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ABSTRACT

Sex is a modulator of health that has been histori-
cally overlooked in biomedical research. Recogniz-
ing this knowledge gap, funding agencies now man-
date the inclusion of sex as a biological variable with
the goal of stimulating efforts to illuminate the molec-
ular underpinnings of sex biases in health and dis-
ease. DNA methylation (DNAm) is a strong molecular
candidate for mediating such sex biases; however, a
robust and well characterized annotation of sex dif-
ferences in DNAm is yet to emerge. Beginning with a
large (n = 3795) dataset of DNAm profiles from nor-
mative adult whole blood samples, we identified, val-
idated and characterized autosomal sex-associated
co-methylated genomic regions (sCMRs). Strikingly,
sCMRs showed consistent sex differences in DNAm
over the life course and a subset were also consis-
tent across cell, tissue and cancer types. sCMRs in-
cluded sites with known sex differences in DNAm and
links to health conditions with sex biased effects. The
robustness of sCMRs enabled the generation of an
autosomal DNAm-based predictor of sex with 96%

accuracy. Testing this tool on blood DNAm profiles
from individuals with sex chromosome aneuploidies
(Klinefelter [47,XXY], Turner [45,X] and 47,XXX syn-
drome) revealed an intimate relationship between
sex chromosomes and sex-biased autosomal DNAm.

INTRODUCTION

Sex is a biological variable that shapes human development,
health and disease, yet has been historically overlooked in
biomedical research (1). This omission has resulted in a
limited understanding of the molecular underpinnings of
sex differences in disease risk, onset and progression, and
manifested in inequalities in the prevention, diagnosis and
treatment of a wide range of conditions. Underscoring this
knowledge gap, funding agencies now mandate the inclu-
sion of sex as a variable in biological research (2), seeking
to stimulate efforts to understand the role of sex in shaping
diverse aspects of biology.

Large population-based studies have identified sex differ-
ences in several molecular processes thought to underlie sex
biases in health and disease (3), including DNA methylation
(DNAm) and gene expression (e.g. (4–6)). DNAm, a chem-
ical modification that occurs most often on cytosines in the
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context of cytosine-guanine (CpG) dinucleotides, is emerg-
ing as a strong molecular candidate for mediating the rela-
tionship between sex and disease (3). DNAm is altered in a
wide range of diseases (7) and plays key roles in several sex-
associated molecular processes including genomic imprint-
ing (i.e. DNAm-based monoallelic gene silencing based on
the sex of the parent of origin) (8) and X chromosome in-
activation (i.e. DNAm-based silencing of most genes on a
single X chromosome in XX females to equalize gene ex-
pression levels to XY males) (9).

Despite growing evidence of a role for DNAm in me-
diating the relationship between sex and disease (10,11),
epigenome wide association studies (EWAS) are often un-
derpowered to support sex-stratified analyses. As a re-
sult, EWAS often have to prioritize the detection of ro-
bust DNAm-disease associations and control for possible
sex differences using statistical approaches. While powerful,
controlling for sex overlooks its contribution to health and
disease and yields effect estimates that are averages between
males and females.

One way to stimulate the integration of sex in epigenome
studies is to improve our understanding of the effects of
this biological variable on DNAm. In this regard, sev-
eral efforts have highlighted sex differences in DNAm in
blood (6,10,12–17) and other tissues and cell types (18–
23). Collectively, these studies support the existence of sex-
biased DNAm signatures across the autosomes, highlight
CpG-dense regions (CpG islands) as key sites of sex dif-
ferences, and emphasize that autosomal loci showing sex-
biased DNAm most often show higher DNAm levels in fe-
males compared to males. Despite these advances, many
questions remain regarding the effect of sex on DNAm and
a clear picture of genomic loci showing sex-biased DNAm
is yet to emerge.

To improve our understanding of the role of sex on
DNAm, we set out to generate a robust annotation of au-
tosomal genomic regions showing sex-biased DNAm pat-
terns. We began by comparing sites previously reported
to show male-female differences in DNAm and found in-
consistencies across studies, an observation that prompted
us to re-examine this question using a stringent and well-
powered (n = 3795) approach. In this study, we focused
on genomic regions rather than individual sites, as the for-
mer have been suggested to yield more reproducible asso-
ciations. Regions of correlated DNAm levels were defined
in normative whole blood samples using the CoMeBack
method (24) and tested for sex differences in DNAm us-
ing strict criteria. In this way, 179 sex co-methylated regions
(denoted sCMRs) were identified and these showed consis-
tent sex differences in DNAm across the lifespan and sev-
eral cell, tissue and tumor types. Importantly, sCMRs iden-
tified using Illumina Infinium Human Methylation 450K
BeadChip data validated in a reduced representation bisul-
fite sequencing (RRBS) dataset, suggesting transferability
of findings across genomic platforms. Encouraged by the
reproducibility of sCMRs, we built an easy to use and re-
markably accurate (96%) autosomal DNAm-based predic-
tor of sex, a tool that can be used to impute or evaluate sex
information without the need for sex chromosome DNAm
data. Using this tool in a unique dataset of individuals with
sex chromosome aneuploidies [47,XXY (Klinefelter Syn-

drome), 45,X (Turner Syndrome) and 47,XXX syndrome
patients] revealed a strong link between sex chromosome
complement and sex differences on autosomal DNAm. Al-
together, our study provides a reproducible and highly de-
tailed annotation of autosomal genomic regions showing
sex-DNAm associations and implicates several pathways in
their establishment.

MATERIALS AND METHODS

Software

Preprocessing, quality control, analysis, replication and en-
richment analyses were done using R version 3.6.3 (25).

Datasets

All datasets used in this study are listed in Table 1.

Discovery of sCMRs

Sex differences in DNAm levels were identified in a discov-
ery cohort composed of five publicly available whole blood
Illumina Infinium Human Methylation 450K BeadChip
datasets (GSE55763, GSE80417, GSE72680, GSE84727,
GSE111629) (Table 1) (26–31). Whole blood samples were
selected for their clinical relevance and abundance. Samples
annotated to a disease state or with potential sex misla-
bels (see below) were removed from the analysis, resulting
in a merged dataset of 3795 (2414 males and 1381 female)
normative adult (age 25–80 years old) whole blood sam-
ples (Figure 1A). Datasets were processed as described pre-
viously including batch correction and normalization (24).
X and Y chromosome probes, genotyping probes, probes
overlapping polymorphic loci at the CpG or single-base ex-
tension site, and probes predicted to cross-hybridize to the
X and Y chromosome were removed, leaving 404 779 probes
for analysis (32,33).

Co-methylated regions (CMRs) were constructed using
CoMeBack with default parameters and a Spearman cor-
relation cut-off of 30% (24) (See Supplementary Table S1
for all CMRs). For each CMR, a composite beta value was
constructed using a weighted sum of all the individual probe
betas contained within a CMR. Individual probe weights
were proportional to the variability of their DNAm levels
and calculated as their scaled (to sum to one) loadings of
the first principal component (see code availability). CMR
composite betas were used to identify sex-associated CMRs
using the following model:

βCpG i =
∑

k
wk+Sex + Age + Sex∗Age + ε

where wk (�k wk = 1) are the blood cell type counts esti-
mated with the Houseman method (34) and sex was coded
as 0/1 (see below). Since the discovery cohort had more
males than females, we ran the model on five sex-balanced
random subsamples (Figure 1A). In all five subsample com-
parisons, 205 CMRs were differentially methylated between
males and females as defined by a strict significance crite-
rion: (i) a false discovery rate (FDR) <0.05, (ii) a compos-
ite beta difference > 4% between the sexes and (iii) being
fully composed of probes with higher mean DNAm levels
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Table 1. Datasets used in this study

Dataset Tissue N Females Males Age Analysis Reference

GSE55763 Whole blood 2669 860 1809 31–75 CMR construction, sCMR
discovery and construction
of sex predictor

(26)
GSE84727 Whole blood 377 92 285 25–66 (27)
GSE80417 Whole blood 224 117 107 26–79 (95)
GSE111629 Whole blood 175 68 107 26–55 (47)
GSE72680 Whole blood 350 244 106 26–77 (98)
GSE125105 Whole blood 697 388 309 17–87 sCMR Validation and testing

of sex predictor
(96)

GSE132203 Whole blood 794 571 223 18–76 Testing of sex predictor (97)
ARIES Cord blood 905 465 440 0 sCMR concordance across

the life span and testing of
sex predictor

Whole blood/white blood
cells

907/63 454/36 453/27 7–9 (41)

White blood cells 970 502 648 14.5–19
GSE79100 Kidney 31 16 15 sCMR concordance across

tissues. *Testing of sex
predictor

(43)
GSE80261 Buccal* 96 57 39 (44)
GSE61258 Liver 79 34 45 (45)
GSE64509 Brain 25–41 17–22 8–11 (47)

Cerebellum 32 21 11
Frontal Cortex 41 22 19
Hippocampus 25 17 8
Occipital lobe 33 22 11
Temporal lobe 29 21 8

GSE87640 Immune cells 19–20 7–8 12 (46)
Monocytes 20 8 12
CD4T 20 8 12
CD8T 19 7 12

GSE132513 E2 containing medium 9 sCMR regulation by estrogen
in a MCF-7 HTB-22 breast
cancer cell line

E2-deprived medium 6
E2-deprived to E2 containing 3

TCGA: Thyroid Thyroid carcinoma (THCA) 498 364 137 sCMR concordance across
cancer types and matched
control tissues

normals 54 40 14
TCGA: Lung Lung adenocarcinoma

(LUAD)
455 243 212

normals 32 15 17
TCGA: Kidney Kidney renal clear cell

carcinoma
316 112 204

normals 160 54 106
TCGA: Liver Liver hepatocellular

carcinoma (LIHC)
375 121 254

normals 51 20 31
TCGA: Colon Colon adenocarcinoma

(COAD)
250 133 157

normals 38 17 21
TCGA: Bladder Bladder Urothelial

carcinoma
409 107 302

normals 21 10 11
TCGA: Skin Skin Cutaneous Melanoma

(SKCM)
105 43 62

TCGA: Stomach Stomach adenocarcinoma
(STAD)

393 135 257

Sex chromosome
abnormalities

46,XX 33 Sex predictor and
concordance with normative
samples

(63); (64); (65)
46,XY 67
47,XXY 67
45,X 33
47,XXX 7

GSE136849 Peripheral blood 158 79 79 27–40 Reduced representation
bisulfite (RRBS) sequencing
validation

(37)

in males compared to females or vice versa. A 4% compos-
ite beta threshold was selected because it captured 99% of
the absolute difference between technical replicates present
in the GSE55763 dataset used in the discovery of sCMRs.
To ensure the robust performance of our model in terms
of the numerical methods used in the R software (25), the
analysis was verified twice, flipping the coding of males and
females between zero and one.

The 205 CMRs with significant sex differences in DNAm
were validated using an independently processed Illumina
Infinium Human Methylation 450K BeadChip dataset of
699 adult whole blood samples (312 males and 387 females)
(GSE125105) (Table 1) (Figure 1A). After quality control,
201 CMRs were present in the validation dataset, 44 were
truncated and 14 were represented by a single probe. All
CMRs represented by at least one probe in the validation
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Figure 1. sCMRs were reproducible, detected across the autosomes and included sites with known sex differences in DNAm levels. (A) Schematic of the
sCMR discovery, validation and characterization steps. An aggregate cohort of 3795 (2414 males and 1381 females) adult whole blood DNAm samples was
assembled and used to identify CMRs. Five sex-balanced random subsamples were generated and used to identify sCMRs. sCMRs were defined as CMRs
having an FDR < 0.05% and a composite beta difference > 4% when comparing males and females. In addition, for a CMR to be considered all probes
had to show the same sex-biased DNAm pattern, either higher DNAm levels in males compared to females or vice versa. (B) Manhattan plot showing the
distribution of sCMRs across all the autosomes. (C) Boxplot showing male versus female DNAm levels for the three sites included in the SLC6A4 sCMR
(chr17:28521337–28562986). cg05951817, cg22584138 and cg03363743 showed significant methylation (beta) differences of 6%, 8% and 3%, respectively,
when comparing males and females (P-values of 0). The SLC6A4 sCMR was found at the 5′ UTR, a region previously shown to be differentially methylated
between males and females in brain tissue (76).
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dataset were examined, resulting in 179 (89%) validated sex-
CMRs (sCMRs). Similar to the discovery cohort, validated
CMRs were strictly defined: (i) a q-value FDR < 0.05, (ii)
an adjusted composite beta fold change > 4% and (iii) being
fully composed of probes that showed higher mean DNAm
levels (within one standard error of the mean) in males com-
pared to females or vice versa. To account for the smaller
sample size of the validation dataset, the fold change cut-off
was adjusted by subtracting the standard errors of the esti-
mated validation cohort betas. The 179 sCMRs were used
for all subsequent analyses (Supplementary Table S2).

To determine if inclusion of an effect size cut-off led to
higher rates of reproducibility across studies, we repeated
the discovery and validation approach with a 3% and with-
out an effect size cut-off. With a 3% cut-off, 471 sCMRs
were discovered and 372 (79%) validated in the indepen-
dent cohort (Supplementary Table S3). Without an effect
size cut-off, 1595 sCMRs were identified and 496 (31%) val-
idated in the independent cohort (Supplementary Table S4).

Identification of potential sex mislabels

The discovery and validation datasets were assessed inde-
pendently for potential sex mislabels. Two previously de-
scribed checks were performed to test concordance between
the metadata sex variable and the expected sex chromo-
some DNAm patterns (35). The first check clusters sam-
ples based on the beta values of all probes mapping to the
X and Y chromosomes (11 648 probes). The second check
clusters samples based on the beta values of five probes
mapping to the XIST promoter (cg03554089, cg12653510,
cg05533223, cg11717280, cg20698282). In the first check, X
and Y chromosome probes separate males (46,XY) and fe-
males (46,XX) by the presence of male-specific Y chromo-
some DNAm and female-specific X-chromosome mono-
allelic methylation resulting from X chromosome inactiva-
tion (35). In the second check, XIST promoter probes sep-
arate samples by the number of X chromosomes, provid-
ing evidence that samples classified as male (46,XY) and
female (46,XX) are not affected by X chromosome aneu-
ploidies (35). For all datasets two main clusters emerged for
both checks. Nine samples clustered with the opposite sex
in the discovery dataset and were removed from the anal-
ysis. In the validation dataset, three male samples showed
the expected clustering pattern when considering the XY
probes but clustered with female samples when consider-
ing the XIST probes. These males were suspected to have a
XXY sex chromosome complement, a possibility ruled out
in all situations via genomic copy number estimates by the R
package conumee (36). These samples were deemed to pos-
sess a XY sex chromosome complement and retained in the
analysis as genetic males.

Reduced representation bisulfite sequencing (RRBS) analysis

Normalized normative adult peripheral blood RRBS pro-
files were obtained from GSE136849 (Table 1) (37). Be-
cause the RRBS dataset coordinates are based on the
GRCh38/hg38 human genome assembly, they were con-
verted to the GRCh37/hg19 assembly using liftover from
the UCSC. Only sites present in at least half of the sam-
ples were considered. Sites in the RRBS dataset contained

within sCMRs were deemed validated if they had a q-
value FDR < 0.05 and an adjusted composite beta fold
change > 4% when comparing males and females and
showed the same direction of change observed in the dis-
covery and validation cohort.

Stability of sCMRs across the life course and several cell, tis-
sue and tumor types

The Avon Longitudinal Study of Parents and Children
(ALSPAC) is a large, prospective cohort study that recruited
14 541 pregnant women residing in Avon, UK with ex-
pected dates of delivery between 1 April 1991 and 31 De-
cember 31 1992 (38–40). Of these initial pregnancies, there
was a total of 14 676 fetuses, resulting in 14 062 live births
and 13 988 children who were alive at 1 year of age. Fur-
ther details of the study and available data are provided
on the study website through a fully searchable data dic-
tionary (http://www.bristol.ac.uk/alspac/). Ethical approval
for the study was obtained from the ALSPAC Law and
Ethics Committee and the Local Research Ethics Commit-
tees. Consent for biological samples was collected in ac-
cordance with the Human Tissue Act (2004). All data are
available by request from the Avon Longitudinal Study of
Parents and Children Executive Committee for researchers
who meet the criteria for access to confidential data (http:
//www.bristol.ac.uk/alspac/researchers/our-data/).

The ALSPAC generated blood-based DNAm profiles at
birth, 7 and 15 years of age are part of the Accessible Re-
source for Integrated Epigenomic Studies (ARIES), a sub-
sample of 1018 mother-child pairs from the ALSPAC co-
hort (41). DNA samples were extracted from cord blood
on delivery, and from peripheral blood samples in child-
hood (age 7) and adolescence (age 15–17) according to es-
tablished procedures (41). Background correction and func-
tional normalization were performed using the R-package
meffil (42). Samples with > 10% of sites with a detection
P-value > 0.01 or a bead count < 3 were removed from
further analysis. All samples passing quality control pro-
cedures were used in subsequent analyses (Table 1). In the
ARIES cohort, the concordance of sCMRs was tested with
a linear model accounting for cell types predicted using the
Houseman method (34).

The consistency of sex differences in DNAm levels at
sCMRs across tissues and immune cell types was examined
using a series of datasets (43–47) (Table 1). For these analy-
ses only samples labeled ‘control’ were used. All the datasets
were normalized as described previously (42).

To examine if sex differences in DNAm at sCMRs de-
tected in blood were recapitulated in tumor and matched
control samples, preprocessed and normalized (TCGA
level-3) Illumina Infinium Human Methylation 450K Bead-
Chip data for several cancer datasets was retrieved from the
Firebrowse repository (firebrowse.org, version 2016 01 28)
(Table 1). Only datasets with at least 100 samples and
25% of samples representing any one sex were considered:
Thyroid carcinoma (THCA), skin cutaneous melanoma
(SKCM), stomach adenocarcinoma (STAD), lung ade-
nocarcinoma (LUAD), kidney renal clear cell carcinoma
(KIRC), liver hepatocellular carcinoma (LIHC), colon ade-

http://www.bristol.ac.uk/alspac/
http://www.bristol.ac.uk/alspac/researchers/our-data/
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nocarcinoma (COAD) and bladder urothelial carcinoma
(BLCA).

For the cell, tissue, and cancer analyses, a sCMR was
deemed to show significant sex differences in DNAm if it
satisfied a Welch test P-value < 0.05 and showed the same
direction of the sex-biased DNAm observed in blood.

Characterization and enrichment of sCMRs for various ge-
nomic features

Gene coordinates based on the human GRCh37/hg19 ref-
erence genome were derived from ENSEMBL (release 99)
(48). A gene was defined as the genomic region from the 5′
to the 3′ UTR and an overlap with a CMR was reported if
there was any intersection between the CMR coordinates
and that of the gene coordinates plus 5 kb upstream or
downstream. GO terms and KEGG pathways were anno-
tated using the missMethyl R-package (49). Homo sapiens
imprinted genes were obtained from www.geneimprint.com
(accessed July 2019). Imprinting control centers and their
genomic ranges were reported previously (50,51). A com-
prehensive list of lncRNAs was used to map CMRs to lncR-
NAs (52). Genes with significant gene expression differ-
ences between males and females were reported previously
(4,5,53). Chromatin states estimated with ChromHMM
were obtained from the Roadmap Epigenomics project (54)
and CpG feature information from the Illumina Infinium
Human Methylation 450K BeadChip manifest. Transcrip-
tion factor binding site (TFBS) motifs were obtained from
the HOCOMOCO v11 database (55). Transcription fac-
tors were annotated to CMRs by scanning a region 200
bp upstream or downstream of every site contained within
a CMR using the FIMO tool from the MEME software
suite (56). An overlap was reported if the region contained
a TFBS motif. The effect of DNAm on TF binding affinity
was reported previously (57). DNAm quantitative trait loci
(mQTLs) were reported previously (58,59). For the ARIES
database, we focused on adult mQTLs. Correlated regions
of systemic interindividual variation were reported previ-
ously (60). Throughout, enrichments were evaluated using
Fisher exact tests comparing sCMRs to the CMR back-
ground (Supplementary Table S1). A q-value < 0.05 fol-
lowing Benjamini–Hochberg multiple test correction was
deemed significant. Trait enrichment was done by compar-
ing sCMR sites to the CMR background using the EWAS
atlas (61).

Analysis of sCMRs in relation to sex hormone biology

Sites with significant associations (FDR < 0.05) to changes
in reproductive hormones over the puberty transition were
reported previously (62). A Fisher exact test q-value < 0.05
following Benjamini–Hochberg multiple test correction was
deemed significant when comparing sCMRs to the CMR
background (Supplementary Table S1).

The effect of estrogen exposure on sCMR DNAm levels
was examined using GSE132513, an Illumina Infinium Hu-
man Methylation EPIC BeadChip dataset of MCF-7 HTB-
22 breast cancer cell lines grown for 4 or 14 days in media
with and without estradiol (Table 1). Composite betas were

compared using a Welch test and P-values < 0.05 were con-
sidered significant.

To examine the relationship between sCMR DNAm lev-
els and estrogen and progesterone receptor status, female
breast invasive carcinoma (BRCA) preprocessed and nor-
malized (TCGA level-3) Illumina Infinium Human Methy-
lation EPIC BeadChip data and the associated estrogen
and progesterone receptor status metadata were retrieved
from the Firebrowse repository (firebrowse.org, version
2016 01 28). The R package umap (63) was used to ob-
tain the Uniform Manifold Approximation and Projec-
tion (UMAP) plot with the following parameters: ran-
dom state = 123, n neighbors = 40, min dist = 0.2. UMAP
clustering patterns were inspected for evidence that sCMR
DNAm values were associated with estrogen/progesterone
receptor status.

Analysis of sCMRs in relation to sex chromosomes

Klinefelter (47,XXY), Turner (45,X) and 47,XXX syn-
drome patient DNAm data was described previously (63–
65) (Table 1). These datasets were preprocessed and nor-
malized independently of the discovery and validation co-
hort, using the R package minfi (66). Detection P-values
were calculated and used to identify failed probes (P-value
cut-off > 0.01). Probes that failed in >20% of samples
were removed from the analysis (183 probes were removed
from the Klinefelter analysis and 361 from the Turner
and 47,XXX analysis). No samples had a proportion of
failed probes exceeding 1% or a median methylated or un-
methylated probe intensity below 11 (66,67). Raw data were
normalized using default parameters in Genome Studio®

which includes background and control probe normaliza-
tion. Subset-quantile-within-array-normalization (SWAN)
was used for correcting technical differences between Illu-
mina Infinium type I and II assay design, allowing both
within-array and between-sample normalization. Cross-
hybridizing probes, probes overlapping polymorphic loci
at the C or G residue of the target DNA sequence and
probes on the sex chromosomes were excluded from the
analysis.

Autosomal DNAm-based predictor of sex

Focusing on sCMRs and their probes, we generated probe
and region-based predictors of sex using the elastic net
machine learning algorithm, whose parameters were tuned
with 7-fold cross-validation using data from the discov-
ery cohort. Predictors were tested on several indepen-
dent blood-based datasets: normative samples from the
GSE132203, GSE125105 and ARIES cohorts, as well as
clinical and matching control samples from the Klinefelter
(47,XXY), Turner (45,X) and 47,XXX syndrome cohorts
(63–65). The region-based predictor was also tested in the
blood RRBS dataset (37). All test results are presented in
Table 3. To ensure that predictor tests were completely in-
dependent from the training dataset, we tested for overlap-
ping samples between the GSE132203 test dataset and the
GSE72680 training dataset using the R package ewastools
(68). An overlap was suspected because both studies pro-
filed individuals in the Grady Trauma Project. In total, 122

http://www.geneimprint.com
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samples were deemed overlapping and removed from the
GSE132203 dataset prior to testing the predictor (69).

Software availability

Code to implement the DNAm-based sex predictors is
available as a free open-source R package, whatsex,
at bitbucket.com/flopflip/whatsex. Code for constructing
CMRs and computing composite beta measures is available
at bititbucket.org/flopflip/comeback/.

RESULTS

Reproducibility of previously reported sex differences in
DNAm

To define a set of autosomal genomic regions showing ro-
bust sex differences in DNAm, we examined previous stud-
ies. Because DNAm profiles are dependent on the age of
the participant and the cell or tissue-type assayed (70–73),
we focused our analysis on adult whole blood DNAm, for
which there are several reports. To ensure that comparisons
were robust and not affected by outliers or differences in
coverage between DNAm technologies, we restricted our
analysis to datasets of at least 50 male and 50 female
DNAm profiles generated with the Illumina Infinium Hu-
man Methylation 450K BeadChip technology. Four studies
met these criteria (Singmann et al., (6), McCartney et al.,
(12), Shah et al., (13) and Zaghlool et al., (14)) and reported
1184, 1687, 69 384 and 274 sites with significant sex dif-
ferences in autosomal DNAm respectively (Supplementary
Table S5). We note that the McCartney et al., study only
provided information for the top 1000/69384 sites showing
significant sex differences in DNAm, thus comparisons are
based on this lower number. Furthermore, the McCartney
et al., and Zaghlool et al., studies contained among their
hits 42 and 83 probes respectively that cross-hybridize to
other genomic regions, including the sex chromosomes (33).
Because these probes may not reliably measure DNAm at
their annotated site and were removed in the other studies,
they were also excluded from our comparisons.

Overall, the four studies represented 3234 unique differ-
entially methylated sites, of which 10 (0.3%) were detected
in all the studies, 124 (3%) in three studies, 508 (16%) in two
studies and 2592 (80%) were unique. Since none of these
studies employed effect size cut-offs in the identification of
sex-biased DNAm sites, we wondered if reproducibility was
linked to the magnitude of the sex difference. Leveraging
the effect sizes provided by Shah et al., we found that al-
though DNAm differences between males and females were
generally small (85% of sites showed a delta beta difference
<10%) (Supplementary Figure S1A), sites reported as sex-
biased in more than one study had significantly higher effect
sizes when compared to loci reported in a single study (Sup-
plementary Figure S1B) (Wilcoxon P-value < 0.05). In fact,
effect sizes significantly increased as probes were reported in
more studies.

Discovery and validation of robust sex-associated co-
methylated regions (CMRs) in whole blood

The limited reproducibility of previously reported autoso-
mal sex-differentially methylated sites suggested that more

research is needed to identify genomic regions with consis-
tent sex differences in DNAm. To this end, we employed
a region-based approach and included a modest effect size
cut-off (74). A well-powered discovery cohort of 3795 (2414
males and 1381 females) normative adult (25-80 years)
whole blood samples was aggregated from 5 Illumina Hu-
manMethylation 450K array datasets (Table 1, Figure 1A)
(see Materials and Methods section). To ensure that our
analyses were not confounded by sex mislabels (35,75), we
used X and Y chromosome DNAm information to iden-
tify samples whose metadata sex label did not correspond
to the expected sex chromosome DNA methylation profiles.
All samples with potential mislabels were removed from
the analysis. Because DNAm-sex associations can be con-
founded by probes that map to or cross-hybridize to the X
and Y chromosomes, these probes were also removed from
the dataset prior to analysis, as were probes containing or
adjacent to single nucleotide polymorphisms with a minor
allele frequency ≥ 5% (32,33).

From this filtered dataset, we defined a total of 26 434 re-
gions of co-variable DNAm, termed co-methylated regions
(CMRs). This was done using the CoMeBack method,
which groups sites based on DNAm correlation and CpG
background density (24) (Figure 1A and Supplementary
Table S1). Composite beta values were calculated for each
CMR by summing all of the individual probe betas using
a weighted method based on the first principal component
loadings of each probe’s DNAm levels (see code availabil-
ity). Composite beta values were tested for sex differences in
DNAm, yielding 205 CMRs (0.8% of all CMRs) with signif-
icant and consistent sex differences in DNAm levels based
on strict criteria: FDR < 0.05; absolute composite beta dif-
ferences > 4%; and composed entirely of probes with higher
mean DNAm levels in one sex compared to the other. A 4%
composite beta threshold was selected because it captured
99% of the technical variability in the discovery dataset.

To validate the sex differences at the 205 CMRs, we used
an independently processed cohort of 312 males and 387 fe-
males aged 17–87 (GSE125105). After quality control, 201
(98%) CMRs were covered in the preprocessed validation
dataset and 179 (87%) showed significant sex differences in
DNAm as defined by: a q-value FDR < 0.05; adjusted ab-
solute composite beta differences > 4%; and composed en-
tirely of probes showing the same direction of sex-biased
DNAm levels seen in the discovery cohort (Figure 1A and
Supplementary Table S2). An 87% rate of validation is par-
ticularly striking considering that previous studies reported
validation rates of 11–52% (6,12–14), and pairwise com-
parisons between studies yielded rates between 2 and 69%
(Supplementary Table S5). To determine if the increased
rate of validation seen by our approach was dependent on
the inclusion of an effect size cut-off, we repeated our dis-
covery and validation procedure with a 3% effect size cut-
off and without an effect size cut-off (for a full list of sites
meeting these criteria see Supplementary Table S3 and S4).
Not surprisingly, reducing or removing the effect size cut-
off resulted in the identification of more CMRs showing
sex differences in DNAm, however validation rates dropped
to 78% and 31%, respectively (Supplementary Table S6),
as may be expected from a sensitivity/specificity trade-off.
Thus, inclusion of even a modest effect size threshold in-
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Table 2. sCMRs overlapped individual sites and regions previously re-
ported to show sex-biased DNAm

Overlap with this study

Study
No. of reported

sex-linked probes
CpGs

(out of 654)
sCMRs

(out of 179)

Shah et al., 2014 1687 219 112
Singmann et al.,
2015

1184 59 35

Zaghlool et al.,
2015

274 36 21

McCarthy et al.,
2020

1000 153 72

all studies
combined

3354 299 129

Yousefi et al.,
2015*

2471 136

*Differentially methylated region (DMR)-based analysis. Any overlap in
genomic coordinates is reported.

creased reproducibility across studies, likely by limiting spu-
rious findings related to technical variability.

Characteristics of sCMRs

Focusing on the 179 sCMRs showing effect sizes > 4%, we
found that they were distributed across the autosomes (Fig-
ure 1B) and ranged in size from 2 to 15 CpG probes (Sup-
plementary Figure S2A). Most (152 or 85%) showed higher
mean DNAm levels in females compared to males (Supple-
mentary Table S2), effects consistent with previous reports
(10,20,21). sCMRs also captured sites previously reported
to show sex differences in DNAm levels (6,12–14) (Table 2),
including the 5′ UTR of the SLC6A4 gene (Figure 1C), a
gene implicated in sex-biased depression and bipolar dis-
order (76). A set of sCMRs also overlapped regions previ-
ously reported to show sex-biased DNAm levels. In fact, 136
(76%) sCMRs overlapped regions detected with DMRcate
in a dataset of 53 male and 58 female cord blood samples
(Table 2 and Supplementary Table S6) (15). This substan-
tial overlap is consistent with higher rates of reproducibility
seen with regional based approaches, although we note that
our approach was more stringent and only captured 5.5%
of the previously reported sex-biased regions.

A link between sCMRs and sex was further corrobo-
rated by trait analysis from the EWAS Atlas, one of the
largest collections of EWAS (Supplementary Figure S2B)
(61). Overall, sCMRs were enriched for DNAm sites previ-
ously associated with sex (labeled gender in the EWAS at-
las), sex chromosome aneuploidies (Klinefelter syndrome),
X-linked intellectual disability syndromes (Claes–Jensen
syndrome), mendelian disorders caused by mutations on
chromatin remodelers that also show dysregulated DNAm
(Nicolaides–Baraitser syndrome and SETD1B-related syn-
dromes) and Alzheimer’s disease which has known sex-
biased characteristics (77).

We also examined the overrepresentation of specific ge-
nomic features among the sCMRs. Compared to the en-
tire CMRs background (26 434), sCMRs were enriched
for sites of systemic interindividual variation (CoRSIVs)
(16 sCMRs overlapped CoRSIVs––Fisher’s exact test P-
value 0.046) (60), CpG islands and shores; mQTLs (58,59)

Figure 2. sCMRs were enriched for CpG islands, mQTLs and repressive
chromatin states. (A) sCMRs were enriched for CpG island and shores
based on the annotation from the Infinium Human Methylation 450K
BeadChip manifest. sCMRs were also enriched for sites previously re-
ported to be under genetic influence (mQTLs) in adult whole blood sam-
ples (B) (58,59) as well as repressed chromatin states (C) (54). In (A), cate-
gories shown in dark green are those with significant enrichments based on
a Fisher exact test q value < 0.05 following Benjamini–Hochberg multiple
test correction. In (B and C), only categories with significant enrichments
are shown.

and repressed chromatin states (54) (Figure 2A–C). In fact,
117 (65%) sCMRs were contained within a single chro-
matin state (Supplementary Table S2) and another 9 were
located at the boundary of largely similar chromatin states
(‘Polycomb-repressed’ and ‘Weak polycomb repressed’),
findings suggestive of sCMRs functioning as cohesive units.
The sCMRs were not enriched for transcription factor bind-
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ing motifs, although we note that VEZF1, MAZ, KLF12
and KLF15 were overrepresented based on a nominal P-
value (Supplementary Figure S2C). Of note, MAZ has been
suggested to contribute to sex-biased gene expression (78).

sCMR genes were not enriched for functional pathways or
sex-biased gene expression

Next, we examined if genes mapping to sCMRs (Supple-
mentary Table S2) were enriched for specific gene or func-
tional categories. In total, 94 genes mapped to sCMRs and
these were not enriched for imprinted genes, imprinting
control centers (50,51), lncRNAs (52), or any particular
GO category or KEGG pathway. sCMR genes were also
not enriched for genes reported to show sex-biased gene ex-
pression in blood, a finding that was perhaps not surpris-
ing given that previous studies highlighted blood as a tissue
with limited sex differences in mRNA levels (4,5,53).

Despite these findings, we note that one sCMR mapped
to DDX43, a gene previously reported to show sex-biased
DNAm and mRNA levels (79). Importantly, since we re-
moved all probes that cross-hybridize to the sex chromo-
somes (33), the sex differences in DNAm levels at the
DDX43 sCMR are unlikely to be driven by homology to the
X chromosome DDX3X gene. The DDX43 sCMR mapped
to a region shared with the OOEP gene and contained five
sites, two of which were previously reported to show sig-
nificant sex differences in DNAm (79) (Figure 3). Leverag-
ing DNAm data for several cell and tissue types, we found
that sex differences at this site extended beyond blood. In
fact, despite very small samples sizes, all of the cell types
and tissues examined showed higher DNAm in females
compared to males, an effect that was significant in 8 of
the 11 cell and tissue types tested (Figure 3). Using gene
expression data from the GTEx database, we also exam-
ined if there were sex-biases in DDX43 and OOEP mRNA
levels across tissues. Limiting our mRNA analysis to tis-
sues for which we had DNAm information revealed signifi-
cantly lower DDX43 mRNA levels in females compared to
males. Sex-biased mRNA levels were also seen for OOEP,
although this was only significant for 2 out of the 6 tissues
examined. Observing similar patterns of sex-biased DDX43
and OOEP gene expression is consistent with nearby genes
showing co-expression patterns perhaps due to shared reg-
ulation.

Validation of sCMRs using reduced representation bisulfite
sequencing profiles

To determine if sex differences at sCMRs were recapitu-
lated in DNAm profiles generated with a different technol-
ogy, we examined a dataset of 158 normative adult periph-
eral blood DNAm profiles based on reduced representation
bisulfite sequencing (RRBS) (Table 1) (37). In this dataset,
4354 sites, mapping to 106 (59%) sCMRs, had DNAm in-
formation in at least half of the samples. In agreement with
sCMRs representing regions of correlated DNAm, DNAm
values at RRBS sites located within a sCMR were positively
correlated (Figure 4A). In fact, the mean correlation within
sCMRs ranged from 9% to 76%, centering around 29%,
just below the 30% cut-off used in CoMeBack to define

CMRs in the first place (Figure 4B). Importantly, shifting
the sCMR coordinates by just 2500 bps in either direction
significantly decreased this correlation (one-way anova P-
value < 2.2e16), indicating that the sCMR coordinates cap-
tured most of the region showing correlated DNAm. With
regards to sex differences, we found that sites mapping to
sCMRs were able to separate male and female RRBS sam-
ples when subjected to Uniform Manifold Approximation
and Projection (UMAP) (Figure 4C), findings in line with
sCMRs representing regions of sex differences in DNAm.
Of the 4354 sites, 1784 (41%) mapping to 90 (85%) sCMRs
passed a q-value threshold < 0.05, a delta beta cut off > 4%
and showed the same direction of change observed in the
discovery and validation cohort (Supplementary Figure
S3). Furthermore, of the significantly differentially methy-
lated sites, most (1333 or 74%) had higher DNAm in fe-
males compared to males, effects consistent with findings
based on Illumina HumanMethylation 450K array datasets
(10,20,21). Altogether, the independent RRBS analysis sup-
ported the classification of sCMRs as regions of correlated
and sex-biased DNAm.

Blood sCMRs were consistent across the life span

Given that DNAm levels vary during development and
across the lifespan (70,71), we wondered if sex-biased
DNAm levels observed in adults were recapitulated in
younger individuals. To test this, we used the ARIES cohort,
which contains DNAm profiles for over 900 males and fe-
males sampled at birth, 7 and 15 years of age (Table 1) (41).
We note that within the AIRES cohort there are slight dif-
ferences in the type of blood-based sample assayed at each
time point (cord blood, whole blood and white blood cells
sampled at birth, age 0, 7 and 15, respectively), an important
caveat given that DNAm patterns also vary between cell and
tissue types (72,73). Examining each time point individu-
ally, we tested if sCMRs showed significant sex differences
in DNAm using a linear model that accounted for differ-
ences in cell type proportions using the Houseman method
(34). Overall, we found that at all three timepoints 170
(95%) sCMRs had significant sex differences in DNAm that
also matched the direction of change observed in the discov-
ery cohort (Figure 5A) (Supplementary Table S2). Of the
remaining 9 sCMRs, none showed significant differences in
DNAm levels between males and females at birth, but 8 be-
came significantly differentially methylated by sex at later
time points (age 7 and 15, respectively) (Figure 5B). The
latter finding indicates that some sex-associated patterns in
DNAm emerge later during childhood or adolescence, find-
ings consistent with recent reports (80). Collectively, these
results highlight remarkable stability of sCMRs across the
life course, indicating that the majority of genomic regions
showing consistent sex-biased DNAm patterns are estab-
lished prior to birth and remain stable throughout the lifes-
pan.

A subset of sCMRs were cell type, tissue, and cancer status
agnostic

Given that DNAm patterns vary widely between tissues
and even between cell types within a tissue (72,73), we ex-
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Figure 3. Sex-biased DNAm levels at the DDX43-OOEP sCMR was observed across several tissues and associated with sex-biased gene expression at the
DDX43 and OOEP genes. Sex-biased DNAm levels were detected across several tissues for the sCMR found at the overlapping and divergent OOEP and
DDX43 genes (top). Tissues in bold are those that were present in the GTEx database and for which we could examine mRNA levels. Of these, several
showed sex-biased mRNA levels (bottom). Asterisks indicate significant comparisons (P-value < 0.05).

amined if sCMRs discovered and validated in blood also
showed significant sex differences in DNAm in other tis-
sues and cell types. We leveraged multiple publicly available
datasets of somatic tissues and regions (buccal, kidney, liver
and brain–– hippocampus, cerebellum, temporal lobe, oc-
cipital lobe and frontal lobe) as well as isolated blood cell
types (monocytes, CD4 and CD8 T cells) (43–47). In each
dataset, the DNAm levels of each sCMR were compared
between males and females and sites having a Welch test
P-value < 0.05 and showing the same direction of change
observed in blood were deemed significant (Figure 5C and
D) (Supplementary Table S2). Overall, we found that each
cell type and tissue showed a different degree of sex-biased
DNAm at sCMRs. CD8 T cells had the least number of
significant sCMRs (44 sCMRs or 25%), while buccal cells
had the greatest number (120 sCMRs or 67%). Of the sig-
nificant sCMRs, 5 met the significance threshold in all of
the tissues and cell types examined (Supplementary Table
S2). These cell type and tissue agnostic sCMRs were asso-
ciated with the GLI4, ZFP41, NUP58 and FIGNL1 genes.
Despite only a few sites meeting the significance threshold
in all of the tissue and cell types tested, we note that sCMR
composite beta differences across tissues and cell types were
positively correlated with the patterns observed in blood.

Of all of the tissues, the cerebellum showed the lowest
correlation (Pearson’s correlation of 0.599) while mono-
cytes showed the highest correlation (Pearson’s correlation
of 0.832).

To further examine the effect of tissue on sCMR DNAm
patterns, we compared sex differences in DNAm levels in
normal lung, kidney, liver, thyroid, bladder and colon sam-
ples available through The Cancer Genome Atlas (TCGA)
Research Network (Table 1). We note that only 148 of the
179 sCMRs were represented in the TCGA dataset due
to differences in probe filtering protocols, thus compar-
isons are based on this smaller sCMR subset. Similar to
our findings described above, 39 to 95 out of 148 sCMRs
(26–64%) showed significant sex differences in DNAm
(Welch test P-value < 0.05) and matched the direction of
change seen in the discovery blood cohort (Supplementary
Figure S4A).

The samples available through the TCGA also made it
possible to examine whether cancer status affected sex dif-
ferences in DNAm at sCMRs. We focused this analysis
on thyroid carcinoma (THCA), skin cutaneous melanoma
(SKCM), stomach adenocarcinoma (STAD), lung ade-
nocarcinoma (LUAD), kidney renal clear cell carcinoma
(KIRC), liver hepatocellular carcinoma (LIHC), colon ade-
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Figure 4. An independent RRBS dataset supports the categorization of sCMRs as correlated units with sex-biased DNAm. (A) Heatmap of spearman
correlations for the 4354 sites mapping to sCMRs and present in at least half of the RRBS samples showed clusters of high correlation mapping to
individuals sCMRs. (B) Boxplot of average internal correlation values for the sCMRs covered by the RRBS dataset. Internal correlations significantly
decreased when sCMR coordinates were shifted by as little as 2500 bps on either direction (one-way anova P-value < 2.2e-16). (C) sCMR sites present in
the RRBS dataset could separate male and female samples based on UMAP.

nocarcinoma (COAD) and bladder urothelial carcinoma
(BLCA), as these datasets had large sample sizes (n > 100)
and a good representation of both male and female sam-
ples (Table 1). For these datasets, we found between 21 and
106 (14–71%) sCMRs showing significant sex differences in
DNAm (Welch test P-value < 0.05 and the same direction
of change seen in the discovery blood cohort) (Figure 5E
and F and Supplementary Figure S4A and B). Of these, thy-
roid carcinoma (THCA) and kidney renal clear cell carci-
noma (KIRC) had fewer sCMRs that recapitulated the sex
differences observed in blood when compared to their re-
spective matching normal samples, indicating that disrup-

tions in sex-biased DNAm levels at sCMRs may occur in a
subset of cell malignancies.

Altogether, our findings indicate that sex differences in
DNAm at sCMRs are partially agnostic to the cell or tissue
of origin as well as whether these were derived from healthy
or tumor samples. Importantly, our analysis does not rule
out the possibility that additional sites show sex differences
in DNAm in a cell, tissue or cancer-status-specific manner.
However, the paucity of available data prevents us from ex-
amining this possibility as a minimum of 500 samples are
needed to reliably detect correlations as low as 30% and
build robust CMRs (24).
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Figure 5. sCMRs were remarkably stable across the life span and a subset were cell, tissue, and cancer status agnostic. (A) Heatmap of the mean composite
betas difference (female minus male) for the 179 validated sCMRs split by age categories. (B) Heatmap of the 8 sCMRs that changed during postnatal
development. These sCMRs mapped to the genes included in the figure. (C) Heatmap of the mean composite beta difference (female minus male) for the
179 validated sCMRs across a variety of tissues. Blood is included for comparison. (D) Bar graphs showing the number of sCMRs that were significantly
different between males and females cross the indicated cells and tissues. (E) Heatmap showing the mean composite beta differences (female minus male)
for sCMRs across a variety of cancer types: thyroid carcinoma (THCA), skin cutaneous melanoma (SKCM), stomach adenocarcinoma (STAD), lung
adenocarcinoma (LUAD), kidney renal clear cell carcinoma (KIRC), liver hepatocellular carcinoma (LIHC), colon adenocarcinoma (COAD) and bladder
urothelial carcinoma (BLCA). The heatmap only shows 148 sCMRs that were present in all of the cancer samples and includes normative blood samples
for comparison. (F) Bar graphs showing the number of sCMRs significantly different between males and females in the indicated cancer types.

Assessing the link between sCMRs and sex hormones

Given that sex hormones may contribute to the estab-
lishment of sex-biased DNAm (62,81), we examined if
sCMRs were linked to sex hormones or their biology. We
began by examining whether sCMRs included sites whose
DNAm levels were previously associated with changes in
sex hormones over the puberty transition (62). Indeed,
compared to the CMR background, sCMRs were signif-
icantly enriched for sites whose DNAm levels correlate

with changes in inhibin B, luteinizing hormone, testos-
terone, follicle-stimulating hormone and anti-müllerian
hormone (Figure 6A). Using a publicly available dataset,
we also explored if DNAm levels at sCMRs changed in
response to estradiol treatment. Estradiol is an estrogen
hormone known to inhibit the DNA methyltransferase
DNMT1 and lower DNAm levels (82). Examining DNAm
profiles for HTB-22 breast cancer cells cultured with or
without estradiol for 4–14 days (Table 1) revealed 11 (6%)
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Figure 6. sCMRs were linked to sex hormone biology. (A) sCMR were enriched for sites whose DNAm levels are linked to sex hormone levels. Significance
was based on a Fisher exact test q value < 0.05 following Benjamini–Hochberg multiple test correction. (B) Eleven sCMRs showed significant changes in
DNAm levels in HTB-22 breast cancer cells based on estradiol treatment. (C) UMAP of breast cancer tissue samples showed a strong separation based
on estrogen and progesterone receptor status when the sCMR composite beta values for the 148 sCMRs present in the dataset (left) were used. This effect
was largely driven by three sCMRs (right)

sCMRs that displayed significant changes in response to
estradiol exposure (Welch test P-value < 0.05) (Figure
6B). Of these, seven sCMRs showed significant DNAm
differences regardless of the length of estradiol exposure.
Finally, we assessed if DNAm levels at sCMR were linked
to estrogen or progesterone receptor status by leveraging
female breast cancer DNAm profiles from the TCGA.
Overall, sCMR composite beta values could separate
breast cancer samples based on estrogen and proges-
terone receptor status when a dimensionality reduction
algorithm (UMAP) was applied (left side of Figure 6C) al-
though this separation was mostly driven by three sCMRs
(chr2:121269292–121269349, chr3:134031551–134031686
and chr8:144371537–144371780) (right side of Figure 6C).
While limited in scope, our findings support a relationship
between DNAm at sCMRs and sex hormones but suggest
that this effect may be limited to a just few sCMRs.

Sex chromosome complement rather than physical sexual
characteristics are predictive of sCMR DNAm status

Having observed a limited relationship between DNAm lev-
els at sCMRs and sex hormones, we turned our attention
to the potential influence of sex chromosomes. Previous

work using clinical samples from individuals with sex chro-
mosome aneuploidies [males with Klinefelter syndrome
(47,XXY) and females with Turner (45,X) and 47,XXX
syndrome] revealed a relationship between sex chromosome
complement and DNAm patterns (63–65). Using these
samples, we examined the relationship between DNAm
at sCMRs and sex chromosome complement. Validating
our findings once again, we found that the DNAm pro-
files of normative females (46,XX) and males (46,XY) in
this clinical dataset recapitulated the sex differences ob-
served in the discovery cohort (Figure 7A). We also found
that sCMR DNAm levels in females with 47,XXX syn-
drome patients recapitulated the normative female profile.
By contrast, sCMR DNAm levels in males with Klinefel-
ter syndrome (47,XXY) closely mirrored the normative fe-
male rather than the male DNAm pattern, whereas DNAm
levels in females with Turner syndrome (45,X) mirrored
but did not completely match the male rather than the fe-
male DNAm pattern (Figure 7A and Supplementary Figure
S5A). Taken together, these findings point at an intimate re-
lationship between sex chromosomes and DNAm profiles at
sCMRs.

Building upon these findings, we applied a UMAP di-
mensionality reduction algorithm to sCMRs in the dataset
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Figure 7. sCMR DNAm levels reflected sex chromosome complement information. (A) Heatmap of the mean composite betas difference for the indicated
genotypes compared to control normative male samples. (B) UMAP of male and female samples and samples from individuals with sex chromosome
abnormalities revealed a strong relationship between DNAm levels at sCMRs and sex chromosome complement.

of Klinefelter (47,XXY), Turner (45,X) and 47,XXX syn-
drome patients. This analysis produced three main clus-
ters: cluster 1 was composed exclusively of males (46,XY);
cluster 2 of Turner syndrome patients (45,X); and clus-
ter 3 of karyotypically normal (46,XX) and 47,XXX syn-
drome females, as well as Klinefelter syndrome (47,XXY)
males (Figure 7B). We note that within cluster 3, karyotyp-
ically normal females (46,XX) and Klinefelter (47,XXY)
syndrome patient samples also separated from one another,
while 47,XXX syndrome patient samples were dispersed
throughout both normative female and Klinefelter syn-
drome patient sample clusters. These findings indicate that
sCMR DNAm levels are strongly influenced by the number
of X chromosomes and, to a lesser extent, by the presence
of a Y chromosome.

An accurate sex predictor based on autosomal DNAm

Having identified sCMRs that showed remarkable consis-
tency across the lifespan and recapitulated patterns of sex-
biased DNAm in a variety of tissues and cell types, we rea-
soned that autosomal DNAm levels at sCMRs may be suffi-
cient to predict sample sex. Although methods that predict
sex based on sex chromosome DNAm levels have been de-
scribed (68), an autosomal DNAm-based predictor of sex
fills an important gap, it makes it possible to assess sex in
DNAm datasets lacking raw IDAT files or other types of
sex chromosome information, as is the case for many pub-
licly available datasets (35) and for most datasets at later
stages of the pre-processing and normalization pipeline.
For ease of application, we focused on developing a probe-
based predictor, removing the need to calculate composite
betas.

Using elastic net regression (83), we created three pre-
dictors and benchmarked them against a previously de-
scribed method to assess sex based on XY chromosome
DNAm levels (see Materials and Methods section) (35).
The most accurate predictor relied on 63 probes from
51 sCMRs and had an overall accuracy of 98% when
tested in three independent blood datasets (GSE132203,

GSE125105, ARIES) that varied in age and DNAm ar-
ray platform (Illumina Infinium Human Methylation 450K
BeadChip versus Illumina Infinium Human Methylation
EPIC BeadChip) (Tables 1 and 3 and Figure 8A). Since
this predictor contained sites annotated as mQTLs and
could be influenced by genetic background, we also gener-
ated a ‘no-mQTL’ predictor that relied on 45 probes from
35 sCMRs and showed an overall accuracy of 96% (Fig-
ure 8A). Encouraged by these results, we also generated a
predictor that relied on a minimal set of probes and may
be useful for targeted approaches. The ‘minimal’ predic-
tor relied on just 11 non-mQTL probes and although it
had an accuracy of 92.5% in adult blood samples, its ac-
curacy dropped to 66.5% in younger individuals (Table 3).
Based on performance and a reduced possibility of ge-
netic background effects, we recommend the use of the 45-
probe based tool for testing or inputting sex information
in DNAm datasets. Nevertheless, both the 63-probe and
‘no-mQTL’ 45-probe predictors are freely available as an
open-source R package whatsex at bitbucket.com/flopflip/
whatsex.

Although the predictor was not designed to prioritize
sites with sex-biased DNAm across cell and tissue types,
34 out of the 35 sCMRs included in the 45-probe predic-
tor were significant in more than one tissue (Supplementary
Figure S2). In fact, 24 out of 35 sCMRs were significant in at
least 5 tissues, suggesting that the most predictive sites may
also be the most consistent across cells and tissues. Despite
these findings, the accuracy of the predictor was limited to
blood samples, as testing in buccal DNAm profiles revealed
poor performance. Thus, more publicly available data are
needed to develop a tissue agnostic predictor of sex based
on autosomal DNAm information.

Given that sCMRs also showed sex-biased DNAm lev-
els in the RRBS dataset, we reasoned that a region-based
predictor developed with Illumina Infinium Human Methy-
lation 450K BeadChip data may generalize to other plat-
forms, like RRBS. A region-based predictor of sex was gen-
erated using 31 sCMRs and it showed an overall accu-
racy of 92% in the Illumina Infinium Human Methylation
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Table 3. Sex predictor results

Accuracy

Predictor
No.

probes
No. of

sCMRs

No. of
mQTL
probes

Validation
cohort

(GSE125105)

EPIC BeadChip
dataset

(GSE143303) ARIES birth ARIES 7yr ARIES 15yr RRBS
Overall

accuracy

63-probe 63 51 18 98.1 (6 females;
7 males
misclassified)

95.0 (38 females;
2 males
misclassified)

97.9
(13 females;
6 males
misclassified)

98.9 (9 females;
1 male
misclassified)

98.3
(14 females;
2 males
misclassified)

n/a 97.64

45-probe 45 35 0 97.8
(10 females;
5 males
misclassified)

94.6 (43 females;
0 male
misclassified)

94.7
(45 females;
3 males
misclassified)

98.5
(14 females;
1 male
misclassified)

96.7
(32 females;
0 male
misclassified)

n/a 96.46

11-probe/sparse 11 0 93.3
(27 females;
20 males
misclassified)

91.7 (61 females;
5 males
misclassified)

51.4
(440 females;
0 males
misclassified)

70.5
(286 females;
0 male
misclassified)

77.5
(217 females;
1 male
misclassified)

n/a 76.88

region-based n/a 31 n/a 94.1 (2 females;
40 males
misclassified)

94.1 (46 females;
1 male
misclassified)

89.8 (2 females;
90 males
misclassified)

91.9 (0 female;
79 males
misclassified)

92.9 (0 female;
69 males
misclassified)

91.8
(11 females;
1 male
misclassified)

92.45

Figure 8. A subset of sCMRs were sufficient to predict biological sex with high accuracy. (A) Receiver operating curve (left) and graphical representation
of the distribution of true positive and false negatives (right) for the biological sex predictor based on 45 probes representing 35 sCMRs. Figures are based
on test performed on the GSE125105 dataset. (B) Testing the DNAm sex predictor in blood samples from individuals with sex chromosome abnormalities
revealed discordance between physical sexual characteristics and predicted sex. Klinefelter (47,XXY) syndrome patients were predicted to be female, while
Turner (45,X) syndrome patients were predicted to be male.

450K/EPIC BeadChip testing datasets as well as the RRBS
dataset. Although promising, more calibration and testing
in other platform-types is needed before a true platform-
agnostic predictor of sex based on autosomal DNAm be-
comes available.

Finally, we examined the performance of the 45-probe
predictor in individuals with sex chromosome abnormali-
ties. Applying the predictor to the blood DNAm profiles of
patients affected by common sex chromosome aneuploidies
(63–65) revealed some interesting patterns. Importantly, the
predictor correctly classified all the normative male (46,XY)

and female (46,XX) samples (Figure 8B and Supplementary
Figure S5B), again highlighting its accuracy independent
of differences in preprocessing and normalization pipelines.
In line with the strong relationship between sCMR DNAm
and sex chromosomes described above, we found that the
predictor classified all females with 47,XXX syndrome as
female, but it classified all males with Klinefelter (47,XXY)
syndrome as female and all females with Turner (45,X) syn-
drome as male, revealing that this tool may help identify
mislabeled samples or samples from individuals with chro-
mosomes aneuploidies.
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DISCUSSION

To facilitate the consideration of sex in epigenetic stud-
ies, we defined and deeply characterized a set of repro-
ducible autosomal genomic regions showing sex differences
in DNAm. Using a well-powered dataset of 3795 norma-
tive adult whole blood DNAm profiles and applying a
region-based approach grounded in strict criteria, we iden-
tified and validated 179 sex-associated co-methylated re-
gions (sCMRs) in adult blood samples, patterns that were
also observed at earlier timepoints in development (birth,
age 7 and age 15). Sex differences in sCMR DNAm pat-
terns were also observed across a range of normative and
oncogenic tissues, although deviations in DNAm patterns
were observed at particular sCMRs and should be ex-
plored further. Importantly, the categorization of sCMRs
as regions of sex-biased co-variable DNAm in blood was
supported by several DNAm platforms including the Illu-
mina Infinium Human Methylation 450K and EPIC Bead-
Chips, as well as RRBS. Functionally, sCMRs were linked
to repressive chromatin states and a transcription factor
proposed to modulate sex-specific gene expression (57,78).
They also contained sites that show altered DNAm levels
in sex chromosome aneuploidy syndromes, or syndromes
emerging from altered X-linked genes or epigenetic modi-
fiers. sCMR DNAm status was strongly associated with sex
chromosome complement indicating that sex chromosomes
and their associated regulatory mechanisms may influence
DNAm at the autosomes. Finally, the robustness of sCMRs
allowed us to develop an accurate, easy-to-use and robust
predictor of sex that does not rely on raw DNAm data, or
other sex chromosome information, i.e. data often missing
in public datasets, especially at later stages of data normal-
ization pipelines. Our sex predictor was accurate regardless
of sample age or preprocessing and normalization methods,
and it can be used to impute sex and assess data quality.

Although sex differences in DNAm levels have been re-
ported previously (6,12–16) a consensus of affected regions
has failed to emerge. In fact, initial examination of stud-
ies reporting sex-biased DNAm levels revealed limited re-
producibility despite profiling similar populations using the
same technology. To re-examine the issue of sex-biased
DNAm we made two important changes in the definition
of sex-associated DNAm: we used a region-based approach
and included an effect size cut-off.

At present there is no standard for the inclusion of effect
size cut-offs in DNAm studies. In fact, most studies exam-
ining sex differences in DNAm to date did not included an
effect size threshold when reporting significant results. De-
spite this, we found that reproducibility across studies was
linked to the magnitude of the sex difference in DNAm,
whereby larger DNAm changes were more likely to repli-
cate across studies. Although our findings indicate that such
thresholds should be more widely applied, selecting an ef-
fect size cut-off remains challenging because the magnitude
of DNAm change associated with a functional biological
consequence is unknown. Nevertheless, determining effect
size cut-offs based on technical, rather than biological, vari-
ability can help limit associations below the error rate of the
assay (Illumina Infinium Human Methylation 450K Bead-
ChIP) and increase the likelihood of observing true biolog-

ical signal. Importantly, we acknowledge that meaningful
small-magnitude sex-differences in DNAm may exist, as has
been noted for gene expression (4), however, considering the
limitations of the techniques used is important in the con-
text of reproducibility.

We focused on regions of variable DNAm rather than
individual CpG sites because growing evidence indicates
that region-based approaches are more powerful at de-
tecting small effects and produce more robust associations
with phenotypes of interest (74). Consistent with this, we
found that 87% of the 201 sCMRs we discovered, validated
in an independent cohort, well above the 10–53% inter-
nal validation rates reported previously (6,12,13). Further-
more, 136 sCMRs (76%) overlapped with 2471 regions re-
ported in a previous study (Table 2 and Supplementary Ta-
ble S6) (15). The overlap between this study and ours un-
derscores the superior reproducibility of region-based ap-
proaches and is particularly striking considering that differ-
ent methods were used to define the regions: DMRcate ver-
sus CoMeBack (24,84). Nevertheless, our approach identi-
fied far fewer regions with sex differences in DNAm than
previously reported (15). This likely reflects the stringency
of our selection criteria, which required regions to behave as
cohesive units and pass both statistical and regional effect
size thresholds, criteria that can be easily implemented with
CoMeBack. We acknowledge that while additional genomic
regions may have DNAm levels influenced by sex, our goal
was to produce a high-confidence annotation of human ge-
nomic regions exhibiting the most reproducible sex differ-
ences. As such, we employed large and diverse discovery and
validation cohorts and thoroughly characterized the robust-
ness of our findings across life stages, cell and tissue types
and cancer states.

Beyond sex, factors like age, ancestry and tissue or cell
type also affect DNAm patterns. Accordingly, findings in
adult blood may not generalize to DNAm states in other
tissues or in younger individuals (85). With regard to age,
sCMRs were consistently differentially methylated by sex
across the lifespan in blood and are distinct from recently
reported age-associated sites (80). Nevertheless, we recog-
nize that by prioritizing sample size and grouping together
25–80 years olds in the discovery cohort, our approach may
have prevented the identification of age-specific sex-biased
DNAm and obscured links to sex hormones, which vary
over that age range. In relation to ancestry, a lack of detailed
ancestry information or the necessary probe data to infer
it, precluded us from examining the relationship between
sex-biased DNAm at sCMRs and genotype. Nevertheless,
because the discovery cohort included individuals of Cau-
casian, African American and Hispanic ancestry, and the
RRBS dataset was likely composed primarily of individu-
als of Chinese ancestry based on the recruitment hospital,
sCMRs likely generalize to these populations. Nevertheless,
further research is clearly needed to address this important
question. Additionally, we found that some sCMRs main-
tained sex differences in DNAm across various tissues and
cell types. However, these findings were based on small sam-
ple sizes and will need to be revisited as larger non-blood
datasets become available. Indeed, the identification of cell-
or tissue-specific sex-biased DNAm is a question that can-
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not be robustly addressed with the current publicly available
data.

To identify well-defined genomic regions showing robust
sex differences in DNAm, we deliberately used discovery
and validation cohorts comprised exclusively of normative
adult samples. Despite the lack of pathology in our discov-
ery and validation datasets, the sCMRs were enriched for
sites showing altered DNAm in syndromes or disorders of
sex chromosomes, X-linked loci or chromatin modellers. We
also found that a subset of sCMRs had altered DNAm pat-
terns in tumor samples, an effect that may reflect chromoso-
mal abnormalities typical of cancer cells or the microenvi-
ronment of tumors (86). Nevertheless, it remains unknown
whether sCMRs underscore sex differences in disease or
susceptibility to the environment. It is also unclear whether
disease states and harmful exposures result in additional ge-
nomic regions showing sex differences in DNAm. Although
these are important questions, our goal was to identify re-
gions that should be carefully considered in all blood EWAS
when sample sizes prevent sex-stratified analysis, or when
phenotypes of interest are confounded by sex.

To determine whether physical sexual characteristics and
or sex chromosomes were tightly related to DNAm lev-
els at sCMRs, we considered DNAm profiles of individu-
als with sex chromosome aneuploidies: females with Turner
(45,X) and 47,XXX syndrome, and males with Klinefel-
ter syndrome (47,XXY). Our analyses revealed that sCMR
DNAm was highly dependent on sex chromosome comple-
ment and not on physical sexual characteristics. In other
words, females with Turner syndrome showed male DNAm
profiles at sCMRs, while males with Klinefelter syndrome
(47,XXY) and females with 47,XXX syndrome showed
female DNAm profiles. Our findings are consistent with
previous reports showing a strong association between
widespread alterations in autosomal DNAm patterns and
sex chromosome complement, specifically X chromosome
aneuploidy (10,17,18,63–65). This work highlights the value
of samples from individuals with sex chromosome aneuploi-
dies to disentangle the mechanisms giving rise to sex biases
in biology. In this regard, the remarkable relationship be-
tween sCMR DNAm signatures and sex chromosome com-
plement implicates several mechanisms in the establishment
of autosomal sex-biased DNAm. This includes X chromo-
some inactivation pathways like XIST expression levels, 3D
X/Y chromosome-autosome contacts (87), X- or Y-linked
genes or variants of epigenetic regulators (e.g. ASTML)
(88) or autosomal genes or variants that modulate X or Y
chromosome DNAm (89,90). By providing a reproducible
set of autosomal regions showing robust sex-differences in
DNAm, our work provides a set of loci that can be used to
test the contribution of each of these mechanisms.

Leveraging sCMRs, we constructed a predictor of ge-
netic sex based on autosomal DNAm levels, an easy-to-
use, robust tool that can be implemented at any stage of
preprocessing pipelines to identify sex mislabels or impute
sex information if unavailable (35). Although several ef-
forts to predict sex from DNAm data have been reported
(20,66,87,91,92), previous tools rely on X and Y chromo-
somes information, which is often missing in publicly avail-
able datasets, or in data that have undergone normaliza-
tion. We note that sex can also be predicted from autosomal

gene expression data, though a recently reported predictor
achieved 84% accuracy, compared the 96% seen for the au-
tosomal DNAm-based predictor of sex (4,93).

Finally, we acknowledge that examining the role of sex
in health and disease is difficult because of the complex
relationship between sex and gender (gender defined by
the Canadian Institutes of Health Research [CIHR] as the
‘socially constructed roles, expectations, relationships, be-
haviours, relative power, and other traits that societies as-
cribe to women, men and people of diverse gender iden-
tities’ (http://www.cihr-irsc.gc.ca/e/32019.html). While gen-
der was not directly examined in this study, the discordance
between physical sexual characteristics and ‘epigenetic sex’
observed in individuals with sex chromosome aneuploidy
suggests that sex rather than gender may be driving DNAm
differences at these sites. Our findings in this regard under-
score the importance of correctly using the terms ‘sex’ and
‘gender’ in biomedical research and argue for a need to more
explicitly describe how sex as a biological variable was as-
certained in research samples (e.g. patient survey of sex as-
signed at birth, genetic testing and/or external medical ex-
amination) (1,94).

Altogether, our study highlights autosomal regions with
DNA methylation levels that consistently associate with sex.
Importantly, these regions should be carefully considered
in future EWAS to prevent spurious associations driven by
sex rather than phenotypes of interest. While it remains to
be fully determined how these epigenetic modifications are
established and contribute to sex differences in health and
disease, we hope to facilitate the future exploration of these
questions by providing a high-confidence annotation of re-
gions with sex-biased DNAm and an autosomal DNAm-
based predictor of sex.

SUPPLEMENTARY DATA
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Rönn,T., Bacos,K. and Ling,C. (2014) Sex differences in the
genome-wide DNA methylation pattern and impact on gene
expression, microRNA levels and insulin secretion in human
pancreatic islets. Genome Biol., 15, 522.

22. Liu,J., Morgan,M., Hutchison,K. and Calhoun,V.D. (2010) A study
of the influence of sex on genome wide methylation. PLoS One, 5,
e10028.

23. Xu,H., Wang,F., Liu,Y., Yu,Y., Gelernter,J. and Zhang,H. (2014)
Sex-biased methylome and transcriptome in human prefrontal cortex.
Hum. Mol. Genet., 23, 1260–1270.

24. Gatev,E., Gladish,N., Mostafavi,S. and Kobor,M.S. (2020)
CoMeBack: DNA methylation array data analysis for co-methylated
regions. Bioinformatics, 36, 2675–2683.

25. R Core Team and R Foundation for Statistical Computing (2019) In:
R: A language and environment for statistical computing. Vienna,
Austria.

26. Lehne,B., Drong,A.W., Loh,M., Zhang,W., Scott,W.R., Tan,S.-T.,
Afzal,U., Scott,J., Jarvelin,M.-R., Elliott,P. et al. (2015) A coherent
approach for analysis of the Illumina HumanMethylation450
BeadChip improves data quality and performance in epigenome-wide
association studies. Genome Biol., 16, 37.

27. Hannon,E., Lunnon,K., Schalkwyk,L. and Mill,J. (2015)
Interindividual methylomic variation across blood, cortex, and
cerebellum: implications for epigenetic studies of neurological and
neuropsychiatric phenotypes. Epigenetics, 10, 1024–1032.

28. Horvath,S. and Ritz,B.R. (2015) Increased epigenetic age and
granulocyte counts in the blood of Parkinson’s disease patients.
Aging, 7, 1130–1142.

29. Wahl,S., Drong,A., Lehne,B., Loh,M., Scott,W.R., Kunze,S.,
Tsai,P.C., Ried,J.S., Zhang,W., Yang,Y. et al. (2017) Epigenome-wide
association study of body mass index, and the adverse outcomes of
adiposity. Nature, 541, 81–86.

30. Chuang,Y.-H., Paul,K.C., Bronstein,J.M., Bordelon,Y., Horvath,S.
and Ritz,B. (2017) Parkinson’s disease is associated with DNA
methylation levels in human blood and saliva. Genome Med., 9, 76.

31. Chuang,Y.-H., Lu,A.T., Paul,K.C., Folle,A.D., Bronstein,J.M.,
Bordelon,Y., Horvath,S. and Ritz,B. (2019) Longitudinal
epigenome-wide methylation study of cognitive decline and motor
progression in Parkinson’s disease. J. Parkinsons Dis., 9, 389–400.

32. Pidsley,R., Wong,C.C.Y., Volta,M., Lunnon,K., Mill,J. and
Schalkwyk,L.C. (2013) A data-driven approach to preprocessing
Illumina 450K methylation array data. BMC Genomics, 14, 293.

33. Price,M.E., Cotton,A.M., Lam,L.L., Farré,P., Emberly,E.,
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