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Abstract: The present work explores in detail the effect of alkaline-basic electrolytes on the
capacitance performance of biomass-derived carbonaceous materials used as electrodes in symmetric
supercapacitors. The proof-of-concept is demonstrated by two commercial carbon products (YP-50F
and YP-80F, Kuraray Europe GmbH, Vantaa, Finland), obtained from coconuts. The capacitance
performance of YP-50F and YP-80F was evaluated in three types of basic electrolytes: 6 M LiOH, 6
M NaOH and 6 M KOH. It was found that the capacitance performance of YP-50F improved in the
following order: NaOH < LiOH < KOH; Meanwhile, for YP-80F, the order changes to LiOH < NaOH
< KOH. After 1000 cycles, the cycling stability of both YP-50F and YP-80F increased in the order
NaOH < LiOH < KOH. This order of performance improvement is determined by both the electrolyte
conductivity and the interaction between the functional groups of carbonaceous materials and alkaline
electrolytes. The reactivity of the functional groups was assessed by postmortem SEM/EDS and X-ray
photoelectron spectroscopy (XPS) analyses of the electrodes after prolonged cycling.

Keywords: supercapacitors; alkaline electrolytes; biomass-based porous carbons; electrochemical
testing; post-mortem analyses

1. Introduction

Supercapacitors are currently considered as attractive energy storage devices [1]. Having much
higher power density than lithium ion batteries and much higher energy densities than conventional
capacitors, supercapacitors offer a promising approach to meeting the increasing power demands of
energy storage systems. They are a perfect choice for a variety of high power applications thanks to the
tunable properties of the electrode materials used for their construction. The ability to design the system
according to the expected power/energy profile makes them suitable as alternatives to conventional
capacitors and batteries. Electrochemical supercapacitors operate through reversible adsorption of
electrolyte counter-ions on the electrode materials [2,3]. Recently, the additional reactions of ion
exchange have been demonstrated to take place during supercapacitor function [4]. In general, the
storage mechanism remains unclear, since the polarization of the electrode, as well as the compatibility
of the electrode materials and electrolyte ions, play crucial roles in determining the electrochemical
performance of the supercapacitor [5].

The kind of electrode material used is one of the main factors that determines the supercapacitor
performance. The carbon surface chemistry along with the excellent properties of the carbon materials,
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such as large surface area, highly porous structure, good adsorption properties, and high electrical
conductivity, is a very important factor to develop a device with high energy density [2]. Due to the
lower specific energy of electrochemical supercapacitors compared to batteries, the demand for new
types of electrode materials may reduce the difference between the specific energy of these technologies,
and thus, retain the continuity of energy storage and supply [6].

Biomass is frequently used for the production of activated carbon (AC), but among many natural
organic materials only some of them can be considered as useful precursors [2,7–9]. Naturally
occurring materials such as rice husk [10], wood [11], cotton [12], bamboo [13], etc. have been more
widely used as electrode materials for EC applications in recent years. Biomass-based micro- and
nano-porous carbons have also been investigated as active materials in the fabrication of electrodes
for ECs [12,14]. These carbons have extremely high specific surface area and specific capacitance as
electrode materials for EC applications. The specific feature of biomass-derived carbonaceous materials
is the existence of variety of functional groups that can participate in reversible redox reactions in
addition to the well-accepted counter-ion adsorption, thus contributing to the storage of extra charges
during supercapacitor function [15,16].

Electrolytes are identified as some of the most powerful components in the performance of
supercapacitors. Three types of electrolytes can be outlined: aqueous, organic and ionic liquids.
As regards carbonaceous electrode materials, aqueous electrolytes ensure an achievement of higher
power density than organic-based and ionic liquid electrolytes at the expense of lower energy
density [17,18]. The currently tested electrochemical capacitors with aqueous electrolytes compared
to the other electrolyte systems provide additional benefits such as low cost, safety, environmental
friendliness. Aqueous electrolytes, in their turn, can be divided in acidic, basic and neutral ones.
In acidic and basic electrolytes, the working potential window is limited up to 1.2 V, while in the
neutral electrolytes the window is extended above 1.2 V reaching a value of 2.2 V. The specific
capacitance of carbonaceous electrode materials decreases in the order from acidic and basic to neutral
electrolytes [19–23]. The effect of the interaction between the electrodes and electrolytes is also
important and very difficult to monitor experimentally. In aqueous electrolytes, the biomass-derived
carbonaceous materials undergo surface transformation due to the protonation or deprotonation of the
functional groups. Despite the considerable achievements in this area, some difficulties still exist, such
as lower energy density and narrow potential window in water electrolytes [24].

The present work aims to explore in detail the effect of alkaline basic electrolytes on the capacitance
performance of biomass-derived carbonaceous material. Among the variety of carbonaceous materials,
two commercial carbon products (YP-50F and YP-80F, Kuraray Europe GmbH, Vantaa, Finland),
obtained from coconuts, are selected since one of them (YP-50F) having more acidic groups and narrow
pore size distribution has been shown to exhibit an excellent cycling stability in 6M KOH electrolyte [25].
The storage performance of YP-50F and YP-80F is evaluated in three types of basic electrolytes: 6 M
LiOH, 6 M NaOH and 6 M KOH. The effect of the interaction between the YP-50F or YP-80F electrodes
and Li+, Na+ and K+ from the basic electrolytes is discussed, based on the results of the post-mortem
SEM/EDS and X-ray photoelectron spectroscopy (XPS) analyses of the electrodes after prolonged cell
cycling. The established relations between carbon electrode structures and electrolyte composition will
help to understand their impact on the storage properties of biomass-based carbonaceous electrodes in
symmetric supercapacitors.

2. Materials and Methods

Two activated carbons (YP-50F and YP-80F, Kuraray Europe GmbH, Vantaa, Finland) are the
subject of this study. The texture characteristics of YP-50F and YP-80F are summarized in Table S1
(Supplementary Materials). Both YP-50F and YP-80F exhibit specific surface area higher than 1700 m2/g,
which is a result from the occurrence of micropores. For YP-50F, the average pore diameter is 1.8 nm
with a standard deviation of less than 1 nm, while for YP-80F the pores are centred around 2.1 nm
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with an asymmetric tail between 2 and 6 nm (Figure S1, Supplementary Materials). Detailed texture
characterization of two activated carbons is given elsewhere [24].

Biomass-derived YP-50F and YP-80F were analysed by galvanostatic experiments.
The supercapacitor cell comprised two identical electrodes containing activated carbon (80 wt.%),
graphite ABG 1005 EG-1 (10 wt.%) and polytetrafluoroethylene binder (PTFE, 10 wt.%). The electrodes
were assembled in a cell using Viledon 700/18F separator (Freudenberg Filtration Technologies, Milano,
Italy) and basic electrolyte: 6 M LiOH, 6 M NaOH or 6 M KOH. The charge-discharge cycling tests
were performed using an Arbin Instrument System BT-2000 (American Laboratory Trading, East Lyme,
CT, USA). The supercapacitor cells were cycled between 0.01 and 1.2 V at a current load increasing
stepwise from 30 to 900 mAg−1 for 25 cycles per step. Selected cells were charged/discharged to up to
1000 cycles at a current rate of 60, 240, 360, 600 and 900 mAg−1.

The specific discharge capacitance (F g−1) was calculated by the Equation [26]:

C = (I × ∆t)/(m × ∆ V)

where I, ∆t, m and ∆ V are discharge current, discharge time, mass of active material and voltage
window, respectively. On the basis of the specific discharge capacitance, the energy density (E) and
power density (P) can be expressed as [27]:

E = C ∆V2/7.2

P = E/t

In order to get an insight into the surface and bulk of electrodes during cycling, post-mortem XPS
and SEM/EDS analyses were also conducted. The XPS probing of the electrode surface was performed
on an AXIS Supra electron spectrometer (Kratos Analitycal Ltd. Manchester, UK) with AlKα radiation
(1486.6 eV) and a charge neutralisation system. Microscopic monitoring of the electrodes was carried
out using a JEOL JSM 6390 scanning electron microscope (JEOL, Peabody, MA, USA), and the chemical
composition was evaluated by EDS analysis—Oxford INCA energy dispersive X-ray spectrometer
(Oxford Instruments, Abingdon, UK).

3. Results and Discussion

3.1. Capacitance Performance of Biomass-Derived Carbon

Figure 1 compares the charge/discharge curves of carbonaceous electrodes cycled in LiOH, NaOH
and KOH electrolytes. All curves exhibit a triangular-shaped profile, which is typical for the capacitive
storage mechanism (i.e., electrical double-layer). From the charge–discharge curves, the current
resistance of the iR-drop was calculated and corresponding values are presented in Table 1. Comparing
the experimental data for the electrode materials under test it can be seen that YP-50F tends to display a
slightly lower iR- drop than YP-80F. As regards the electrolyte composition, the iR-drop is the smallest
in KOH electrolyte, while the highest value is recorded in NaOH. The magnitude of the iR-drop in
LiOH has a medium value between those for KOH and NaOH electrolytes.

Table 1. Size and conductivity of electrolytic bare and hydrated ions, iR-drop, discharge capacitance
and cycling stability (CS) for 1000 cycles of symmetric supercapacitors with YP-50F or YP-80F electrodes.

Type of
Ion

Size of Bare Ion
(Å) [23]

Size of
Hydrated Ions

(Å) [23]

Ionic
Conductivity

(S cm2mol−1) [23]

YP-50F YP-80F

iR, V C,
Fg−1 CS, % iR, V C,

Fg−1 CS, %

Li+ 0.60 3.82 38.69 0.024 113 95.4 0.028 114 95.0
Na+ 0.95 3.58 50.11 0.026 108 92.1 0.028 110 91.5
K+ 1.33 3.31 73.50 0.023 115 96.6 0.026 117 96.6
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Figure 1. Galvanostatic charge-discharge curves of symmetric supercapacitors with YP-50F (a) orYP-80F
(b) electrodes cycled in basic electrolytes at a current rate of 60 mAg−1

The dependences of the capacitance of electrodes on current load are represented graphically
in Figure 2. As can be seen, for both YP-50F and YP-80F the capacitance varies between 90 and 130
Fg−1 and the highest discharge capacitance within the whole current range is achieved in 6 M KOH.
This is the case with the smallest iR-drop (Table 1). The close specific capacitance values of YP-50F
and YP-80F can be associated to their porosity (Table S1, Supplementary Materials). Although the
average pores diameter is close for both YP-50F and YP-80F, the YP-50F material features narrower
pores size distribution than that of YP-80F (Table S1, Supplementary Materials). It is of importance that
all pores have dimensions higher than 1 nm, i.e., they are larger in size than the hydrated alkali ions
(Table 1). This means that all pores of YP-50F and YP-80F are accessible by alkali ions, as a result of
which YP-50F and YP-80F exhibit similar specific capacitance values. It is worth mentioning that a lack
of dependence between pore size and capacitance has also been found for carbon monoliths working
in electrolyte (C2H5)4NBF4/acetonitrile [28,29]. The physical meaning of this fact is currently unclear.

Figure 2. Discharge capacitance depending on the current load for supercapacitors with YP-50F (a) or
YP-80F (b) electrodes in different electrolytes.

Furthermore, the data in Figure 2 show also that the electrochemical performance of the two
carbons under test is different in LiOH, NaOH and KOH electrolytes, especially at higher current loads.
The performance of YP-50F in LiOH and NaOH electrolytes is nearly the same and it is always worse
than in KOH. For YP-80F, the performance becomes better following the order LiOH < NaOH < KOH.
It is worth mentioning that at the highest current load (i.e., 900 mA.g−1), the electrode performance in
KOH and NaOH outperforms that in LiOH irrespective of the type of carbon material used.

The cycling performance characteristics of YP-50F and YP-80F electrodes in basic electrolytes were
further differentiated on the basis of the capacitance stability during cycling (Figure 3). The employed
protocol of electrochemical testing includes 1000 charge-discharge cycles in LiOH, NaOH or KOH
electrolytes at a current load of 60 mAg−1. Although by this protocol, the differences in performance
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of YP-50F and YP-80F were not distinguishable, the electrolyte composition had a direct impact on
the capacitance performance of the biomass-derived carbons. After 1000 cycles, the best performance
for both YP-50F and YP-80F electrodes was observed when they were cycled in a KOH electrolyte;
the capacitance varied around 110–115 Fg−1, with a cycling stability greater than 96%. In the NaOH
electrolyte, YP-50F and YP-80F exhibited lower capacitance after 1000 cycles, as well as poorer cycling
stability (around 91–92%). An interesting finding was that the performance of both YP-50F and
YP-80F in the LiOH electrolyte was intermediate, i.e., between those observed in the KOH and NaOH
electrolytes. The capacitance stability of YP-50F and YP-80F upon cycling correlated with the iR-drop
values determined from the charge/discharge curves (Table 1). The cycling stability follows the order
NaOH < LiOH < KOH.

Figure 3. Cycling stability of the discharge capacitance for supercapacitors with YP-50F (a) and YP-80F
(b) electrodes cycled in different electrolytes at a current rate of 60 mAg−1

At first glance, the improved capacitance performance of YP-50F and YP-80F is a simple
consequence of the ionic conductivity of basic electrolytes (Table 1). The higher the electrolyte
conductivity, the lower the equivalent series resistance (ESR), resulting in high power density for
supercapacitors [24]. In aqueous media, the alkali ions are strongly hydrated and their ion-hydrated
complex sizes, increasing in the order K+ < Na+ < Li+ (Table 1). As a result, the mobility of alkali metal
ions rises in the order of Li+ < Na+ < K+. This is in agreement with the best capacitance performance of
carbon-based electrodes in the KOH electrolyte. However, the lower electrode performance in NaOH
compared to that in LiOH indicates that the electrolyte conductivity is not the only factor responsible
for the charge storage. Fic et al. [23] modelled the ion shape and dimensions in aqueous electrolytes
and showed that the poor mobility of Li+ ions is more favorable to increasing the overall performance
of pseudocapacitive materials (Table 1). In alkaline media, pseudocapacitance reactions depend on
the carbonyl functional groups appearing on carbonaceous materials [30]. Recently, we demonstrated
that YP-50F and YP-80F have a basic character (see Table S1), but also contain acidic functional groups
such as phenolic, carbonyl and carboxylic groups [25]. It appears that the capacitance performance of
YP-50F and YP-80F in basic electrolytes is determined by both the electrolyte conductivity and the
functional groups of carbonaceous electrodes.

To evaluate the electrochemical performance of activated carbons, Figure 4 shows the Ragone
plots for the supercapacitor cells in LiOH, NaOH and KOH electrolytes. The data in the figure show
that both materials delivered a similar and high specific energy density of 23–24 Whkg−1 at a power
density of 50 Wkg−1, and maintained a relatively high energy density of 18–21 Whkg−1, even at a
high power density of 450 Wkg−1 in all three electrolytes. For comparison, the ACs obtained from
corn husks exhibited a similar energy density (i.e., 21 Whkg−1) at a power density of 875 Wkg−1 when
they were applied as electrodes in supercapacitors with a Na2SO4 aqueous electrolyte [31]. It is worth
noting that, nowadays, commercially available supercapacitors deliver an energy density of less than
10 Whkg−1. All these data suggest a good capacitance performance of biomass-derived ACs.
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Figure 4. Ragone plots of energy density versus power density for symmetric supercacapacitors with
YP-50F (a) and YP-80F (b) electrodes.

For YP-80F, the specific energy density decreased in the following order: KOH > NaOH > LiOH.
This order was consistent with the progressive change in the electrolyte conductivity. For YP-50F, the
specific energy density was higher in the KOH electrolyte, while in the NaOH and LiOH electrolytes,
the specific energy values were close. This implies that the contribution of pseudocapacitive to the
charge storage in YP-50F was more significant in the NaOH and LiOH electrolytes than in KOH.

3.2. Postmortem Characterization of Carbon Electrodes

To evaluate the effect of the electrolyte on the supercapacitor properties, XPS and SEM/EDS
measurements were taken. The subjects of study were YP-50F and YP-80F electrodes after 1000 cycles
in KOH, NaOH or LiOH electrolytes. Although XPS analysis gives information on the outermost
surface layers (i.e., up to 5 nm depth), the SEM/EDS is a more “bulky” method (more than 500 nm).
Thus, the complementary use of XPS and SEM/EDS measurements allowed us to understand the
distribution of chemical components across different depths of the electrode. It should be taken into
account, however, that light elements (such as lithium) cannot be detected by EDS analysis, while they
are accessible by XPS.

The XPS spectra in the energy region of C 1s and O 1s are presented in Figure 5. For pristine
YP-50F and YP-80F, the C1s XPS spectra displayed strong signals due to sp2-hybridized graphitic
carbon (C-C groups at 284.8 eV). Moreover, there were three additional peaks with a centre of gravity at
285.5 eV, 287.0 eV and 288.8 eV. Taking into account the previously obtained XPS data on carbonaceous
materials [32,33], the three peaks can be assumed to come from carbon atoms bonded to oxygens in
hydroxyl groups (C-O), carbonyl groups (C=O) and carboxyl groups (COOH). Compared to the C1s
spectra, the O1s XPS spectra consisted of two overlapped peaks at 531.5 and 533.0 eV. Irrespective of
the uncertainty of the assignments of O1s peaks [34,35], it is reasonable to associate the peak at 531.5 eV
to O atoms that are double-bonded in esters, carbonates and acids, while the single bonded O atoms in
ketones, ethers and alcohols were likely responsible for the occurrence of the peak at 533.0 eV. It worthy
of note that pristine YP-50F and YP-80F were comparable with respect to their functional groups.
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Figure 5. C1s and O1s spectra for YP-50F and YP-80F: pristine YP-50F and YP-80F electrodes (a) and
cycled YP-50F and YP-80F electrodes in 6M KOH (b), 6 M NaOH (c) and 6 M LiOH (d) electrolytes.

After the electrochemical reaction, the functional groups of both the YP-50F and YP-80F electrodes
underwent different transformations depending on the electrolyte composition. In the KOH electrolyte,
the relative part of the carboxylic groups increased dramatically, as evidenced by the C1s and O1s
spectra (Figure 5). The surface is enriched with carboxylic groups in the case when the reaction
proceeded in the LiOH and NaOH electrolytes. The new feature of electrodes cycled in LiOH and
NaOH was the appearance of a broad peak centred at around 291 eV, that could be assigned to the
C atom in carbonate ions (CO3

2−). This reaction proceeded more readily in the LiOH electrolyte, as
well as with YP-80F compared to YP-50F. The XPS data clearly shows that the functional groups of
YP-50F and YP-80F interacted with alkaline electrolytes. It is well accepted that hydroxyl and carboxyl
functional groups are deprotonated in alkaline media, while the carbonyl groups contribute to the
pseudocapacitance reactions via interaction with basic electrolytes [30,36].

The reactivity of the functional groups towards alkaline electrolytes provokes a corresponding
change in the electrode morphology (Figure 6). The SEM images of pristine YP-50F and YP-80F
electrodes show the formation of a relatively homogeneous and dense surface. After 1000 cycles in
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alkaline electrolytes, the electrode roughness decreased, with this decrease being dependent on the
electrolyte composition. In the KOH electrolyte, the electrode surface became smoother, especially for
YP-80F. A smoothing of the electrode surface was also observed when the reaction proceeded in the
LiOH electrolyte. However, a closer inspection revealed some cracks. In the NaOH electrolyte, besides
cracks, faults also occurred, together with electrode smoothing. It should be noted that the faults were
well expressed for YP-50F. The electrolyte-induced change in the electrode morphology may be related
to an interaction between functional groups and the alkaline media. The enrichment of the electrode
surface with carboxylic groups gave rise to electrode smoothing, while the deposition of carbonate
groups caused cracks and faults to occur, which, in turn, induced particle disintegration, leading to the
deterioration of the cycling performance, as was experimentally observed in Figure 3. The greater the
extent of the faults, the lower the capacitance performance; this is consistent with the observed worse
capacitance performance of YP-50F in NaOH compared to LiOH, despite the higher conductivity of
NaOH compared to LiOH.

Figure 6. SEM images of pristine electrodes, and after electrochemical tests in KOH, LiOH, NaOH
electrolytes. The white lines highlight the development of cracks and faults on the electrode.

To verify this hypothesis, Figure 7 presents the element concentration determined by XPS and
SEM experiments. A comparative analysis of the data in Figure 7 outlines two issues for YP-50F
and YP-80F working in different electrolytes. First, the surfaces of YP-50F and YP-80F become richer
on oxygen and the oxygen amount diminishes along the depth of samples. Second, YP-50F easily
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adsorbed K+ from the electrolyte, while Na+ and Li+ ions were preferentially adsorbed on YP-80F.
All these data support, once again, the assumption that functional groups determine the reactivity of
YP-50F and YP-80F towards basic electrolytes.

Figure 7. Element ratio (to carbon, at.%) for carbonaceous electrodes calculated from XPS and SEM/EDS
data for pristine and worked electrodes in different electrolytes after 1000 cycles. (The origin of F is
associated with the Teflon binding agent used. The amount of Li cannot be determined by SEM/EDS.).

4. Conclusions

The functional groups of biomass-derived carbons, in addition to the electrolyte conductivity,
were used to determine the capacitance performance of YP-50F and YP-80F electrodes. In LiOH,
NaOH and KOH electrolytes, the acidic functional groups of YP-50F and YP-80F were transformed into
carboxylic groups during prolonged cycling, thus making the electrode surface smoother. As a result,
the best capacitance performance was achieved, for both YP-50F and YP-80F electrodes, in a KOH
electrolyte. In addition, the carbonate groups were preferentially deposited on the electrode surface
when the reaction proceeded in LiOH or NaOH electrolytes, contributing to the development of cracks
and faults inside the electrode. The electrolyte-induced imperfections caused particle disintegration,
which, in turn, led to a deterioration in cycling performance. As a result, the capacitance performance
of YP-50F in NaOH was worse than that of LiOH, despite the higher conductivity of NaOH than
LiOH. These data demonstrate that understanding the interactions between the functional groups
of biomass-derived carbons with electrolytes will be of significance in the design of more effective
electrode materials.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/13/2941/s1,
Figure S1: The adsorption-desorption isoterms for carbonaceous electrodes, as well as the corresponding pore size
distribution curves, Table S1: Specific surface area (SBET), total pore volume (Vt), micropore volume (Vmicro),
average pore diameter (Dav), standard deviation for pore size distribution (sd, nm) and surface functional groups,
determined by the Böhm method, for carbonaceous electrodes.
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