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Inflammation is crucial to tumorigenesis and the development of metastasis. Hepatic
ischemia/reperfusion injury (IRI) is an unresolved problem in liver resection and
transplantat ion which often establ ishes and remodels the inflammatory
microenvironment in liver. More and more experimental and clinical evidence unmasks
the role of hepatic IRI and associated inflammation in promoting the recurrence of
hepatocellular carcinoma (HCC). Meanwhile, approaches aimed at alleviating hepatic
IRI, such as machine perfusion, regulating the gut-liver axis, and targeting key
inflammatory components, have been proved to prevent HCC recurrence. This review
article highlights the underlying mechanisms and promising therapeutic strategies to
reduce tumor recurrence through alleviating inflammation induced by hepatic IRI.

Keywords: hepatic, ischemia/reperfusion injury, inflammation, hepatocellular carcinoma, liver transplantation,
liver resection
INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies and the third leading
cause of cancer-related mortality in the world (1). Surgical therapies, including hepatectomy and
liver transplantation (LT), are the most efficient treatments for patients with HCC (2). However, the
prognosis of HCC patients remains dismal due to the high incidence of metastasis and recurrence
after surgery, with 5-year recurrence rates reaching up to 70% after liver resection (LR) and 40%
after LT (3, 4). Ischemia/reperfusion injury (IRI) refers to the pathophysiological process in which
ischemic tissue injury is accentuated following the restoration of blood flow after a period of
ischemia (5). Hepatic IRI is an inevitable consequence of LR and LT, which is usually accompanied
by intense inflammatory cascade and subsequent damage repair (5). In the mid-19th century, the
link between inflammation and cancer was firstly suggested by Rudolf Virchow, based on
org May 2022 | Volume 13 | Article 8795521

https://www.frontiersin.org/articles/10.3389/fimmu.2022.879552/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.879552/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.879552/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.879552/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.879552/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:zjxu@zju.edu.cn
https://doi.org/10.3389/fimmu.2022.879552
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.879552
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.879552&domain=pdf&date_stamp=2022-05-11


Chen et al. Hepatic IRI and HCC Recurrence
discovering leukocyte infiltration in neoplastic tissues (6).
Nowadays, inflammation has been demonstrated to be strongly
associated with tumorigenesis and metastasis of most types of
cancer. Targeting inflammation associated with tumor progress
has gradually become a critical anti-cancer treatment (7).
Currently, multiple preclinical and clinical studies suggest that
inflammation induced by hepatic IRI promoted tumor relapse
and metastasis after LR or LT (8–12). Meanwhile, alleviating
inflammation induced by hepatic IRI is emerging as a promising
therapeutic strategy for reducing liver damage and
simultaneously suppressing tumor recurrence for HCC patients
(13). In this review, we summarize the clinical evidence
that hepatic IRI promotes tumor relapse and metastasis.
Furthermore, we review recent advances in therapeutic
strategies which suppress tumor recurrence through alleviating
inflammation induced by hepatic IRI. These avenues of killing
two birds with one stone may provide new insights into
preventing HCC relapse.
HEPATIC IRI PROMOTES THE
RECURRENCE OF HCC: CLINICAL
EVIDENCE IN LT

LT, which removes the tumor and the diseased liver at the same
time, is a radical treatment modality for HCC. However, tumor
relapse is still the most severe threat to the survival of HCC
patients after LT (14). Hepatic IRI is a common but thorny
problem in different clinical settings such as LT, LR, trauma
surgery, and shock. As essential procedures during LT, cold
preservation of liver graft and subsequent warm reperfusion
when implanted into the recipients result in hepatic IRI, which
can be stratified into warm IRI and cold IRI (15). The severity of
IRI and subsequent inflammation is positively correlated with
ischemia time, which can also be partitioned into warm ischemia
time (WIT) and cold ischemia time (CIT) (16).

Clinically, HCC patients with prolonged WIT and CIT are
more likely to relapse after transplantation, revealing the links
between hepatic IRI and HCC recurrence (8–12). The details of
relevant clinical studies are listed in Table 1. A retrospective study
that enrolled 391 patients found that CIT >10 hours andWIT >50
minutes were associated with significantly increased recurrence
(P=0.015 and 0.036, respectively) (8). Another single-center study
fromGermany also showed thatWIT>50min was an independent
risk factor for HCC recurrence (OR=15.5; P <0.001) (9). Orci et al.
analyzed the data of 9724 HCC patients from the American
Scientific Registry of Transplant Recipients (SRTR). They found
that WIT >19 minutes was associated with an increased HCC
recurrence risk (P = 0.025) (11). In 2018, our team reached a
similar conclusion in HCC patients of China, where hepatitis-B
constitutes the main cause of HCC. We recognized CIT >12 hours
as the independent donor prognostic factor for predicting HCC
recurrence (HR=2.23; P=0.007) (10). In addition to ischemia time,
post-reperfusion serum aspartate transaminase (AST) and lactate
dehydrogenase (LDH), important indicators reflecting the degree
of hepatic inflammatory injury, have also been shown to correlate
Frontiers in Immunology | www.frontiersin.org 2
with the risk of tumor recurrence in patients within the Milan
criteria (12).

These findings provide the clinical evidence that inflammation
induced by hepatic IRI promoted HCC recurrence and indicate
that minimizing ischemia time may be beneficial to alleviating
inflammatory injury and reducing the risk of HCC recurrence.
However, reducing ischemia time might be difficult in clinical
practice, which depends on many factors such as organ allocation
system, organ transport, surgery complexity, and experience of
transplant teams. Therefore, repair of liver injury or targeting
inflammatory mechanisms of hepatic IRI may be more practical
solutions in the existing clinical context.
INFLAMMATION-TARGETING CANCER
THERAPY: HIT TWO BIRDS WITH
ONE STONE

Alleviating Hepatic IRI and Subsequent
Inflammation From the Source:
Machine Perfusion
Currently, cold static storage (CS) is still the most commonly
utilized method for liver preservation in LT. Meanwhile, due to
the shortage of donor livers, extended criteria donor (ECD) liver
grafts such as steatotic grafts, livers from older donors and
donors after cardiac death (DCD) are utilized to expand the
scarce donor pool (17). These ECD liver grafts are more
susceptible to hepatic IRI and are linked to inferior post-
transplant outcomes (18). Besides, the use of organs from
DCD donors with prolonged WIT and severe steatotic donor
livers was proved to increase the risk of HCC recurrence post LT
(11, 19). In such a context, the limitations of CS become more
obvious. As a future direction of graft preservation, there is
increasing attention to machine perfusion (MP) due to its ability
to preserve, evaluate and recondition such donor livers prior to
transplantation (20).

Oldani et al. found that the use of ischemic rat liver graft
accompanied by an increased serum pro-inflammatory cytokine
profile increased the risk of cancer recurrence (21). Investigators
approximated an in vivo normothermic perfusion by reperfusing
the liver in vivo (animal alive) for two hours before flushing and
retrieving. This method attenuated liver injury, measured by the
release of liver enzymes (AST and ALT). Besides, prior-to-
retrieval reperfusion decreased the recurrence and growth of
HCC after transplantation. These effects were partly attributed to
the improvement of serum inflammatory cytokine profile. In
clinical practice, normothermic extracorporeal membrane
oxygenation (NECMO) or NECMO-based normothermic
regional perfusion (NRP) is the closest procedure to reproduce
the studied model (22). As a technique that allows the in-situ
perfusion of organs with oxygenated blood in DCD donors, NRP
can reduce warm ischemia time and improve graft function (23).
This investigation further revealed the possible potential of NRP
in preventing hepatic IRI-associated HCC recurrence.

Hypothermic oxygenated perfusion (HOPE) is an emerging
organ preservation strategy for marginal grafts (20). The use of
May 2022 | Volume 13 | Article 879552
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artificial, cooled perfusion solutions with oxygenation applied in
HOPE has been demonstrated to decrease oxidative stress and
inflammatory damage in LT (24). To validate the protective effect
of HOPE in HCC recurrence, Mueller et al. compared tumor
recurrence rate between HOPE-treated DCD and unperfused
DBD liver recipients after liver LT for HCC (25). The results
showed that HOPE alleviated general inflammation (measured
through plasma CRP of the recipient) and recovered liver
functions. He also observed a significantly lower recurrence
rate in patients who received end-ischemic HOPE treatment
(5.7%, n = 4/70) compared to an unperfused DBD cohort (25.7%,
18/70), despite the use of high-risk DCD grafts (P=0.002).
Besides, HOPE treatment improved recurrence-free survival
and reduced tumor load significantly compared to an external,
nonperfused DCD and DBD liver recipient cohort. HOPE before
implantation protected the liver from reperfusion injury and
subsequently prevented ongoing tissue inflammation and
hypoxia, making the environment less favorable for tumor
recurrence and metastasis.

Despite the ability to decrease damage and improve
outcomes, hepatic IRI cannot be completely avoided using the
techniques above. With the innovations of surgical techniques
and NMP, the technique named ischemia-free liver
transplantation (IFLT) has been created. Its application is able
Frontiers in Immunology | www.frontiersin.org 3
to procure, preserve, and implant liver grafts from DBD donors
without stopping the blood and oxygen supply, thus entirely
preventing hepatic IRI (26). A recent propensity-matched cohort
study showed that IFLT recipients had a higher RFS rate at 1 and
3 years (92.2% and 86.7%) than conventional LT recipients
(88.1% and 53.6%), with much lower liver damage (27).
Though the oncological benefit of IFLT needs further
observation and validation in a larger sample, this technique
shows enormous potential not only for completely avoiding IRI
but also for preventing associated HCC recurrence. However,
this technique is not applicable to LDLT and DCD LT, which
occupy the major types of LT.

Gut-Liver Axis as a Target in
Inflammation-Associated Cancer
Recurrence Induced by Hepatic IRI
The close interplay between the intestine and liver in anatomy
and function is known as the gut-liver axis. In the liver, two-
thirds of total blood flow originates from the portal circulation,
which contains gut-derived bacterial products (28). As a
“microbial organ”, gut microbiota is involved in the
development of many liver disorders through the gut-liver axis
(29, 30). During LT and LR, portal vein clamping usually results
in venous congestion and hypoperfusion of the intestines,
TABLE 1 | The clinical evidence of hepatic IRI promoting recurrence of HCC after LT.

Study Data
sources

N Underlying
liver

disease

Milan
status

Donor
type

Definition of WIT Definition of CIT Conclusion

Nagai
et al. (8)

Two
centers
(USA)

391 NA NA DBD Removal of the graft
from the cold
preservation solution
to portal reperfusion

Donor cross-clamping to
the removal of the graft
from the cold preservation
solution

CIT>10 h (HR=1.9; P=0.03) and WIT>50 min
(HR=2. 84; P=0.003) were independent risk
factors for HCC recurrence

Kornberg
et al. (9)

Single
center
(Germany)

103 Alcoholic
(55.3%)
Viral (28.2%)
Autoimmune
(9.7%)
Other(6.8%)

In
(61.2%)
Out
(38.8%)

DBD Removal of the graft
from the cold
preservation solution
to portal reperfusion

In situ cold liver flushing to
the removal of the graft
from the cold preservation
solution

WIT>50 min was an independent risk factor for
HCC recurrence (OR=15.5; P <0.001)

Ling et al.
(10)

CLTR
(China)

673 Hepatitis B
cirrhosis
(88.9%)
Other
(11.1%)

In
(54.7%)
Out
(45.3%)

DBD
(14.0%)
DCD
(41.5%)
DBCD
(44.4%)

Removal of the graft
from the cold
preservation solution
to portal reperfusion

Perfusion of the cold
perfusate to the removal of
the graft from the cold
preservation solution

CIT>12 h was the independent donor prognostic
factor for predicting HCC recurrence (HR=2.
234; P=0.007)

Orci et al.
(11)

SRTR
(USA)

486 NA NA DCD Removal of life
support to aortic
perfusion with cold
preservation
solution

In situ aortic cold perfusion
to the removal of the graft
from
the cold preservation
solution

WIT>19 min was associated with an increased
HCC recurrence risk (HR=4.26; P=0.025)

Grąt et al.
(12)

Single
center
(Poland)

195 Hepatitis C
virus
infection
(67.7%)
Hepatitis B
virus
infection
(45.6%)

In
(57.9%)
Out
(42.1%)

DBD Removal of the graft
from the cold
preservation solution
to portal reperfusion

Clamping of the donor
aorta to the removal of the
graft from the cold
preservation solution

Post-reperfusion AST≥1896 U/L(HR=5.99;
P=0.039) and LDH≥4670 U/L (HR=6.08; P=0.04)
increased the risk of HCC recurrence after LT in
patients within Milan criteria
IRI, ischemia/ reperfusion injury; HCC, hepatocellular carcinoma; LT, liver transplantation; NA, not available; DBD, donation after brain death; DCD, donation after cardiac death; DBCD,
donation after brain death followed by circulatory death; WIT, warm ischemia time; CIT, cold ischemia time; HR, hazard ratio; OR, Odds Ratio; CLTR, China Liver Transplant Registry;
SRTR, Scientific Registry of Transplant Recipients; AST, aspartate transferase; LDH, lactate dehydrogenase
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followed by intestinal mucosa damage and increased
permeability (31). In these cases, endotoxin/lipopolysaccharide
(LPS), a cell wall component of Gram-negative bacteria, could
translocate to the portal blood through the impaired intestinal
mucosal barrier and intensify hepatic IRI (32).

A recent study has revealed the connection between hepatic IRI
and HCC recurrence from a brand-new perspective of the gut-liver
axis. The study found that pedicle clamping induced the congestive
injury of the bowel wall and subsequent increase of LPS in portal
circulation. Upon re-establishment of portal blood flow, bacterial
LPS activated the Toll-like receptor 4 (TLR4) signaling pathway in
the liver, leading to aggravated IRI, exacerbated inflammatory
response, and increased tumor burden (33). In this process,
hyperactivation of TLR4 by LPS results in the activation and
over-expression of pro-inflammatory transcription factors (TFs)
such as nuclear factor-kappaB (NF-kB), activator protein 1 (AP-1)
and interferon regulatory factor 3 (IRF3) (34). Increased production
of pro-inflammatory cytokines (IL-6, TNF-a, etc.) and chemokines
(CXCL1, CXCL10, etc.) intensify hepatic IRI and upregulate the
components involved in the progression and metastasis of HCC
including angiogenesis cytokines and immunosuppressive cells such
as Tregs (35).

The researchers also explored several therapeutic approaches
to suppress tumor growth by targeting the gut–liver axis (33).
They found that remote ischemic preconditioning (RIPC)
induced by brief and repeated sequences of femoral vascular
bundle clamping and declamping could prevent liver injury and
associated HCC recurrence through dampening small bowel
venous ischemia and preventing bacterial translocation.
Despite promising animal evidence supporting the protective
effect of RIPC on hepatic IRI, the results of several clinical trials
are inconsistent, indicating that RIPC’s clinical role remains to be
further confirmed (36–39). Besides RIPC, the study also showed
that gut decontamination (antibiotics) and pharmacological
TLR4 inhibition confer systemic protection against
inflammation-mediated accelerated HCC growth. Their results
indicated that modulating the gut–liver axis during liver surgery
could be a potential target in combating HCC recurrence.
Predictably, gut microecological therapy will gradually become
an emerging treatment modality in preventing inflammation-
induced HCC recurrence. Figure 1 displays the schematic
diagram of the gut-liver axis as a target in inflammation-
associated cancer recurrence induced by hepatic IRI.

Targeting Key Inflammatory Components
in the Tumor Microenvironment
Hepatic IRI is a dynamic process including two related stages:
ischemic injury and inflammation-mediated reperfusion injury
(40). In the phase of ischemia, hepatocytes are exposed to oxygen
deprivation, ATP depletion, and pH decreasement (41). These
changes result in the accumulation of reactive oxygen species
(ROS), increasement of intracellular calcium concentrations
which lead to hepatocyte damage and different cell death
programs such as apoptosis, necrosis, ferroptosis and
pyroptosis (13, 42). The following reperfusion triggers
inflammatory cascade that aggravates hepatocyte injury
Frontiers in Immunology | www.frontiersin.org 4
through multiple mechanisms. In addition to cell death
programs and metabolic disorders, innate immune activation
plays a major role in this process (5). After sensing damage-
associated molecular patterns (DAMPs) released from damaged
or dead cells, Kupffer cells become activated through pattern-
recognition receptors (PRRs) and release chemokines and
cytokines to initiate a pro-inflammatory response (43).

The inflammatory cascade after reperfusion involves multiple
inflammatory components and their interactions. Activated
Kupffer cells release cytokines like IL-1b and chemokines such
as CXCL1 and CXCL2 to activate and recruit neutrophils in
damaged site (44). Platelets activated by DAMPs also serve as
immune mediators which express CXCL4 and P-selectin and
promote the recruitment of monocytes and neutrophils to the
inflammation site (45–47). The expression of NKG2D (an
activating receptor for NK cells) is significantly upregulated in
the reperfused liver (48). Increased NK cells recruited to the liver
can not only exacerbate IRI by producing IFNg but also increase
the production of IL-17, which promotes the recruitment of
neutrophils (49, 50). Hepatic IRI also elicits a robust adaptive
immune response in which CD4+ T cells mediate aggravated
inflammatory damage (40).

The balance of pro-inflammatory and anti-inflammatory
components determines the outcome of inflammation during
IRI (44). Multiple clinical and experimental studies have
suggested that intense and continuous inflammation induced
by hepatic IRI promoted tumor recurrence via activating cellular
signaling for tumor cell proliferation, adhesion, invasion and
angiogenesis (8, 51). Hypoxia-inducible factor 1a (HIF1a),
matrix metalloproteinase 9 (MMP9), vascular endothelial
growth factor (VEGF) and other key molecules play important
roles in this process (52).

After the initiation of inflammation, some anti-inflammatory
components and repair factors will be recruited into the
inflammatory microenvironment to inhibit the progress of
inflammation and promote injury repair. Anti-inflammatory
cytokines, such as IL-4 or IL-13, and apoptotic cells promote
in situ macrophage polarization and reprogramming and then
initiate the resolution phase of inflammation (53–55). Some anti-
inflammatory neutrophil subtypes exert anti-inflammatory and
repair functions through inhibiting cytotoxic T cells (CTLs),
promoting macrophage polarization and angiogenesis (44, 56).
Besides, regulatory T cells (Tregs), myeloid-derived suppressor
cells (MDSCs), endothelial progenitor cells (EPCs), platelets and
many other factors also play critical roles in regulating
inflammation and its resolution (44, 57, 58).

However, in the setting of oncology, these beneficial
components may also result in worsened oncologic outcomes.
Some components responding to inflammation have been
proved to promote HCC recurrence through different
mechanisms, including mediating the immune escape and
angiogenesis of tumor as well as causing tumor cells to be
more aggressive by triggering tumor cell adhesion, migration,
and invasion (13). Targeting key inflammatory components in
the tumor microenvironment may suppress tumor recurrence.
Compared to machine perfusion, this method provides more
May 2022 | Volume 13 | Article 879552
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targeted treatment for HCC patients and can be applied to both
LR and LT. Figure 2 displays the key inflammatory components
in the tumor microenvironment and relevant therapies.

Immune escape is a crucial characteristic during tumor
growth and metastasis. MDSCs and Tregs have been identified
as key immune cell subsets that mediate tumor immune escape
(59). Of them, MDSCs are a heterogeneous population of
immunosuppressive cells derived from myeloid progenitors,
which can be upregulated by inflammatory mediators such as
IL-2, GCSF, and so on (57). MDSCs suppress the immune system
by various mechanisms including (i) inhibiting CTLs
proliferation and activation by increased nitric oxide (NO),
nitrotyrosine and ROS secretion, and decreased l-arginine
production (ii) inducing immunosuppressive cells like T helper
(Th) 17 cells and Tregs (60); Tregs are crucial suppressors of
immune responses and are essential for maintaining
immunological tolerance and controlling inflammatory diseases
(61, 62). In the process of tumor immune escape, Tregs can
suppress antigen presentation by DCs, CD4+ Th cell function
and promote intratumoral T cell exhaustion through secreting
TGF-b, IL-10 and IL-35 (63, 64). Recent findings also
demonstrated the crosstalk between Tregs and MDSCs, which
found that Tregs regulate MDSCs differentiation and function
through TGF-b and the programmed death ligand 1 (B7-H1)
(65, 66). In HCC patients, MDSCs and Tregs were found to be
significantly elevated in the peripheral blood and tumor (67, 68).
Besides, emerging tumor immunotherapy targeting MDSC and
Tregs has effectively inhibited the progression of HCC (63, 69).

In addition to immune escape, tumor angiogenesis also plays
a key role in tumor recurrence. EPCs are a kind of vascular
progenitor with high proliferative potential that are derived from
bone marrow (70). Inflammatory endothelial injury can trigger
mobilization, homing, and transdifferentiation of EPCs, thereby
contributing to the repair of injured endothelium (71). Recent
studies have found that EPCs participate in neovascularization
Frontiers in Immunology | www.frontiersin.org 5
during acute ischemic injury (58). However, mobilization of
EPCs also occurs in response to low oxygenation during tumor
growth (72). They are able to facilitate the release of
proangiogenic cytokines and promote vessel incorporation and
stabilization (73). Multiple studies have shown that mobilization
of circulating EPC results in tumor neovascularization and
accelerates tumor growth and metastasis (74, 75). Besides, the
inhibition of EPCs mobilization restrained angiogenesis and
tumor progression (76).

In the inflammatory cascade triggered by hepatic IRI,
chemokines and chemokine receptors are involved in the
recruitment of inflammation-responsive components discussed
above (77). Selectively targeting these pathways has been
heralded as a promising avenue for suppressing these cell
subsets. Through a series of clinical analyses, in vitro and in
vivo experiments, Liu et al. found that MDSCs recruited by
CXCL10/TLR4 during acute phase inflammation played a critical
role in tumor recurrence after LT. Targeting MDSC mobilization
via CXCL10/TLR4 signaling could not only protect the liver graft
from IRI but also reduce tumor recurrence after transplantation
(78). Ling et al. identified that post-transplant enhanced
CXCL10/CXCR3 signaling in small-for-size liver grafts directly
induced EPC mobilization, differentiation, and neovessel
formation, which further promotes tumor growth (79).
Besides, CXCL10/CXCR3 signaling upregulated at liver graft
injury directly induced the mobilization and intragraft
recruitment of Tregs, which further promoted HCC recurrence
after transplantation (80). Targeting CXCL10/CXCR3 signaling
inhibited the mobilization of Treg and EPC, attenuated early-
phase liver graft injury, and prevented late-phase tumor
recurrence/metastasis after transplantation (79, 80).

In addition to genetic approaches and pharmacological
inhibitors, some drugs can also act through the above pathways.
FTY720 (fingolimod) is a sphingosine-1-phosphate (S1P) receptor
agonist that has been approved by FDA as a treatment for multiple
FIGURE 1 | The gut-liver axis as a target in inflammation-associated cancer recurrence induced by hepatic IRI. Portal vein clamping during LT and LR leads to
venous congestion and hypoperfusion of the intestines. Bacterial products released through damaged intestinal mucosa activate TLR4 signaling pathway in the liver,
resulting in the exacerbated inflammatory response and increased tumor burden. RIPC, antibiotics, and TLR4 inhibition are able to act on the gut-liver axis to reduce
inflammation-associated HCC recurrence.
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sclerosis (MS) (81). In models of lung, kidney, and liver IRI,
FTY720 unfolds a demonstrated anti-inflammatory effect (82–84).
Furthermore, FTY720 has exhibited a strong anti-tumor activity in
liver cancer, breast cancer, bladder cancer, and so on (85–88). Li
et al. found that FTY720 significantly attenuated hepatic IRI and
tumor metastasis after LR through the downregulating CXCL10/
CXCR3 signaling pathway. In their study, FTY720 treatment
reduced the population of circulating EPCs and Tregs and
thereby limited tumor angiogenesis and enhanced antitumor
immune response (89, 90). A novel oxygen carrier called YQ23
played a similar role in suppressing liver tumor metastasis after
major hepatectomy and partial hepatic I/R injury through
increasing liver oxygenation and reducing the number of
circulating EPCs and Tregs (91).

A number of studies have indicated that proinflammatory
cytokines such as E-selectin, VEGF and MMP activated by
hepatic IRI promoted tumor invasion and metastasis (92–94).
Ligands of PPARg, such as rosiglitazone can downregulate the
expression of proinflammatory cytokines that are associated with
tumor metastases through inhibiting the NF-kB signaling
pathway (95–97). In an experimental mouse model of hepatic
Frontiers in Immunology | www.frontiersin.org 6
IRI-induced HCC metastasis, rosiglitazone exerts a protective
effect on hepatic IRI and significantly inhibits tumor metastasis
following that. As reported in this article, the dual action may be
attributed to inhibited NF-kB signaling and reduced expression
of proinflammatory cytokines in liver (98).

Prostaglandins (PGs) are products of arachidonic acid
metabolism via the cyclooxygenase pathway, which are
produced primarily by activated Kupfer cells during hepatic
IRI (99). PGs exert anti-inflammatory effects by prevention of
leucocyte migration and down-regulation of pro-inflammatory
cytokines (100). The administration of alprostadil, a synthetic
stable form of prostaglandin E1(PGE1), was shown to attenuate
hepatic IRI and improve liver graft function (101). In a
retrospective clinical study, Kornberg et al. found that treating
hepatic IRI with alprostadil reduced systemic inflammation
levels and the risk of early HCC recurrence following LT (102).

Besides these mentioned strategies above, glutathione
peroxidase 3, thymoquinone, and zinc finger protein A20 also
show the potential to be “one stone for two birds” strategies that
attenuate hepatic IR injury and prevent tumor recurrence after
liver surgery (103–105). However, their inhibition of hepatic IRI-
FIGURE 2 | Targeting key inflammatory components in the tumor microenvironment. Hepatic IRI results in the recruitment of EPC, Treg, and MDSC as well as the
release of pro-inflammatory cytokines. These changes in the tumor microenvironment induce tumor angiogenesis, immune evasion and promote tumor invasion and
metastasis. The use of agents such as FTY720, YQ23, PGE1, Rosiglitazone and targeting key inflammatory pathways are able to attenuate hepatic IRI and prevent
tumor recurrence.
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associated recurrence needs further experimental research and
clinical verification.
CONCLUSION AND PROSPECT

Collectively, the inflammation induced by hepatic IRI plays a
crucial role in the development and progression of HCC, which
contributes to several hallmarks of HCC, such as promoting
proliferative and survival signaling, inducing angiogenesis,
evading immune surveillance, and activating invasion and
metastasis. Besides, alleviating inflammation such as machine
perfusion, regulating the gut-liver axis and targeting key
inflammatory components or inflammatory pathways is believed
to be an attractive therapeutic strategy. However, current evidence
mainly comes from animal models. More clinical studies with
larger numbers of patients will be required. Moreover, not all
measures are applicable to LT or LR due to the differences in
surgical procedures, use of immunosuppressive agents and
postoperative management. Additional validation is needed in
different models and patient populations. In the future, we
advocate using advanced techniques such as single-cell multi-
omics and spatial omics to explore the mechanism and targets for
therapeutic intervention comprehensively. Meanwhile, we believe
that combining different approaches at different time points
should yield better outcomes for patients.
Frontiers in Immunology | www.frontiersin.org 7
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