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Abstract

Epstein-Barr virus (EBV) and related lymphocryptoviruses (LCV) from non-human primates

infect B cells, transform their growth to facilitate life-long viral persistence in the host, and

contribute to B cell oncogenesis. Co-evolution of LCV with their primate hosts has led to spe-

cies-specificity so that LCVs preferentially immortalize B cells from their natural host in vitro.

We investigated whether the master regulator of transcription, EBV nuclear antigen 2

(EBNA2), is involved in LCV species-specificity. Using recombinant EBVs, we show that

EBNA2 orthologues of LCV isolated from chimpanzees, baboons, cynomolgus or rhesus

macaques cannot replace EBV EBNA2 for the immortalization of human B cells. Thus, LCV

species-specificity is functionally linked to viral proteins expressed during latent, growth-

transforming infection. In addition, we identified three independent domains within EBNA2

that act through species-specific mechanisms. Importantly, the EBNA2 orthologues and

species-specific EBNA2 domains separate unique roles for EBNA2 in the initiation of B cell

immortalization from those responsible for maintaining the immortalized state. Investigating

LCV species-specificity provides a novel approach to identify critical steps underlying EBV-

induced B cell growth transformation, persistent infection, and oncogenesis.

Author summary

Co-evolution of viruses and their natural hosts often results in barriers limiting the ability

of viruses to infect hosts from other species. Understanding the nature of these species

barriers has provided important insights into different aspects of viral life cycles, from

virus entry into cells to host factors restricting viral replication. Epstein-Barr virus (EBV)

infects nearly all adult humans and is associated with a variety of malignancies, including

B cell lymphomas and epithelial cell cancers. Lymphocryptoviruses (LCV), i.e., EBV and

its relatives, are also species-specific, but in this case we find LCV species-specificity to be

associated with a different class of viral proteins, the latent infection proteins, that are

associated with cell growth transformation and not a component of the virus particle or
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replication machinery. By investigating LCV species-specificity, we identified two distinct

steps in the process of B cell immortalization which require EBNA2 activity. Furthermore,

EBNA2 signals through one domain to initiate B cell immortalization and then utilizes a

separate domain to maintain immortal B cell growth. Studying the species barrier for

LCV B cell immortalization reveals important mechanisms into how EBV transforms B

cell growth for life-long persistent infection and development of cancers.

Introduction

Epstein-Barr virus is a gammaherpesvirus that naturally infects nearly all humans by adult-

hood, and once infected, the host harbors persistent EBV infection in a small fraction of B cells

for life. Viral proteins expressed during latent infection of B cells are important for persistent

EBV infection, contribute to malignant B cell proliferation and lymphoma development in

humans, and immortalize B cells in tissue culture.

That EBV transforms B cell growth in vitro provides a valuable, tractable model system for

dissecting the molecular mechanisms important for EBV’s ability to persist in humans and

contribute to B cell malignancies [1]. The viral genes essential for EBV-induced B cell immor-

talization have been defined and their functions have been intensely investigated (reviewed in

[2]). Thus, the overall strategy of EBV proteins manipulating host cell gene expression in favor

of cell growth and survival is conceptually well established. For example, the Epstein-Barr

virus nuclear antigen (EBNA) 2 interacts with various types of host cell proteins to regulate cel-

lular and viral gene transcription. EBNA3A & -3C are additional viral nuclear proteins that act

as transcriptional co-activators and repressors. The latent membrane protein (LMP) 1 is a con-

stitutively active membrane receptor which acts as a potent activator of cell signaling pathways.

Although much has been learned about these growth-transforming viral proteins, the reported

repertoire of cellular pathways necessary for EBV-induced B cell immortalization is likely still

incomplete, and little is known about the temporal requirements for activating these pathways

during the process of EBV-induced B cell immortalization. Thus, new experimental

approaches will be important for advancing our understanding of how EBV transforms B cells

to the next level.

EBV-related gammaherpesviruses in the same lymphocryptovirus (LCV) genus naturally

infect other hominoids (e.g., chimpanzees) and Old World non-human primates (OW-NHP,

e.g., baboons and macaques), and their biology is virtually identical to EBV infection in

humans. Notably, the natural host harbors persistent B cell infection for life, infection can be

associated with B cell lymphomas, and LCVs immortalize B cells from their own natural host

in vitro [3,4].

Hominoid and OW-NHP LCVs encode the same set of viral proteins as EBV, and their

latent infection proteins appear to use the same molecular pathways as their EBV orthologues

[5]. For example, LMP1 from baboon and rhesus LCV (rhLCV) interact with TRAFs through

TRAF binding domains that are highly homologous to those in EBV LMP1 [6]. NHP-LCV

EBNA3s interact with RBP-Jκ to act as transcriptional co-activators, and rhLCV EBNA2

(rhE2) transactivates the same viral promoters as EBV [7–9]. Similarly, the cellular pathways

manipulated by LCV are highly conserved among OW-NHP and hominoids.

Despite the strong similarities among these viruses and their primate hosts, LCV-induced B

cell immortalization is species-specific. OW-NHP LCV cannot immortalize B cells derived

from hominoids, and EBV cannot immortalize B cells from OW-NHP [10,11]. We have previ-

ously shown that virus entry is not a barrier for cross-species infection, since OW-NHP LCV
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can enter human B cells [11]. In contrast to the well conserved viral entry proteins, the latent

infection proteins associated with growth transformation are the most dynamically evolving

genes in LCVs, suggesting ongoing adaptation of these viral proteins to evolutionary changes

in the primate host [5]. We hypothesized that LCV latent infection proteins evolved to manip-

ulate molecular pathways essential for B cell immortalization in the natural host, but may have

lost the ability to manipulate the same pathways in other primate species, e.g., rhLCV latent

infection proteins evolved to specifically interact with rhesus macaque host proteins and fail to

immortalize human B cells because they cannot properly interact with the related human pro-

teins. Thus, species-specificity is intrinsically linked to functions required for EBV-induced B

cell immortalization and can reveal novel cell pathways manipulated by EBV latent proteins.

Results

rEBVs expressing EBNA2 proteins from nonhuman primate LCVs

We asked whether NHP LCV EBNA2s are capable of functionally replacing EBV EBNA2 (E2)

for human B cell immortalization by constructing recombinant Epstein-Barr viruses (rEBVs)

carrying chimpanzee- (chE2), baboon- (baE2), cynomolgus- (cyE2), or rhesus LCV EBNA2

(rhE2) (Fig 1A). A rEBV with the EBNA2 open reading frame (ORF) deleted (rEBVΔE2) was

used as a negative control. Successful production of recombinant viruses (rEBVs) was con-

firmed by infection of EBV-negative human B lymphoma cells (Louckes). All EBNA2s could

be detected in Louckes with the expected relative molecular weight for the respective NHP

LCV species 2 days post infection (Fig 1B). We used the monoclonal EBNA2-specific antibody

PE2, since it cross-reacts with NHP EBNA2s and detects comparable levels in LCL derived by

NHP LCV infection of B cells from their natural hosts [11]. Infection of Louckes cells with

viral supernatants followed by selection with puromycin confirmed presence of infectious

rEBV, and the relative amounts of infectious virus detected is shown (Fig 1C).

rEBV infection of ER/EB2-5 cells: Maintenance of B cell immortalization

NHP EBNA2s were tested for their ability to maintain growth of EBV-immortalized B cells by

superinfection of ER/EB2-5 cells with rEBVs. ER/EB2-5 cells are human B cells conditionally

immortalized by co-infection of the EBNA2-deletion virus P3HR-1 EBV with a mini-EBV car-

rying an EBNA2 fused to an estrogen-receptor (ER-EBNA2) [12]. In these cells, EBNA2 func-

tion and continued B cell growth is dependent on estrogen, and withdrawal of estrogen from

the culture medium leads to loss of EBNA2 function and cell death. Providing an estrogen-

independent EBNA2 in trans can rescue cell growth in estrogen free media, but only if the

EBNA2 protein is functional for maintaining human B cell immortalization [13].

Successful superinfection of ER/EB2-5 cells with each rEBV was confirmed by selection for

puromycin resistance in the presence of estrogen (Fig 2A, top row). The relative amounts of

infectious rEBVs detected in ER/EB2-5 cells were comparable to those detected after rEBV

infection of Louckes cells (Fig 1C).

To functionally test whether NHP EBNA2s could maintain B cell immortalization, parallel

infections of ER/EB2-5 cells with rEBVs were cultured without estrogen or puromycin (Fig

2A, bottom row). As expected, cell growth was not detected in any wells containing ER/EB2-5

cells superinfected with rEBVΔE2, whereas rEBV-E2 superinfection readily rescued ER/EB2-5

cell growth, e.g., 16 of 50 positive microtiter wells in one experiment (average results from

multiple experiments shown in Fig 2A). Superinfection with rEBV-baE2 resulted in 14 of 50

wells with cell growth after 6 weeks in culture without estrogen in the same experiment.

Immunoblot analyses of immortalized cells expanded from independent wells confirmed

expression of either EBV E2 or baE2 from the superinfecting rEBV (Fig 2B). These results
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Fig 1. Recombinant EBVs expressing NHP EBNA2 proteins infect human B cells. A) Relative location of the EBNA2 gene

locus downstream of the major Internal Repeat (IR1) within the EBV genome and detailed description of the flanking regions within

the EBV BAC (MD1). The native flanking sequences and EBNA2 open reading frame (black arrow) are shown in the wild type EBV

BAC derived from B95-8 (MD1/B95-5). The EBNA2 deleted BAC (MD1ΔE2) contains the linker region from the shuttle plasmid

containing two restriction enzyme sites (RE1 and 2) and a downstream scar sequence as a result of the cloning procedure.

Recombinant EBVs carrying EBV E2 (MD1-E2, black arrow), chimpanzee, baboon, cynomolgus or rhesus LCV EBNA2

(MD1-chE2, -baE2, -cyE2, -rhE2; polka dots) were cloned by recombining similar DNA fragments from shuttle plasmids containing

each EBNA2 species. In this manner all rEBV contained an EBNA2 species with identical upstream and downstream sequences.

B) Production of rEBVs was confirmed by infection of EBV-negative Louckes cells and detection of EBNA2. The monoclonal

Species-specific functionality of EBNA2
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indicate that baE2 can functionally replace EBV E2 for the maintenance of EBV-dependent B

cell immortalization, and the similar number of rescued wells suggests that the activity of baE2

and EBV E2 may be comparable in ER/EB2-5 cells which could be confirmed with more quan-

titative experiments.

Recombinant EBV-chE2 was also able to rescue growth in a single well at 4 weeks, and

expression of chE2 was confirmed by immunoblot analyses of cells expanded without estrogen

(Fig 2B). However, ER/EB2-5 cells superinfected with rEBV-chE2 could not be expanded and

sustained for prolonged periods in culture without estrogen. In contrast, rEBV-E2 and rEBV-

baE2 superinfected cells could be readily expanded and sustained in culture without estrogen

for at least 4 months. The weak chE2 phenotype cannot be fully explained by low amounts of

virus since there were comparable numbers of ER/EB2-5 wells detected after infection with

rEBV-baE2 and rEBV-chE2 in the presence of estrogen and puromycin. In contrast to rEBV-

antibody against EBNA2 (PE2) was used to detect LCV EBNA2 expression by immunoprecipitation and subsequent

immunoblotting from cell lysates prepared 2 days after infection with equal volumes of rEBV. C) Relative infectious titers of rEBV

supernatants were determined by infection of EBV-negative Louckes cells and puromycin selection. Louckes cells were infected

with equal volumes of rEBV, distributed into 50 microtiter wells, and selected for rEBV infection using puromycin. After 3–4 weeks

the number of wells with cell growth was counted, and average results for at least 2 independent supernatants are shown. +: 1–20

wells with growth/50 total wells, ++: 21-44/50, +++: 45-50/50, n.d.: not done.

https://doi.org/10.1371/journal.ppat.1006772.g001

Fig 2. Maintenance of B cell immortalization in conditionally immortalized ER/EB2-5 cells by rEBVs.

A) ER/EB2-5 cells were infected with rEBVs and distributed into 100 microtiter wells. Half the wells were

selected for infection by culture with medium containing puromycin and estrogen (+estrogen) and the other

half of the cells underwent biological selection in medium without additives (-estrogen) to determine

functionality of the EBNA2 protein. After 6 weeks the number of wells with cell growth was determined. The

average result from multiple experiments is shown with 2 independent viral supernatants of each rEBV tested.

+: 1–20 wells with growth/50 total wells, ++: 21-44/50, +++: 45-50/50, -: no growth. B) Four weeks after

infection, selected clones growing in the absence of estrogen were used to detect EBNA2 and GAPDH as

loading control by immunoblot. Cells infected with rEBV-E2, rEBV-chE2, or rEBV-baE2 express an EBNA2

species of the relative molecular weight expected for the respective rEBV.

https://doi.org/10.1371/journal.ppat.1006772.g002
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chE2 and rEBV-baE2, there was no evidence for rescue of ER/EB2-5 cell growth by rEBV-rhE2

superinfection despite readily detectable amounts of infectious virus. These results indicate

that rhE2 functions in a species-specific manner, i.e., it can immortalize rhesus B cells, but it

cannot maintain immortalization of human B cells. In contrast, baE2, and to some extent

chE2, can function in human B cells to maintain EBV immortalization.

rEBV infection of primary B cells: Initiation and maintenance of B cell

immortalization

Peripheral blood mononuclear cells (PBMC) were infected with rEBVs to test NHP EBNA2s

for their ability to induce B cell immortalization de novo. Wild type rEBV and rEBV-E2 virus

stocks efficiently immortalized human PBMC with 32–50 and 25–48 of 50 positive microtiter

wells in multiple experiments (Fig 3A), and as expected, rEBVΔE2 was incapable of immortal-

izing human PBMC. No growth was observed after infection of human PBMC with rEBV-

chE2, -cyE2, or -rhE2 virus stocks. However, a single positive well was obtained by infection

with rEBV-baE2, and immunoblot detection of baE2 concomitant with EBV LMP1 and

EBNA1 expression indicated the LCL was immortalized by rEBV-baE2 (Fig 3B). PCR analysis

showed no evidence of spurious co-infection with wild type EBV, and no EBV E2 DNA could

be detected in cells immortalized with rEBV-baE2 (Fig 3C). Recombinant EBV-baE2 cells

expressed similar cell surface levels of the B cell activation antigen, CD23 (Fig 3D), and grew at

comparable rates as rEBV-E2 infected cells (Fig 3E). The de novo immortalizing activity of

rEBV-baE2 could be confirmed in 2 additional infections of human PBMC from different

donors (with 2/50 and 1/50 positive/total infected wells).

Thus, rEBVs showed that all NHP EBNA2s are impaired for immortalization of primary

human B cells and thus, are species-specific in their ability for de novo immortalization.

Recombinant EBV-baE2 was different from the others since a minimal level of de novo immor-

talization could be detected, far below that of wild type EBV E2. This scenario suggests that de
novo immortalization may consist of two steps, i.e., an initiation step followed by maintenance.

While rEBV-baE2 readily maintained B cell immortalization in the ER/EB2-5 cell assay, the

weak de novo immortalization of primary B cells suggest impaired initiation as the rate limit-

ing, i.e., species-specific, step. It is impossible to determine from these studies whether ch-, rh-

, and cyE2 are also impaired for initiation since they have a complete, or near-complete, inabil-

ity to maintain B cell immortalization. The unique species-specific phenotype of baE2 provides

evidence for different functional roles of EBNA2 during two distinct phases of B cell immortal-

ization, i.e., initiation and maintenance.

Relative transactivating activity of NHP EBNA2s in human B cells

We investigated whether there were quantitative differences in the ability of NHP EBNA2s to

transactivate viral promoters in human cells that might reflect species-specific functions. Co-

transfection of EBV-, ch-, ba-, cy-, or rhE2 expression plasmids with a Cp driven Luciferase

reporter all induced Luciferase expression significantly over background control confirming

transactivation activity of all NHP E2s in human B cells (Fig 4A). However, there were consid-

erable differences in the relative amounts of transcriptional activation by NHP EBNA2s. Cy-

and rhE2 were significantly less active than EBV E2 and only induced Luciferase responses 5.8

and 2.9 fold over background compared to 9.8 fold for EBV E2 (average response of 3 indepen-

dent experiments, p<0.01). ChE2 activity was not different from that of EBV E2 (10.9 fold),

and baE2 was notably better than all other EBNA2 species (17.9 fold; p<0.01).

Immunoblots showed cy- and rhE2 were expressed at levels much higher than EBV E2

(5.7–8.6 fold higher than EBV E2 levels; Fig 4B), suggesting an even greater functional deficit
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PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006772 December 20, 2017 6 / 22

https://doi.org/10.1371/journal.ppat.1006772


compared to EBV E2 when corrected for expression levels. ChE2 was frequently expressed at

levels slightly greater than EBV E2, raising the possibility that chE2 may not be fully comparable

Fig 3. De novo immortalization of human PBMC by rEBVs. A) Human PBMC were infected with rEBVs, cultured in

50 microtiter wells, and outgrowth of immortalized cells was quantified 6 weeks after infection. Average results for at

least 2 experiments are shown using independent virus preparations of rEBV (n = 3), rEBVΔE2 (n = 3), rEBV-E2 (n = 5),

rEBV-chE2 (n = 4), rEBV-baE2 (n = 3), rEBV-cyE2 (n = 2), and rEBV-rhE2 (n = 4). +: 1–20 wells with growth/50 total

wells, ++: 21-44/50, -: no growth. B) Representative cell lines derived from PBMC of the same donor (D30) infected with

rEBV-E2 and rEBV-baE2 were immunoblotted for detection of EBNA2, EBV LMP1, and EBV EBNA1. Detection of

GAPDH controlled for loading and BJAB cells served as EBV-negative control. C) Expression of only one EBNA2

species was confirmed by species-specific PCR amplification for EBV or baboon LCV EBNA2 in rEBV immortalized

cells. Wild type MD1, MD1-E2, and MD1-baE2 BAC DNAs purified from bacteria served as controls. D) Surface

expression of the EBNA2-regulated marker CD23 on rEBV immortalized cells D30/rEBV-baE2 (dark grey fill), and D30/

rEBV-E2 1 (black line) or the EBV negative cell line BJAB (light grey fill) was determined by flow cytometry. E) Growth

curve of D30 LCLs transformed with rEBV-E2 (grey curves, line: clone 1, dashes: 2, dots: 3) or rEBV-baE2 (black line).

https://doi.org/10.1371/journal.ppat.1006772.g003
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to EBV E2 when corrected for expression levels. BaE2 expression was often equal to or below

that of EBV E2 (0.3–4 fold difference to EBV E2 levels) with consistently higher activity support-

ing the interpretation that baE2 is equal to or more active than EBV E2.

Interestingly, baE2 also strongly induced LMP1 expression in P3HR-1 cells better than any

other EBNA2 species including EBV E2 (Fig 4B). BaE2 induced a 4–12 fold induction of

LMP1 levels over control transfection (mean = 8.6). EBV E2 and chE2 induced comparable

LMP1 expression (1.3 and 1.9 fold), and cyE2 and rhE2 were impaired with only 1.2 fold aver-

age LMP1 induction for cyE2 and no changes in LMP1 expression with rhE2. Thus, the relative

transactivating activity of NHP EBNA2s in human B cells correlated with their relative ability

to maintain growth of ER/EB2-5 cells, i.e., baE2 was the most active, cy- and rhE2 were the

least active, and chE2 showed intermediate activity.

When EBNA-LP was co-transfected with EBNA2 into P3HR-1 cells, Cp activity was

markedly increased versus EBNA2 alone in each case, indicating that all EBNA2 species were

capable of interacting and co-activating with EBV EBNA-LP (Fig 4C). EBNA-LP alone

induced luciferase expression by 6.8 fold (average of 4 experiments). Addition of EBV E2 or

chE2 increased luciferase levels by 20 and 24 fold. Co-expression of cy- and rhE2 with

EBNA-LP resulted in Cp activity levels comparable to that of EBV E2 (26 and 24 fold). BaE2

was still superior to all other EBNA2s with an additive effect of 61 fold induction. EBV

EBNA-LP has previously been reported to enhance rhE2 transactivation, and our findings

with ch-, ba-, and cyE2 provide additional evidence that the interaction of NHP EBNA2s with

EBV EBNA-LP is not species-specific [9].

EBNA2 chimeras reveal domains associated with species-specific

functions: Cp transactivation

Since rhE2 demonstrated the strongest species-specific effects in maintenance, de novo immor-

talization, and transcriptional activation, we constructed chimeras to determine which regions

from EBV E2 could restore activity to rhE2 in human B cells. EBV- and rhE2 share only 47%

amino acid similarity, but overall they share common structural features (Fig 5A). Both pro-

teins have a large central Diversity Region (DR) that is defined by sequence divergence

between EBNA2 alleles from different LCV strains and species, i.e., type 1 and 2 of EBV or

rhLCV [14]. Alignment of LCV EBNA2 sequences has also revealed 10 Conserved Regions

(CR) with nearly identical amino acid sequences (Fig 5A) [11]. Various EBNA2 functions have

been linked to these conserved sequence domains, e.g., self association to CR1-3, interaction

with transcription factors such as SKIP and RBP-Jκ to CR5 and CR6, recruitment of the gen-

eral transcription machinery including TFIIB, TFIIH, and TAF40 to the acidic residues in

CR8 and CR8.5, and nuclear localization to CR9 (Fig 5A) [15–21]. We divided EBNA2 into 4

parts based on these common features between EBV and rhLCV E2: i) the N-terminus

Fig 4. Transactivation activity of NHP EBNA2s in human B cells. P3HR-1 cells were transfected with a

Cp-Luciferase reporter, a Renilla control, and EBNA2 expression plasmids or empty control. A) 48h after

transfection Luciferase and Renilla levels were measured and normalized to Renilla. Cp transactivation levels

shown represent fold change over control transfection. Asterisks above standard deviation bars indicate

significance relative to control, and asterisks above the dotted lines indicate significance relative to EBV E2.

* p<0.05, ** p<0.01, n.s. not significant, n = 4. B) EBNA2 and LMP1 were quantified from a representative

reporter assay by immunoblot, and tubulin was used as loading control. Relative expression levels of EBNA2

normalized to EBV E2 sample and LMP1 normalized to levels of control transfection are quantified under each

blot. C) Cp activity in response to EBNA2 and EBNA-LP co-expression was analyzed as described for panel

A) with co-transfection of an EBNA-LP expression plasmid. Luciferase levels represent fold change over LP

alone (control+LP).

https://doi.org/10.1371/journal.ppat.1006772.g004
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Fig 5. Activity of EBV/rhLCV-EBNA2 chimeras in Cp transactivation, maintenance, and de novo immortalization. A) Schematic representation of

EBV E2 with its 10 Conserved Regions (CRs, black boxes), the poly-proline region (PPR), and diversity region (DR). Functional domains include self

association domains (SAD), binding sites for SKIP, RBP-Jκ and BS69, transactivation domain (TAD) and a nuclear localization signal (NLS). B) Overview

of EBNA2 chimeras used in this study showing portions derived from EBV E2 in black and those from rhE2 in grey. Relative sizes of chimeras are drawn to

scale. Chimeras are labeled with the last or the first amino acid of the fragments that were fused together corresponding to the position within the wild type

EBV E2 or rhE2, e.g., EBV378/rh484 is a fusion of the EBV E2 fragment 1–378 and the rhE2 fragment 484–605. For reference, position 378/379 of EBV

E2 aligns with position 483/484 in rhE2. Chimeras labeled with brackets indicate internal exchanges, e.g., rh[EBV156-378] is a rhE2 mutant that expresses

the EBV E2 region 156–378 in place of the corresponding rhE2 sequences. C) Transactivation activity of E2 chimeras was determined in P3HR-1 cells

after transfection with expression plasmids for E2 chimeras and a Cp-Luciferase reporter plasmid. Two days after transfection Luciferase levels were
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containing CR1-4, ii) DR, iii) CR5-6, and iv) the C-terminus with CR7-9. Chimeric EBNA2

proteins were constructed composed of parts from EBV- and rhE2 (Fig 5B).

All chimeras localized exclusively to the nucleus (S1 Fig), were expressed at comparable lev-

els (Fig 5E) and were able to transactivate Cp significantly above background in human cells

indicating that chimeric EBNA2 proteins were expressed with appropriate conformational

integrity for functional activity (Fig 5C). Four chimeras induced Cp activity to EBV E2 levels,

one chimera induced Cp at low levels comparable to rhE2, and one chimera induced Cp at

intermediate levels in human B cells. The 4 chimeras that induced EBV E2-like Cp levels all

contained the EBV DR and replacing the rhE2 DR with the EBV DR (rh[EBV156-294]) was

sufficient to confer EBV-like Cp activity to rhE2. These results indicate that the EBV DR is suf-

ficient for full transactivation of Cp in human cells and contributes to this transactivation

activity in a species-specific manner.

Since binding to RBP-Jκ is crucial for recruitment of EBNA2 and Cp transactivation, we

asked whether rhE2 can bind to human RBP-Jκ and whether EBV DR in the rhE2 chimera

alters the RBP-Jκ interaction [22]. Wild type EBV E2, rhE2, and EBNA2 chimeras containing

EBV DR with CR5-6 (rh[EBV156-378]), DR alone (rh[EBV156-294]), or CR5-6 alone (rh

[EBV295-378]) were produced by coupled in vitro transcription/translation and mixed with

lysates of myc-RBP-Jκ expressing 293T cells. Myc-RBP-Jκ was immunoprecipitated, and the

amount of bound EBNA2 was detected by immunoblot (Fig 6A) and quantitated (Fig 6B). An

EBV E2 mutant with a RBP-Jκ binding site mutation (WW323/324AA) was not co-precipi-

tated with myc-RBP-Jκ (average of 6% residual binding) and served as background control.

All EBNA2s tested bound RBP-Jκ significantly better than the control. In addition, rhE2 and

EBNA2 chimeras showed a 97–106% binding efficiency when compared to EBV E2 (100%, Fig

6B). Rh[EBV156-378] was slightly decreased in its ability to interact with RBP-Jκ (average of

62%), but this difference from EBV E2 was not significant. Thus, the interaction of EBNA2s

with human RBP-Jκ is not species-specific, and the restoration of high level Cp transactivation

by EBV DR in rhE2 chimeras is not associated with a change in RBP-Jκ interaction.

EBNA2 chimeras: Initiation and maintenance of immortalization

Next, chimeras were introduced into rEBVs and tested for their ability to maintain ER/EB2-5

cell growth. Comparable amounts of infectious rEBVs containing chimeric EBNA2s were

readily detected after infection of ER/EB2-5 cells, since outgrowth could be observed in 60–

100% of wells in the presence of estrogen and puromycin. In the absence of estrogen, all E2

chimeras tested were able to maintain ER/EB2-5 growth (Fig 5D), except for rh[EBV156-294]

which could not rescue ER/EB2-5 cells, even though the inclusion of EBV DR was sufficient to

support EBV E2-like transactivation. Thus, EBV E2-like transactivation was not sufficient to

maintain B cell immortalization. All other chimeras contained the EBV CR5-6 region, and

rhE2 CR5-6 was present in the only E2 proteins (wild type rhE2 and rh[EBV156-294]) unable

to maintain immortalization. Expression of E2 chimeras was detected by immunoblot from

measured and normalized to levels of internal Renilla controls. Activity is expressed as fold change over transfection with empty control plasmid (dashed

line). All chimeras induced Cp activity significantly above background (p<0.05, n�3). D) Recombinant EBVs expressing E2 chimeras were used to infect

ER/EB2-5 cells or human PBMC as in Figs 2 and 3 to test their ability to rescue ER/EB2-5 cell growth (maintenance) or immortalize human PBMC (de

novo). After infection ER/EB2-5 cells were plated into 2 microtiter plates (50 wells each) and selected with puromycin in the presence of estrogen, or

cultured in medium without additives. After 6 weeks the number of wells with cell growth was counted and percent outgrowth determined (average of 2

infections using independent virus preparations). For maintenance results are relative to control infection (number of wells without estrogen/number of

wells with estrogen with ‘-‘ indicating no growth without estrogen, but growth with estrogen). E) EBNA2 expression was confirmed by immunoblot with PE2

antibody from 2x105 transiently transfected P3HR-1 cells described in panel C) or selected ER/EB2-5 or LCL clones infected with rEBVs described in

panel D). Uninfected ER/EB2-5 cells grown with estrogen served as a control for ER-EBNA2 expression.

https://doi.org/10.1371/journal.ppat.1006772.g005
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ER/EB2-5 cell clones maintained by recombinant EBV. All clones carrying one of the four dif-

ferent chimeric E2s containing EBV CR5-6 (Fig 5E) expressed a protein of the expected size.

This suggests that the CR5-6 region functions in a species-specific manner to help maintain B

cell immortalization.

When rEBVs expressing E2 chimeras were used to infect human PBMCs, only one chimera

was able to support immortalization of primary human B cells (EBV378/rh484, Fig 5D), indi-

cating that the C-terminal part of rhE2 containing CR7-9 was fully functional for de novo
human B cell immortalization and did not function in a species-specific manner. The other 3

chimeras capable of maintaining ER/EB2-5 growth were all unable to immortalize human

PBMCs, and the only region in common among these three chimeras was the rhE2 amino ter-

minus, i.e., the rhE2 CR1-4 region. In the case of rh150/EBV156, the chimeric EBNA2 con-

tained only the 150 amino terminal residues from rhE2 and was unable to immortalize human

PBMC de novo. This negative result was not due to a nonspecific adverse effect of fusing the

amino terminus of rhE2 to EBV E2 since the same recombinant EBV was capable of maintain-

ing growth of ER/EB2-5 cells and the chimeric EBNA2 was capable of inducing EBV E2-like

transactivation. This rhE2 chimera reproduces the maintenance competent/initiation defective

phenotype of baE2 and maps a species-specific effect for initiation to the amino terminal

region of EBNA2.

Fig 6. Interaction of EBNA2s with human RBP-Jκ. 293T cells were transfected with a myc-tagged RBP-Jκ
expression plasmid. After 72h cells were lysed, and combined with comparable amounts of in vitro transcribed

and translated EBNA2 proteins. The RBP-Jκ/EBNA2 complexes were isolated by co-immunoprecipitation

with an anti-myc-antibody. EBNA2 and myc-RBP-Jκwere detected and quantified by immunoblot. A)

Immunoblot results of a representative experiment showing EBNA2 and myc-RBP-Jκ detection from 2% of

input (left lane) and 100% of precipitates (IP, right lane). EBV-E2-WW/AA is a RBP-Jκ binding mutant.

Quantification of recovered EBNA2, precipitated myc-RBP-Jκ, and relative amount of bound EBNA2 in this

experiment is shown below immunoblots. B) Average results for 4 independent experiments are shown with

the amount of EBV E2 bound to RBP-Jκ set to 100%; for rhE2[EBV156-294] n = 3. Asterisks indicate

significance relative to EBV-E2-WW/AA background. * p<0.05, ** p<0.01, *** p<0.001.

https://doi.org/10.1371/journal.ppat.1006772.g006
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Discussion

In these studies, we showed that the EBNA2 proteins from closely related lymphocryptoviruses

are species-specific for B cell immortalization. Furthermore, by investigating the species-spe-

cific effects of NHP LCV EBNA2s in human B cells, we were able to discover that EBNA2 con-

tributes to B cell immortalization through two distinct mechanistic steps that we refer to as

initiation and maintenance. EBNA2 likely manipulates many different cell pathways to suc-

cessfully induce and maintain B cell immortalization, some of which may be common to both

steps and some of which may be unique. We were able to reveal these two steps in B cell

immortalization by investigating the species-specificity of closely related LCV EBNA2s, e.g.,

baE2, and by mapping species-specific functions for each step to different EBNA2 domains.

Species-specificity is a result of virus adaptation to its natural host, and genetic differences

between hosts can create barriers to cross-species infection at any point of the viral life cycle.

Species-specific barriers to viral entry are common, e.g., preference of human or avian Influ-

enza viruses for different sialic acid species and Hepatitis C virus restriction to humans and

chimpanzees [23,24]. Similarly, interactions with host cell proteins important for virus replica-

tion can create a species-specific barrier, e.g., requirement of the human DNA repair protein

Nbs1 for Herpes Simplex virus 1 replication [25]. Species-specific barriers can also be created

by cellular host restriction factors such as Trim5α, or protein kinase R (PKR) which detect and

inhibit viral components [26]. Viral strategies to avoid such factors include constant evolution

of the capsid protein by Simian Immunodeficiency viruses to prevent Trim5α binding or

expression of a PKR inhibitor, like human Cytomegalovirus’ TRS1 protein [27,28].

In contrast, the barrier to LCV cross-species infection is associated with latent infection,

and not virus binding, entry, or replication. The current studies prove that at least one level of

the LCV species-specificity affects the latent infection protein EBNA2. The latent infection

proteins show the greatest sequence divergence between LCV species indicating ongoing evo-

lution and adaptation to the respective hosts. However, most of the cell proteins known to

interact with EBV latent proteins are fundamental growth associated proteins that are highly

conserved among primate species making them unlikely candidates for driving this degree of

virus evolution. Since LCVs are co-evolving with their primate hosts to preserve the ability to

immortalize B cells, the biological drivers of LCV species-specificity are by default associated

with pathways essential for the virus. Thus, understanding the underlying mechanisms of

EBNA2 species-specificity is likely to reveal novel pathways critical for EBNA2 function.

Recent studies focusing on the early events after EBV infection of resting B cells have

described dramatic virus-induced changes not evident in immortalized cell lines, e.g., rapid

increase in cell size and an early hyperproliferative state [29]. Our studies identify a functional

role for an EBNA2 dependent pathway essential for the early stages of EBV infection and the

initiation of B cell immortalization that is independent of its functions later on. It is intuitive

that EBV may be required to overcome different barriers in de novo immortalization of a rest-

ing B cell versus maintenance of a (conditionally) immortalized cell. In a resting B cell, the

virus must first reprogram the cell from a quiescent state into an active, proliferating state. In

the fully immortalized B cell, the host genome may already be epigenetically programmed for

proliferation, and viral proteins may only need to sustain transactivation of a subset of host

cell genes required for maintenance. During the early phases of EBV infection in resting B

cells, EBNA2 likely contributes to the reprogramming of the resting state into a proliferative

state. The interaction of EBNA2 with chromatin remodelers and EBNA2’s ability to act as a

pioneering co-factor for transcription factors such as EBF1 and RBP-Jκ may be consistent with

this model for initiation of B cell immortalization [30,31].

Species-specific functionality of EBNA2

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006772 December 20, 2017 13 / 22

https://doi.org/10.1371/journal.ppat.1006772


Our studies show that the first 150 amino acids (aa) of EBNA2 are important for initiation.

So, what does the EBV E2 N-terminus do in human B cells that the rhE2 N-terminus cannot?

Previous studies have indicated that the first 58 aa have transactivating activity when fused to a

DNA binding protein, but deletion mutants of EBNA2 indicate that the first 58 aa are not

required for primary B cell immortalization [32,33]. The region identified here encompasses

residues 1–150 of EBNA2 which also includes domains that facilitate interaction with Nur77

(aa123-147) and DP103 (aa121-213) [34,35]. These proteins are involved in protecting cells

from apoptotic stimuli and regulating RNA metabolism, however neither seems to be required

for B cell immortalization [36]. Additionally, the N-terminus of EBNA2 encodes for two self-

association, or dimerization, domains (SAD): SAD1, encoded by aa1-58, and SAD2, encoded

by aa97-121 [15]. The SADs span 3 CRs and are highly conserved. Friberg et al. have recently

determined the structure of the N-terminal self-association domain of EBNA2 and found that

the residues within the dimerization interface are completely conserved in EBV E2 and rhE2

[37]. However, dimerization is unlikely to be a species-specific event since EBNA2 proteins or

mutants produced in bacteria are able to associate, indicating that other (host) proteins are not

required for dimerization [15]. Thus, the underlying molecular mechanism for the species-spe-

cific effect critical for initiation of B cell immortalization is novel and remains to be defined.

Similarly, the mechanism for the species-specific effect important for maintaining B cell

immortalization remains to be uncovered. The region important for maintenance of immor-

talization (aa295-378) includes CR5 (aa295-307) and CR6 (aa320-326) which facilitate interac-

tion with SKIP and RBP-Jκ, respectively [16,17]. CR5 and CR6 are strongly conserved between

EBV E2 and rhE2, but they are not identical (6/10 and 6/7 identical residues). When we con-

structed E2 mutants where the CR5 or CR6 sequences in EBV E2 were converted to those of

rhE2, all mutants could still transactivate Cp to high levels, as well as initiate and maintain

human B cell immortalization comparable to wild type EBV E2. Thus, the species-specific

effect for maintenance that maps to this region, does not appear to be directly associated with

CR5 or CR6. It is also separate from aspartate 442 which is important for EBNA2 mediated

survival of ER/EB2-5 cells and growth differences between EBV type I and II EBNA2s [38,39].

The transcription factor PU.1 and the cellular chaperon nucleophosmin 1 (NPM1) both regu-

late EBNA2 function and bind within the species-specific domain for maintenance (aa310-376

and aa300-360 respectively), but PU.1 and NPM1 proteins from humans and NHPs differ in

only one amino acid, making these interactions unlikely candidates for driving the virus adap-

tation leading to a species-specific effect [40,41]. A poly arginine-glycine (pRG) domain

(aa345-356) distal to CR5 and 6 is also located within the region identified as species-specific

for maintenance. In EBV E2, this site is methylated by protein arginine methyltransferase 5

(PRMT5) allowing interaction with the survival of motor neurons (SMN) protein [42,43].

However, the biologic importance of this domain is uncertain as a pRG domain is not present

in all LCV E2s and may not be essential for B cell immortalization. A large EBNA2 deletion

(aa333-425) including pRG is non-transforming, but a smaller deletion including most of pRG

(aa333-354) is transformation competent, though slightly impaired compared to wild type

EBV E2 [36,44]. It is difficult to know for certain whether a loss-of-function is due to the loss

of an essential domain or due to abnormal protein conformation from the physical loss of

amino acid residues. In our experiments, the EBV domain from aa295-378 was able to confer

a gain of maintenance function to rhE2. The underlying mechanism for the species-specific

maintenance function we identify in EBV E2 from aa295-378 appears to be different from the

known functions that map to this region.

Our studies of NHP EBNA2s also identified DR as a contributor to high level EBNA2-in-

duced transcriptional activation, but the ability to transcriptionally activate Cp to high levels

was not necessary to maintain B cell immortalization and did not correlate with RBP-Jκ
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binding. It is important to recognize that Cp was used to screen for EBNA2-induced transacti-

vation, but Cp may not necessarily represent all EBNA2-responsive targets. For example,

LMP1 promoter activation depends on PU.1, but activation of Cp does not [40]. Thus, there

may be Cp-like and non-Cp-like EBNA2-responsive promoters, and our studies do not rule

out the possibility that high level transactivation of non-Cp-like promoters, and high level

expression of those gene products, is important for maintenance of B cell immortalization. On

the other hand, high level transactivation of Cp-like promoters may be required, in combina-

tion with the N-terminus, for initiation of immortalization, a model consistent with, but not

proven by our current series of chimeras.

A role for DR in EBNA2-induced transactivation has not previously been implicated, and

few functions have been attributed to this domain. A phosphorylation site for cdc2/cyclin B1

kinase within the EBV E2 DR (S243) has been described to be phosphorylated during mitosis

resulting in decreased EBNA2 transactivation activity [45,46]. This site is conserved in all

NHP EBNA2 proteins, but the motif in rhE2 differs from that in EBV E2 (TPPK or SPPR,

respectively) raising the possibility that the impaired transactivation of the rhE2 DR in human

B cells may be due to excessive phosphorylation of rhE2 versus EBV E2 by cdc2/cyclin B1. We

were able to reproduce the phosphorylation of both EBV E2 and rhE2 in human B cells by

nocodazole-induced mitotic arrest. However, EBV E2 and rhE2 were phosphorylated to simi-

lar proportions, and we found no change in Cp transactivation associated with nocodazole

treatment (S2 Fig). Thus, cdc2/cyclin B1-induced phosphorylation cannot explain the species-

specific transactivation properties mapped to DR, and the underlying mechanism of how DR

contributes to transactivation remains to be elucidated.

Evolution of LCV in OW-NHP and hominoids has provided a natural set of EBNA2 vari-

ants that efficiently immortalize B cells from their own species, but are defective for immortali-

zation across species in human B cells. It is likely that other latent infection proteins also

function in a species-specific manner since recombinant EBV expressing rhE2 could not

immortalize rhesus B cells. Other latent infection proteins, i.e., EBNA3A, –3C, and LMP1 are

essential for B cell immortalization and show similar sequence divergence among different

LCVs as EBNA2. In addition, previous experiments using rhLCV EBNA3s to replace EBV

EBNA3s for human B cell immortalization using second site recombination gave negative

results [7].

The natural variants of latent infection proteins represent a unique model system for inves-

tigating EBV molecular biology. Understanding the barriers to LCV-induced B cell immortali-

zation across species can provide novel insights into the mechanisms by which LCV

manipulate key cell determinants to immortalize B cells, persist for life in the host, and induce

B cell malignancies.

Materials and methods

Ethics statement

Human PBMC were isolated from peripheral blood obtained from healthy adult volunteers

providing informed written consent under a human research protocol approved by the Institu-

tional Review Board of Brigham and Women’s Hospital (protocol #1999P002609/BWH).

Cell culture and antibodies

The EBV-negative B lymphoma cell lines Louckes and BJAB, the EBV-positive line P3HR-1,

and the human epithelial cell line 293T were cultured in RPMI medium supplemented with

10% fetal calf serum (FCS), 100 U/ml penicillin, and 100 μg/ml streptomycin [47–50]. All cell

lines were originally obtained from Elliott Kieff. Medium for ER/EB2-5 cells (kindly provided
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by Bettina Kempkes and Paul Ling) contained an additional 1 μM β-estradiol (Sigma) [12].

For selection of cells containing recombinant viruses 2 μg/ml puromycin was added to the cul-

ture medium.

PBMC were isolated from heparinized peripheral blood by density centrifugation over a

Ficoll-Hypaque gradient, washed 3 times with phosphate buffered saline (PBS) and cultured in

RPMI supplemented with 10% FCS, 100 U/ml penicillin, 100 μg/ml streptomycin, 20 mM

HEPES, 4 mM Glutamine, 1 mM Oxaloacetic acid, 1.4 μM insulin, and 500 μM pyruvic acid.

Cyclosporin A (0.5 μg/ml) was added for the first week after infection.

Plasmids and DNA cloning

EBV BAC mutants were created by lambda recombinase mediated homologous recombina-

tion. To ensure identical sequences upstream and downstream of every EBNA2 tested, a shut-

tle-plasmid was constructed that served as donor for the recombination reaction. It included

50 nucleotides (nt) homologous to the sequence upstream of the EBNA2 ORF (-59 to -10 rela-

tive to the ATG), two restriction sites (MluI and BsiWI) separated by a 9 nt linker, a chloram-

phenicol resistance gene flanked by FRT sites derived from pKD3 (CamR-FRT), and 50 nt

homologous to the sequence downstream of EBNA2 starting with the stop codon, and was cre-

ated by PCR amplification of CamR-FRT from pKD3 [51]. NHP EBNA2 genes were PCR

amplified, inserted into the MluI/BsiWI sites, and sequenced. An EcoRI fragment containing

flanking 50 bp homology region, linkers, EBNA2 genes and CAM-FRT was used for recombi-

nation. First, the EcoRI fragment from the parental shuttle plasmid (without EBNA2) was

used for recombination with the wild type EBV BAC, MD1, to create MD1ΔE2 (Fig 1A)

[51,52]. Then, EBNA2-containing EcoRI shuttle fragments were used for recombination with

MD1ΔE2. Two independent BAC recombinants were used to generate each rEBV (one BAC

recombinant for rEBV-cyE2). CamR-FRT was subsequently removed by FLP-mediated

recombination from all BACs [51]. Integrity of all BACs was confirmed by BamHI restriction

digest and Southern Blot. For EBNA2 expression plasmids, the multiple cloning site of pSG5

(Stratagene) was expanded to include MluI and BsiWI sites and EBNA2 genes were transferred

from shuttle plasmids to the modified pSG5 plasmid.

EBV/rhLCV EBNA2 chimeras were constructed by small overlap extension PCR. First,

EBV-E2 and rhE2 regions were PCR amplified in separate reactions. Inner primers amplifying

the site of the fusion contained additional 20 nt complementary to the other EBNA2 product,

creating a 40 nt homology. Primary PCR products were purified, combined, and extended in a

10 cycle PCR reaction in which the 40 nt overlap served as primers. The extension reaction

was diluted 1:20 and used as the template in a PCR with the outer primers only. The final

amplification product was cloned into the shuttle plasmid, sequenced, and used for BAC

recombination as described above. For rhE2-mutants containing EBV E2 DR and/or CR5-6, a

conserved MfeI-site in EBV E2 (nt 880–885) and rhE2 (nt 1168–1173) was utilized for cloning

of fragments between chimeras.

Plasmid pSG-EBV-E2-WW/AA encodes a RBP-Jκ binding mutant of EBV E2, in which

tryptophanes 323 and 324 in the RBP-Jκ binding motif of EBNA2 have been substituted with

alanines. It was created by site-directed mutagenesis of plasmid pSG-EBV-E2 using the Quik

Change II XL site-directed mutagenesis kit (Stratagene/Agilent Technologies) according to

manufacturer’s instructions.

Production of rEBV and infection of human B cells

MD1-EBNA2 BAC DNA was transfected into P3HR-1 cells as a helper cell line. Stable clones

were selected with puromycin and confirmed by EBNA2 immunoblot. Virus production was
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induced by culturing cells in RPMI containing 20 ng/ml phorbol 12-myristate 13-acetate

(TPA) and 3 mM butyrate. Virus containing supernatants were collected after 7 days and fil-

tered using a 0.45 μm filter.

Louckes cells were infected with 1ml virus supernatant/5x106 cells and either used for

EBNA2 immunoprecipitation after 2 days or plated into 50 microtiter wells at 1x105 cells/well

and selected for stable infection with puromycin.

For ER/EB2-5 infection, 107 cells were incubated with 2 ml of virus in the presence of estro-

gen and plated into 2x 50 microtiter wells. After 24 h the media was changed to i) RPMI/10%

FCS only or ii) media supplemented with β-estradiol and puromycin. Plates were incubated

for a total of 4–6 weeks, and media was refreshed 2 weeks after infection.

PBMCs were infected with 1 ml rEBV/107 cells in supplemented RPMI with Cyclosporin A

(CsA) and plated into microtiter plates at 2x105 cells/well. After 1 week the medium was

replaced with supplemented RPMI without CsA. Positive wells were scored after 6 weeks in

culture.

Recombinant EBV-E2 or rEBV-baE2 in transformed human LCLs was confirmed by PCR

following DNA-isolation using the DNeasy Blood and Tissue kit (Qiagen). Species-specific

primers located 100 bp upstream of the EBNA2 stop codon together with an EBV downstream

primer (100 bp downstream of the EBNA2 stop codon) were used to detect viral DNA. Primers

amplify a 200bp product from endogenous/wild type EBV or a 280 bp product from rEBVs,

which contain the scar region.

EBNA2 immunoprecipitation

Cells were washed with PBS, lysed with 1 ml modified Ripa buffer (50 mM Tris/HCl pH 7.4,

150 mM NaCl, 1 mM EDTA, 1 mM NaF, 1% NP-40, 0.25% Sodium deoxycholate, 1 mM

PMSF, 1x protease inhibitor mix [Roche]) on ice for 30 min and insoluble material was

removed by centrifugation. Lysates were precleared by incubation with protein G sepharose

beads (GE Healthcare) for 15 min on ice and beads were removed by centrifugation. Pre-

cleared lysates were incubated with 5–10 μg PE2 antibody overnight at 4˚C. The next day

samples were incubated with protein G sepharose beads for 2 hours at 4˚C. Beads were

washed three times with cold PBS, and bound proteins were analyzed by SDS-PAGE and

immunoblot.

SDS-PAGE and immunoblot

Proteins from cell lysates were separated by SDS-PAGE, transferred to nitrocellulose and

immunoblotted with the following primary antibodies: 1) Murine monoclonal antibody (mab)

PE2 (anti-EBNA2), 2) murine mab S12 (anti-LMP1), 3) murine mab anti-GAPDH (Millipore),

4) murine mab anti-γTubulin antibody (Sigma), or 5) EBV-immune human serum (anti-

EBNA1).

CD23 staining of human LCLs

For surface detection of CD23, cells were washed with PBS and incubated with mouse-anti-

CD23 (MHM6) ascites fluid (1:1,000 in PBS/3% BSA) for 45 min on ice. Cells were washed 3

times with PBS/1%FCS and incubated with fluorescein isothiocyanate (FITC)-labeled goat-

anti-mouse antibody (Jackson Laboratories) for 45 min on ice. After 3 washes with PBS/1%

FCS, cells were analyzed using a FACScalibur cytometer (BD Biosciences).
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B cell transfection and luciferase assays

P3HR-1 cells were split the day before transfection. The next day, 5x106 cells were mixed with

5 μg GFP expression plasmid, 5 μg Renilla control plasmid (a gift from Karl Münger), 10 μg

pLucCp ([53], kindly provided by Elliott Kieff), and 30 μg EBNA2 expression plasmid or

empty control and adjusted to a total volume of 400 μl with RPMI. For experiments with

EBNA-LP, 30 μg EBNA-LP expression plasmid were included. Cells were transferred to 0.4 cm

cuvette, electroporated using the Bio-Rad GenePulser II at 200 V and 0.95 μF, and recovered

in 10 ml media for 2 days. Then, cells were washed with PBS and 5x105 cells were analyzed for

GFP expression by flow cytometry to ensure similar transfection rates, and 1x106 cells were set

aside for immunoblot analysis.

For Luciferase assays 5x105 cells were lysed in 100 μl lysis buffer and analyzed using the

Dual-Luciferase Reporter Assay System (Promega) according to manufacturer’s instructions.

Luciferase signals were first normalized to the corresponding Renilla signal, and then to the

empty control to get the fold change over background. Luciferase levels are shown as mean

+ standard deviation.

RBP-Jκ binding assay

Myc-tagged RBP-Jκ was expressed in 293T cells. Cells grown in a 15 cm tissue culture dish

were transfected with 50 μg pBabe-myc-Jκ (kindly provided by Jon Aster) using 150 μg poly-

ethylenimine (Polysciences Inc.). After 3 days, cells were washed with cold PBS and lysed with

5 ml modified Ripa buffer in the dish. After an incubation of 30 minutes on ice, the lysate was

transferred to a test tube, sonicated and insoluble material removed by centrifugation. The

lysate was split into 1 ml aliquots and incubated with similar amounts of EBNA2 proteins pro-

duced using the TNT Lysate Coupled Transcription/Translation kit (Promega) according to

manufacturer’s instructions. Mixed samples were incubated for 3–4 hr at 4˚C to allow binding,

and then incubated with 2 μg mouse anti-myc antibody (9E10, Thermo Scientific) overnight at

4˚C. The next day samples were incubated with protein G sepharose beads for 2 hours at 4˚C.

Beads were washed 3x 10min with modified Ripa buffer on ice, and bound proteins were ana-

lyzed by SDS-PAGE and immunoblot with an HRP-labeled PE2 antibody. Blots were stripped

and reprobed with mouse anti-myc antibody and HRP-labeled goat antibody specific for

murine immunoglobulin light chain. Based on signal intensities of the precipitates and respec-

tive inputs, the percentage of recovered (EBNA2) and precipitated (myc-RBP-Jκ) protein was

calculated and amounts of bound EBNA2 were normalized to the amount of myc-RBP-Jκ pre-

cipitated. Results are shown as relative EBNA2 binding compared to EBV E2 (100%).

Supporting information

S1 Fig. Nuclear localization of EBNA2 chimeras. 293T cells were transfected with expression

plasmids for EBNA2 chimeras and wild type controls. After 2 days cells were fixed with 4%

Paraformaldehyde (Electron Microscopy Sciences), permeabilized with 0.1% Triton X, and

stained with FITC-labeled PE2 antibody. GFP expressing cells served as control for pan-cellu-

lar localization. EBV E2, rhE2, and all EBNA2 chimeras localized exclusively to the nucleus

and formed a speckled pattern that is typical for EBV E2.

(TIF)

S2 Fig. Effect of mitotic arrest on EBNA2 transactivation activity. P3HR-1 cells were trans-

fected with a Cp-Luciferase reporter, a Renilla control, and EBNA2 expression plasmids or

empty control. After 24h half of the cells were incubated with 100ng/ml nocodazole (Sigma) to

induce mitotic arrest; the other half was incubated with DMSO as vehicle control. Two days
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after transfection cells were used for cell cycle analysis, immunoblot, and Luciferase detection.

A) For cell cycle analysis, 5x105 cells were washed with PBS and fixed in 70% Ethanol for 1h at

4˚C. Samples were washed twice with PBS, treated with RNase A (Qiagen; 10μg/ml for 15min),

stained with propidium iodide (100μg/ml), and analyzed by flow cytometry. Nocodazole

increased the number of cells in G2/M phase (percentages shown in histograms) from approxi-

mately 28% to 78% in each transfection, indicating successful mitotic arrest. B) Nocodazole

and control treated cells were analyzed by immunoblot using PE2. Mitotic arrest induced

appearance of slower migrating forms of both EBV E2 and rhE2 (asterisks) consistent with

phosphorylation. The relative amount of phosphorylated protein is comparable in EBV E2 and

rhE2 expressing cells. C) Luciferase expression was measured as described for Fig 4. No differ-

ence in EBV E2 or rhE2 induced Cp transactivation was observed between nocodazole treated

and control cells (EBV E2 n = 2, rhE2 n = 1).

(TIF)
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