

47% 293% 69% P-Akt/Akt:
49%

Normal (EDL, Soleus);
Decrease (Diaphragm)

P-IGFR/IGFR:
80%

48% Absent 85% P-Akt/Akt:
95%

Decrease (Diaphragm)

P-IGFR/IGFR:
99%

34% Absent 28% P-Akt/Akt:
40%

Severe Decrease
(Diaphragm)

P-IGFR/IGFR:
35%

integrin.
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loss of SSPN suggesting that, in these muscles, integrin
may successfully compensate for DGC or that reduction
of the DGC does not affect EDL and soleus muscle
physiology.

Sarcospan activates Akt signaling pathways to facilitate
regeneration
Modulation of the phosphatidylinositol-3 kinase (PI3K)/
Akt signaling pathway leading to downstream activation
of p70S6K protein synthesis pathways is important for
regulation of muscle strength, hypertrophy, and patho-
physiology (for review, [106,107]). The Akt signaling cas-
cade through p70S6K is activated by several receptors,
including: insulin like growth factor 1 (IGF-1) and β1
integrin associated integrin-linked kinase (ILK) (for re-
view, [106,107]). Overexpression of constitutively active
Akt in skeletal muscles of dystrophin-deficient mdx mice
results in increased abundance of utrophin and α7β1 in-
tegrin, which leads to improvements in force generation
Figure 4 Muscle recovery from cardiotoxin injury requires SSPN-depe
investigate muscle repair in wild-type and SSPN-null mice. Quadriceps injec
dissolved in saline (CTX) were evaluated. CTX causes localized regions of m
six weeks of age were injected with CTX (or mock) and analyzed after seve
subset of mice was pre-treated with adenovirus containing constitutively a
performed using H&E, laminin/eMHC, and laminin/EBD stained sections fro
regeneration (eMHC, 30%) seven days after CTX injury when wild-type mic
Ad-caAkt prior to CTX treatment rescued the repair defect in SSPN-deficien
revealed reductions in the levels of dystrophin (Dys), utrophin (Utr), integrin
(P-p70S6K) in SSPN-null mice compared to wild-type. Quantification of utro
control. (D) Immunoblot analysis of RIPA lysates from quadriceps pre-treate
and integrin (β1 integrin) in SSPN-null mice compared to wild-type. Utroph
with supplementation of active Akt (right). These data reveal that SSPN is u
The Ad-caAkt contains the HA-tag for detection [19]. RIPA, radioimmunopr
[108,109]. Interestingly, overexpression of threefold
levels of SSPN results in amelioration of mdx dystrophic
pathology through stabilization of the UGC and α7β1
integrin at the sarcolemma, and activation of Akt and
downstream p70S6K [19,70]. Conversely, the Akt/
p70S6K pathway and activation of the IGF receptor is
depressed in SSPN-deficient mice, rendering the muscle
unable to repair efficiently after cardiotoxin-induced
injury (Figure 4) [19]. Pretreatment of SSPN-null muscle
with adenovirus expressing constitutively active Akt
increased the UGC to normal levels and restored muscle
regeneration after cardiotoxin-injury (Figure 4) [19]. The
conclusion from these experiments is that SSPN modu-
lates utrophin protein levels at least in part through
Akt/p70S6K signaling pathways (Figure 5).

A chaperone-like function for sarcospan is emerging
It has been assumed that the prematurely truncated dys-
trophin protein produced from the mdx mutation is
ndent Akt activation. (A) An acute injury model was used to
ted with equivalent volumes of saline (mock) and cardiotoxin
yofiber necrosis followed by regeneration (for review, [125]). Mice at
n days. To test the dependency of muscle repair on Akt signaling, a
ctive Akt (Ad-caAkt) two days prior to CTX treatment. (B) Analysis was
m quadriceps muscle. SSPN-deficient mice exhibit increased active
e have already undergone successful repair (black). Administration of
t mice (grey). (C) Immunoblot analysis of RIPA quadriceps lysates
(β1 integrin), phosphorylated Akt (P-Akt), and phosphorylated p70S6K

phin and P-Akt is provided. Coomassie blue (CB) serves as a loading
d with Ad-caAkt revealed reductions in the levels of dystrophin (Dys)
in levels were restored in SSPN-null mice compared to wild-type mice
pstream of the Akt signaling pathway regulating utrophin expression.
ecipitation assay.



Figure 5 Sarcospan is a critical regulator of laminin-binding receptors in muscle. (A) The DGC/UGC and α7β1 integrin at the sarcolemma
in mdx3.0 (SSPN-Tg:mdx) muscle is depicted. The dystroglycans (DGs; pink), sarcoglycans (SGs; yellow), sarcospan (SSPN; blue), dystrophin (grey)
and integrins (purple) are shown. Overexpression of SSPN in mdx muscle elicits a series of molecular events that lead to restoration of laminin
binding, amelioration of pathology, and restoration of membrane integrity [19]. As shown in the illustration, SSPN activates Akt, which stabilizes
utrophin, and increases the abundance of integrin and WFA-reactive α-DG at the cell surface. SSPN facilitates increased CT antigen modification
of α-DG and enhances transportation of utrophin-DG at the sarcolemma [19]. Collectively, these events lead to stabilization of the sarcolemmal
membrane and amelioration of dystrophic pathology. (B) SSPN-null muscle exhibits decreased dystrophin and Akt activation followed by
decreased expression of utrophin, resulting in the reduction of laminin-binding to α-DG (middle panel) [19]. Acute muscle injury by cardiotoxin
injection into SSPN-null muscle impairs muscle regeneration (right) [19]. However, pre-treatment of SSPN-null mice with adenovirus containing
constitutively active Akt (Ad-caAkt) restored the activation of downstream p70S6K, utrophin expression, and improved muscle regeneration (right
panel). These studies reveal the importance of sarcospan and Akt in regulating utrophin expression that is critical for muscle repair. CT, cytotoxic
T cell; DGC, dystrophin-glycoprotein complex; UGC, utrophin-glycoprotein complex; WFA, Wisteria floribunda agglutinin.

Marshall and Crosbie-Watson Skeletal Muscle 2013, 3:1 Page 9 of 13
http://www.skeletalmusclejournal.com/content/3/1/1
rapidly degraded in muscle based on lack of its detection
in whole skeletal muscle extracts. However, recent work
has revealed that truncated dystrophin protein is synthe-
sized in mdx mice [19]. In fact, truncated dystrophin
proteins are produced and detected in high abundance
in ER/golgi compartments in mdx muscle, suggesting
that they accumulate in intracellular compartments due
to insufficient transportation to the cell surface [19].
These data are exciting as they reveal for the first time
that truncated dystrophin fragments are synthesized in
mdx muscle, but then retained in intracellular mem-
brane compartments rather than properly transported to
the sarcolemma.
In addition to its role at the cell surface, a role for

SSPN within the ER/golgi is suggested from recent stu-
dies. Biochemical analysis of ER/golgi membranes iso-
lated from mdx muscle revealed abundant levels of
utrophin and α-DG relative to wild-type [19]. Interes-
tingly, utrophin and α-DG are reduced in ER/golgi pre-
parations from SSPN transgenic mdx muscle while these
same proteins are increased in abundance at the
sarcolemma, suggesting that SSPN possesses chaperone-
like functions to improve protein folding and/or traffick-
ing to the cell surface (Figure 5).

Sarcospan as a candidate disease gene
The sarcospan gene is localized to human chromosome
12p11.2 and is encoded by three small exons that are
separated by very large introns [8,9]. A novel exon 4 was
recently identified to encode for an alternative C-
terminal region in humans. In fact, alternate mRNA spli-
cing of human SSPN exons 1 and 2 to exon 4 generates
a protein called microspan (μSPN) that lacks transmem-
brane domains 3 and 4 as well as the LEL so that the re-
sultant protein has only two transmembrane spans and a
novel intracellular C-terminus [10]. μSPN does not
interact with the DGC and its expression is maintained
in dystrophin-deficient muscle. Although μSPN is not
localized to the sarcolemma, it is enriched in the sarco-
plasmic reticulum (SR) [10]. Overexpression of μSPN in
skeletal muscle of transgenic mice reduces levels of rya-
nodine receptor, dihydropyridine receptor as well as
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SERCA-1 resulting in aberrant triad morphology [10].
μSPN is also reduced in isolated SR membranes of
δ-SG-null muscle contributing to SERCA dysfunction
[110]. Given that both SSPN and μSPN interact with
proteins that are critical to skeletal muscle function, it
can be hypothesized that genetic mutations affecting
SSPN function would have significant consequences for
muscle. PCR-based approaches to screen muscular dys-
trophy patients for possible abnormalities within the
SSPN gene have not yet produced any disease-causing
mutations, although several single-nucleotide poly-
morphisms were identified in exons 2 and 3 [111]. SSPN
was also excluded as a candidate disease gene for con-
genital fibrosis of the extraocular muscle (CFEOM),
which is an autosomal dominant disorder linked to the
pericentromere of chromosome 12 [112,113]. These
findings may come as no surprise given the apparently
normal phenotype of SSPN-deficient mice [93]. How-
ever, re-analysis of SSPN-deficient mice revealed signifi-
cant phenotypes in muscle of aged mice and after
exposure to conditions of cellular stress that may have
implications for disease (Figure 5) [14,19]. Furthermore,
the idea that SSPN may serve as a chaperone to improve
cell surface expression of the DGC and UGC make it an
excellent candidate as a genetic modifier of disease.

Conclusions
Overexpression of many proteins and compounds amelio-
rates dystrophic pathology in the mdx mouse by increasing
UGC abundance at the extrasynaptic sarcolemma. A sam-
pling of these includes: CT GalNAc transferase (Galgt2)
[73], ADAM12 [114], heregulin [115], L-arginine [116,117],
activated calcineurin-A alpha [118], N-acetylcysteine
[119-121], activated Akt [108,109], GW501516 (activates
PPAR beta/delta) [122], artificial gene Jazz [123], and big-
lycan [124]. Several studies have now revealed that SSPN
can be added to this list of secondary proteins that modify
utrophin expression [19,69]. The mechanism by which
SSPN increases expression of utrophin involves activation
of Akt signaling and increased glycosylation of α-DG,
likely by increased modification of Galgt2 [19]. Intro-
duction of constitutively active Akt or Galgt2 alone also
improves extrasynaptic utrophin expression, strongly sug-
gesting that SSPN, Akt, and Galgt2may act via a common
or overlapping pathway(s). It will be important to de-
termine whether every gene that increases utrophin ex-
pression also alters Akt and α-DG glycosylation, which
would provide further evidence for a common post-
transcriptional mechanism controlling utrophin abun-
dance. Furthermore, these data reveal that there are
multiple targets that affect utrophin, which is encou-
raging for pharmacological and gene-based therapies.
SSPN also increases expression of Itga7, and future
studies will determine whether Itga7 and/or utrophin are
required for SSPN’s ‘rescue’ effect. It is also critical to in-
vestigate whether Itga7 levels are affected by the ma-
ny other genes that increase utrophin expression, which
would reveal important mechanisms regulating laminin-
binding receptors in skeletal muscle. SSPN is a promising
therapeutic target, particularly for adeno-associated virus
delivery due to its small size and low potential for un-
wanted immune reaction. Future studies will reveal the
potential of this small protein to alleviate the significant
problem of DMD.
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