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Abstract

Motivation: Flux balance analysis (FBA) based bilevel optimization has been a great success in redesigning metabol-
ic networks for biochemical overproduction. To date, many computational approaches have been developed to
solve the resulting bilevel optimization problems. However, most of them are of limited use due to biased optimality
principle, poor scalability with the size of metabolic networks, potential numeric issues or low quantity of design sol-
utions in a single run.

Results: Here, we have employed a network interdiction model free of growth optimality assumptions, a special
case of bilevel optimization, for computational strain design and have developed a hybrid Benders algorithm (HBA)
that deals with complicating binary variables in the model, thereby achieving high efficiency without numeric issues
in search of best design strategies. More importantly, HBA can list solutions that meet users’ production require-
ments during the search, making it possible to obtain numerous design strategies at a small runtime overhead (typ-
ically �1 h, e.g. studied in this article).

Availability and implementation: Source code implemented in the MATALAB Cobratoolbox is freely available at
https://github.com/chang88ye/NIHBA.

Contact: math4neu@gmail.com or natalio.krasnogor@ncl.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

With the advance of genome-scale metabolic modelling (GSMM),
the past decades have witnessed a significant number of computa-
tional tools for microbial metabolic engineering (Maia et al., 2016).
These tools facilitate improved strain performance for the produc-
tion of a variety of high-value biochemicals and biosynthetic precur-
sors, including vanillin (Brochado et al., 2010), lycopene (Choi
et al., 2010), malonyl-CoA (Xu et al., 2011) and alkane and alcohol
(Fatma et al., 2018).

A large number of strain design tools are based on bilevel opti-
mization. OptKnock (Burgard et al., 2003) is one of the earliest
bilevel optimization-based tools. OptKnock maximizes target
chemical production while assuming mutant strains at optimal
growth in flux balance analysis (FBA). The resulting bilevel prob-
lem is solved through a reformulation that makes the inner level
problem equivalent constraints under the condition of strong dual-
ity (Burgard et al., 2003). The OptKnock model was latter
extended to improve target production via gene up/down-
regulation (Pharkya and Maranas, 2006), cofactor specificity (King
and Feist, 2014) or heterologous pathways (Pharkya et al., 2004),
and to develop anti-cancer drugs by the identification of synthetic

lethal genes (Pratapa et al., 2015). These studies demonstrate the
great effectiveness of the bilevel optimization-based framework in
metabolic engineering.

However, the bilevel optimization-based framework in literature
has numerous limitations. The first one is the intensive computation-
al cost in search of optimal solutions. Bilevel optimization is often
reformulated into a mixed-integer linear programming (MILP) so as
to be solved by exact MILP solvers. It can take up to a week to solve
a MILP resulting from a medium-sized GSMM (Feist et al., 2010).
Many practical strategies, such as model reduction and refinement
of candidate knockout set (Feist et al., 2010), have been used to re-
duce the computational time but may miss the best design strategies
due to reduced search space. GDBB (Egen and Lun, 2012) intro-
duced a truncated branch and bound to speed up the search process.
GDLS used local search with multiple search paths to reduce the
search space for each local MILP (Lun et al., 2009). While finding
optimal solutions are computationally costly for exact solvers, other
studies resorts to inexact methods, such as genetic algorithms (Patil
et al., 2005; Rocha et al., 2010) and swarm intelligence (Choon
et al., 2015). These methods, however, still scale poorly with the
size of GSMM and are specially ineffective when a large number of
genetic manipulations are allowed for target production, which is a
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widely recognized issue for large-scale optimization (Piccand et al.,
2008).

In company with intensive computations, the resulting MILP
often has weak LP relaxations due to disjunctive big-M constraints
(Codato and Fischetti, 2006), another limitation of the current bile-
vel optimization-based methods. Big-M formulation can easily cause
numeric issues, particularly in genome-scale metabolic models
where stoichiometric coefficients often vary many orders of magni-
tude (Sun et al., 2013). As a result, optimal strain design solutions
returned from exact MILP solvers in Gurobi and/or CPLEX may
turn out to be in silico infeasible. Model reformulation may alleviate
numeric issues and potentially reduce computational costs.
However, a proper model reformulation is often time-consuming
and laborious as extra care has to be taken to prevent other numeric
difficulties while fixing one.

The third limitation is that only a single solution is obtained in
each execution of optimization by modern solvers. Multiple runs are
required to generate more solutions, which inevitably increases com-
putational burden. Despite that some commercial software plat-
forms, such as Gurobi and CPLEX, provide options to preserve
multiple solutions in a single run, many alternative solutions exist
for the optimal production rate in underdetermined metabolic sys-
tems, and they are likely to have similar production envelopes
(Lewis et al., 2012). This similarity renders the bilevel optimization
less attractive as little information can be gained about the trade-off
between growth and production for decision-making. Also, these
exact solvers consider two solutions different when their continuous
but integer variables have different values. Such solutions lead to
same design strategies, which is of no interest to decision-makers.
Heuristic methods, such as local search in GDLS (Lun et al., 2009)
and population-based algorithms (Jiang et al., 2018; Patil et al.,
2005), may help to find diverse solutions but often suffer from local
optima.

Another limitation in most of bilevel optimization-based tools is
potential biases induced by the optimization principle in the inner-
level FBA (Lewis et al., 2012). OptKnock and many of its derivatives
assume mutant strains have a biologically meaningful objective
which is often to maximize growth. However, this assumption is not
always correct as some microorganisms seem to achieve a multiob-
jective trade-off of metabolism (Schuetz et al., 2012), and mutants
prefer small metabolic adjustments from the wild-type (Segrè et al.,
2002). It is there desirable that bilevel models eliminate the biased
assumption on cell growth while optimizing the target production
rate.

There are also a number of tools free of bilevel optimization. For
example, approaches based on minimum cut set (MCS) identifica-
tion have also been developed to remove all possible design strat-
egies that do not meet specific requirements of a desired production
strain(Apaolaza et al., 2019; von Kamp and Klamt, 2014). MCS-
based approaches, however, are also computationally intensive as
they need to enumerate elementary modes of a given metabolic net-
work. OptForce identifies genetic interventions by investigating the
difference in flux distributions between the wild-type and the desired
mutant (Ranganathan et al., 2010). OptForce showed good predic-
tions in in vivo studies (Xu et al., 2011). However, the requirement
on flux measurements of the wild-type, which is not always avail-
able, limits its wide applicability. It is noteworthy that strain design
has been viewed as a multiobjective optimization problem in a num-
ber of studies (Sendin et al., 2010; Sendı́n et al., 2006; Torres et al.,
2018). These studies highlight the benefit of finding trade-off solu-
tions that comprise multiple design objectives.

Evolutionary game theory for metabolic modelling has achieved
great success, especially in situations not governed by simple opti-
mization (Pusa et al., 2019). It also seems useful for strain design
since it avoids the assumption of growth optimality in FBA. For this
reason, this article attempts to investigate the application of evolu-
tionary game theory for strain design. Specifically, we consider
metabolic engineering as a metabolic game (Pusa et al., 2019), and
employ network interdiction (NI), a well-known game theory model
(Lim and Smith, 2007), for the identification of genetic manipula-
tions. The NI involves one game player (host strain) that tries to

avoid the overproduction of target chemicals for cellular homoeo-
stasis, whereas the other opposing player (metabolic engineer)
attempts to manipulate the metabolic network in order to maximal-
ly disrupt the first player’s activity. Therefore, the NI is a max–min
problem in which the objective involves only the target production,
avoiding the use of the widely assumed growth optimality. The NI is
a special case of general bilevel problems. The solution to this NI
problem is a novel hybrid algorithm based on Benders decompos-
ition (Codato and Fischetti, 2006), aiming to address the other limi-
tations mentioned previously. NIHBA, the proposed approach, has
shown the ability to efficiently find a large number of growth-
coupled design strategies with diverse production envelopes in a sin-
gle run and to scale well with the size of allowable knockouts.

2 Results

2.1 NIHBA: using NI and benders decomposition
More often than not, wild-type strains maintain homoeostasis and
thus avoid overproducing a product of interest while maximizing
biomass (Fig. 1A). Metabolic engineering of host strains requires
metabolic network modifications leading to improved flux towards
the biosynthetic pathway of the target product. Metabolic engineers
who look for the best modifications can be considered adversaries
or interdictors as they use limited engineering costs (time, financial
cost, etc.) to intervene the host’s activities and reverse the cell’s low-
target production (Fig. 1A). This strain design task is similar to NI,
a game theoretic framework where a budget-constrained interdictor
intervenes a network user’s activity, e.g. commodity flow (Lim and
Smith, 2007), by removing network arcs.

We proposed a NI model for identifying gene-associated reaction
knockouts, but up-/down-regulation of genes can be considered in
this model as well. The NI model is a special case of bilevel opti-
mization. It was recast into a standard MILP problem (Fig. 1B)
using a special reformulation approach (Section 4). The resulting
MILP contains both complicating binary variables and easy continu-
ous variables. It can be computationally intensive for a large size of
binary variables and/or a high allowable number of knockouts, and
likely to have numeric issues for exact solvers due to Big-M effects
(Codato and Fischetti, 2006). We, therefore, resorted to Benders de-
composition for this NI model. We proposed a hybrid Benders algo-
rithm (HBA) with two novel techniques to solve the model
efficiently and obtain as many design solutions as possible in a single
run (Fig. 1C). The solutions from our approach, NIHBA, were then
analysed in production envelopes (Fig. 1D), from which the most
promising design solution can be selected for implementation.

2.2 Case studies
Our case studies investigate the production of both native biochemi-
cals (i.e. succinate and ethanol) closely linked to energy metabolism
and a non-native secondary metabolism product (i.e. lycopene).

2.2.1 Succinate and ethanol production

NIHBA was tested on iML1515 (Monk et al., 2017), the largest
Genome-scale metabolic (GEM) model for Escherichia coli, for the
production of succinate and ethanol. For large models, Feist et al.
(2010) suggested a preprocessing procedure to ease computational
costs. In particular, reactions involving compounds that have more
than a certain number (nc) of carbons are not considered as knock-
out candidates since they are assumed unlikely to carry high flux.
We tested different values of nc ¼ f10; 15; 22;100g (nc ¼ 100 indi-
cates no reaction removed due to carbons), resulting in different
sizes of candidate set (see ns in Table 1). In all simulations, designed
strains were required to have at least 10% cell growth of the wild-
type to sustain growth (Feist et al., 2010).

We show in Table 1 that the reduction of candidate set by car-
bon number has a significant effect on succinate production.
Exclusion of reactions with a carbon number of over 10 (corre-
sponding to 152 candidate knockouts in Table 1) results in a low
succinate production flux of 6.8838–9.9430 mmol/gDW/h, which is
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ȳ
=

y

ΔH(y, y′) < r

ΔH(y, y′) > r + 1

ŷ
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Fig. 1. A schematic workflow of the proposed NIHBA tool for strain design. (A) Illustration of network interdiction in strain design: host cells avoid overproducing a product

(i.e. min cPv) whereas metabolic engineers interdict the host network to maximally impair the host’s activity (i.e. max min cPv), where cP is the coefficient vector for the product

and v is a steady-state flux vector. (B) Mathematically modelling the network interdiction problem in strain design, followed by problem reformulation to obtain a standard

MILP problem. (C) Hybrid Benders decomposition algorithm. The MILP is decomposed into a binary master problem and a linear slave problem, and Pareto-optimal cut gen-

eration and local branching are introduced to speed up the search of solutions. (D) Solutions that meet production requirements are stored and evaluated
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less than a third of the theoretic maximum production (TMP; Feist
et al., 2010), which is computed by changing the FBA objective
from growth maximization to target reaction flux maximization in
iML1515). A slight relaxation of carbon number to 15 helps to iden-
tify a solution with around two-thirds of TMP, and succinate pro-
duction reaches �25 mmol/gDW/h (73% TMP) when no carbon
number is constrained in candidate reactions. This indicates that
some reactions with large carbon numbers are very important in
redirecting flux towards succinate, although they may not carry high
flux values. For example, both pyruvate dehydrogenase (PDH) and
pyruvate formate lyase (PFL) acting on a high carbon compound,
i.e. Acetyl-CoA, provide a good reaction flux value in wild-type
strains. The knockout of them together with transaldolase (TALA,
pentose phosphate pathway) and L-lactate dehydrogenase (LDH_L)
under anaerobic condition (where the oxygen uptake rate is zero)
predicts high succinate production by our method (Fig. 2). This pre-
diction agrees well with in vivo studies (Hong and Lee, 2002; Zhu
et al., 2007). It is also observed that many solutions are found by
NIHBA, and all of them renders a growth-coupled production
phenotype. Particularly, there exist a vast number of growth-
coupled solutions with low succinate production rate, as indicated
when the size of the candidate knockout set is ns ¼ 152 (see
Table 1). Most of them do not appear in larger candidate sets,
implying that NIHBA prefers high-production solutions. In the fol-
lowing, a set of 342 candidate reactions is used for NIHBA.

In contrast to succinate, ethanol can be easily produced at a high
rate (e.g. 38 mmol/gDW/h or equivalently 95% TMP) by knocking

down only reactions of low carbon number. Therefore, excluding as
many reactions of high carbon number is beneficial for computa-
tional efficiency while achieving a high-production design strategy.
The number of growth-coupled solutions for ethanol is, however,
much fewer than that for succinate.

Next, we analyse the performance of NIHBA on a varying number
of knockouts. We observe that, for both succinate and ethanol, the
production rate increases sharply when more knockouts are allowed
but levels out from five knockouts (Fig. 3A and B). The number of
growth-coupled solutions and the percentage of high-production solu-
tions increase with the allowable number of knockouts. No solutions
with >80% TMP were found within 15 knockouts for succinate, and
only a tiny portion of solutions has a production rate of <20% TMP
for ethanol. This indicates again that NIHBA favours high-production
solutions during the search.

We show in Figure 4 the distribution of single knockouts of
obtained solutions in different subsystems and their frequency in de-
sign solutions to understand which subsystems/knockouts are likely
to be engineering targets. Specifically, all the solutions with >60%
TMP identified from a limit of 10 knockouts were analysed in terms
of knockout occurrence in different subsystems. We find that extra-
cellular exchange reactions (mainly oxygen uptake), reactions from
glycolysis, gluconeogenesis, pyruvate metabolism and pentose phos-
phate pathway are most likely knockout targets for the production
of succinate and ethanol, which shows a good agreement with exist-
ing studies (Feist et al., 2010; Tepper and Shlomi, 2010). All the sol-
utions suggest oxygen depletion (Fig. 4C), which is consistent with
the common sense that the two products are best produced in anaer-
obic environments. It is observed that glucose-6-phosphate isomer-
ase and D-lactate dehydrogenase (LDH_D) appear frequently as
knockout targets in design solutions for both products, and high
succinate-producing strategies additionally disfavour ATP synthase
(ATPS4rpp) (Fig. 4C). Similar results have been also reported in a re-
cent study (Dinh et al., 2018), where computationally intensive
strain design tools were used to obtain a large collection of knockout
designs.

The computational cost is low for NIHBA, as shown in
Figure 3C and D. A short runtime (300–600 s) enables NIHBA to
identify high-production solutions for both succinate and ethanol,
indicating that our hybrid approach can quickly generate effective
Benders cuts to reduce search space. Depending on the maximum al-
lowable number of knockouts, the runtime required before reaching
the convergence stage is different, but with a small variation.
Generally, NIHBA starts to converge after �2000 s and 600 s for
succinate and ethanol, respectively. The longer time required for
succinate may be explained by relatively fewer high-production sol-
utions in the design space. Despite that, the computational time
required by NIHBA for a good solution is small (compared to days
�weeks in existing methods (Feist et al., 2010)) and does not in-
crease exponentially with the number of knockouts, a widely recog-
nized issue in exact solvers (Feist et al., 2010; Lun et al., 2009).

2.2.2 Lycopene biosynthesis

A heterologous lycopene biosynthesis pathway, as reported in Alper
et al. (2005) and Choi et al. (2010), was added to the iML1515
model to predict lycopene production (Fig. 5). When eight

Table 1. Succinate and ethanol production predicted by NIHBA with at most five knockouts for different sizes of candidate set

nc ns Succinate Ethanol

#sol. Growth Min. prod. Max. prod. #sol. Growth Min. prod. Max. prod.

10 152 1255 0.8729 6.8838 9.9430 21 0.1238 38.0668 38.0986

15 204 186 0.2023 21.1032 24.3682 37 0.1238 38.0668 38.0986

22 272 271 0.1908 22.2077 25.0055 52 0.1238 38.0668 38.0986

100 342 172 0.1549 25.0252 25.0660 84 0.1187 38.1716 38.2466

The growth rate (h–1), minimum production (mmol/gDW/h) and maximum production (mmol/gDW/h) are from the solution with the highest minimum

production rate.

Fig. 2. Result of NIHBA simulation for succinate production. Abbreviations of reac-

tions are as follows: PDH, pyruvate dehydrogenase; PFL, pyruvate formate lyase;

LDH-L, L-lactate dehydrogenase
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knockouts are allowed, running NIHBA on this expanded model
generates a large number of solutions, with lycopene production
rate ranging from 0.88 to 1.60 mmol/gDW/h (42–78% TMP) (see
Supplementary Material A). Interestingly, most of the knockouts,
e.g. PDH and PFL, are closely linked to pyruvate, which is a key up-
stream building blocks for lycopene biosynthesis. This suggests that
increasing the availability of precursors could lead to high lycopene
production. Apart from these, NIHBA also identified some non-
intuitive knockouts, such as ribose-5-phosphate isomerase, glycine
hydroxymethyltransferase (GHMT2r), phosphoenolpyruvate carb-
oxylase (PPC) and glutamate dehydrogenase (GLUDy). It is worth
noting that the knockout of GLUDy, PPC, GHMT2r and PDH iden-
tified by NIHBA has also been predicted by other methods (Choi
et al., 2010), but NIHBA shows more diverse combinations of these
reactions as manipulation strategies. Additionally, although lyco-
pene biosynthesis interferes less with cell growth, the simulation sug-
gests NIHBA is still able to manipulate the metabolic network
properly to lower growth capability (maximum growth rate) so that
more substrate resources are available potentially for lycopene pro-
duction. Reduced growth capability is undesired for a production
system, however, it can be alleviated by adaptive laboratory evolu-
tion (Jensen et al., 2019) since the designed production mutants are
all growth coupled.

2.3 Comparison with other tools
2.3.1 Comparison with minimization of metabolic adjustment

The minimization of metabolic adjustment (MOMA) (Segrè et al.,
2002) has demonstrated great success in predicting genetic deletion
targets for improving production strains. Here, NIHBA is compared
with MOMA in identifying at most five reaction knockouts for suc-
cinate production. For MOMA, a sequential approach (Alper et al.,
2005) was used to identify multiple knockout solutions.

The best solutions (see Supplementary Material B) identified by
MOMA and NIHBA are compared by their production envelopes,
as shown in Figure 6. The production envelopes help us understand
the production variability as growth increases. Figure 6 shows that
the production strain designed by NIHBA has a significantly
reduced maximum growth rate and the guaranteed lower bound of
succinate production rate is > 5 mmol/gDW/h, regardless of growth
rate. Thus, this is a strong growth-coupled design (Feist et al.,
2010). In contrast, the MOMA solution shows slightly reduced
maximum growth rate. However, the succinate production rate for
the MOMA solution varies widely, and the guaranteed lower bound
is zero. This implies, although the solution identified by MOMA

guarantees minimal metabolic adjustment, the production rate can
be zero in the resulting mutant strain.

This simulation demonstrates that a simple optimization prin-
ciple, such as minimal metabolic adjustments in MOMA, cannot en-
sure that the resulting production strain yields improved
biochemical production. In contrast, a more rigorous model like
NIHBA considering the equilibrium between multiple players in
metabolic engineering games clearly works better.

2.3.2 Comparison with bilevel optimization-based tools

For comparison, the NI problem was also solved using the
OptKnock (Burgard et al., 2003) and GDLS (Lun et al., 2009)
approaches with the Gurobi MILP solver(Gurobi Optimization,
2018), called NI-OptKnock and NI-GDLS, respectively. NI-GDLS
used M¼5 search paths and a search size of k¼3 in order to get
multiple solutions. For efficiency, parameters in the Gurobi solver
was set according to Egen and Lun (2012).

For succinate, when at most five knockouts are allowed, NIHBA
found a large number of solutions whereas both NI-OptKnock and
NI-GDLS failed to find a feasible solution. The failure is mainly due
to numeric issues in Big-M formulation, which existed even al-
though we switched to indicator constraints or CPLEX12.8 for
MILP. This demonstrates that HBA overcomes such numeric issues.
For readability, we only show a small number of selected solutions
from NIHBA in the production envelope (Fig. 7A). As seen, NIHBA
can obtain diverse solutions forming a good representative of the
trade-off between cell growth and succinate production.
Interestingly, NIHBA identified a strong growth-coupled design
(non-zero production at no growth), despite its slightly suboptimal
production rate at the maximum growth.

For ethanol, all the algorithms found feasible solutions with at
most five knockouts, and all contain a solution with the maximum
production rate, as illustrated in Figure 7B–D (a small portion of sol-
utions from NIHBA are displayed for readability). This shows that
NIHBA has comparable performance in terms of optimality. Despite
three solutions found from NI-GDLS, one of them is not growth
coupled and the other two have the same production envelope, from
which little can be gained about the trade-off between cell growth
and target production. In contrast, NIHBA found many solutions
with diverse production envelopes, among which strong growth-
coupled designs exist.

3 Discussion

The employment of bilevel optimization for identifying genetic
manipulations has been found very helpful for metabolic engineer-
ing. Most existing bilevel-based tools assume that cells always grow
optimally, a biased optimization principle that is found incorrect for
mutants or certain microorganisms in some studies (Schuetz et al.,
2012; Segrè et al., 2002). As a consequence, design strategies found
by these tools may be biologically infeasible in spite of highest pro-
duction rates at optimal growth. In addition, these tools involve

Fig. 5. Lycopene biosynthesis pathway (heterologous reactions are marked in blue).

Abbreviations of reactions are as follows: PDH, pyruvate dehydrogenase; PFL,

pyruvate formate lyase; PPC, phosphoenolpyruvate carboxylase; GLUDy, glutamate

dehydrogenase. (Color version of this figure is available at Bioinformatics online.)
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solving a bilevel problem through big-M reformulation to a stand-
ard MILP that is suitable for exact solvers of commercial software
like Gurobi and CPLEX. However, the resulting MILP is often large
due to the genome scale of metabolic networks, and exact solution
to MILP can be computationally prohibitive, particularly when a
large design space (or numerous genetic manipulations) is allowed.
Furthermore, big-M formulation produces a weak MILP, leading to
numeric issues such that no feasible solutions can be found. This art-
icle have proposed to address biased assumptions from the point of
view of game theory, leading to a network interdiction problem
(NIP). The NIP is not handled using popular exact solvers, instead it
is solved through an efficient hybrid Benders decomposition algo-
rithm to lower computational costs and overcome numeric issues.
The proposed approach, NIHBA, has shown its ability to obtain a
large number of growth-coupled design strategies with diverse pro-
duction phenotypes and achieve optimal production rates within an
hour or so, regardless of the size of design space (the maximum al-
lowable number of knockouts).

NIHBA uses a game theoretic framework to model the inter-
action (somehow competitive) between host cells and metabolic
engineers. This framework assumes that host cells have a few objec-
tives. These objectives are not necessarily to optimality individually
but reach a trade-off between them. In this sense, NIHBA is different
from traditional FBA approaches which often require a single bio-
logically rigorous optimality objective, such as optimal growth or
maximum energy generation (Schuetz et al., 2012). Therefore, de-
sign strategies found by NIHBA do not necessarily yield the best
production at optimal growth. Instead, they guarantee non-zero pro-
duction when the cell achieves a minimal required growth rate to

sustain growth (Feist et al., 2010). NIHBA employs an HBA, HBA,
to solve the NIP. Our case studies have demonstrated numerous
advantages of this algorithm. First, it is free of numeric issues, mak-
ing it much more stable than exact MILP solvers in top-ranked opti-
mization platforms, e.g. Gurobi and CPLEX. Second, it can be
considered a parameter-free algorithm as opposed to other methods
like GDLS that requires a setting of multiple parameters, although
NIHBA uses a parameter l for identifying Pareto optimal cuts. In
practice, NIHBA is not sensitive until a value of l < 10�6 is used.
Third, it is computationally efficient such that 1 h on average is suf-
ficient for NIHBA to identify high-production solutions, and the
runtime for a high-production rate does not scale with the number
of knockouts, which is not the case for existing methods. Last, it
obtains numerous growth-coupled solutions in a single run. This is
important as it not only helps understand the trade-off between tar-
get production and cell growth but also provides the possibility to
examine and test multiple solutions, from which the most promising
design can be chosen for experimental implementation.

In computational strain design, a model reduction procedure
(Feist et al., 2010) is often employed to reduce the search space for
computational efficiency. One important step in this strategy is to
exclude reactions acting on high-carbon metabolites. Many existing
strain design tools rely on a predefined carbon number to reduce the
number of candidates so that the resulting MILP has fewer binary
variables (Feist et al., 2010). As a result, optimal solutions may be
eliminated. This work has observed this issue in the case study of
succinate production. Accordingly, NIHBA suggests to discard the
high-carbon reaction reduction step. In this sense, NIHBA is more
likely to identify optimal solutions compared with other strain
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Fig. 7. Production envelopes of diverse design solutions obtained by different strain design approaches for succinate and ethanol production. Production envelope illustrates

the maximum and minimum guaranteed production rate while varying biomass. Black curves represent the wild-type and coloured curves represent production strains. (A)

Production envelopes of selected solutions by NIHBA for succinate production. (B) Production envelopes of selections solutions by NIHBA for ethanol production. (C)

Production envelope of the solution by NI-OptKnock for ethanol production. (D) Production envelopes of the three solutions by NI-GDLS for ethanol production
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design tools. It should be noted that the relaxation of search space
can lead to increased runtime of MILP solvers. However, this has
been alleviated by an efficient HBA in NIHBA.

The proposed HBA is not limited to NIPs. It can be applied to
any bilevel or single-level optimization problems that have compli-
cating mixed-integer variables. Although promising, HBA needs
improvements on convergence at late stages for optimality proof.
Like other exact solvers, an appropriate optimality gap or time limit
may alleviate excessive exploration but cannot determine the opti-
mality of solutions. Further improvements can be made along this
direction to enhance the convergence of HBA. It is also noteworthy
that multiple solutions by HBA are not searched in a systematic
way. They may not form a perfect representative of the trade-off be-
tween target production and cell growth. Therefore, more investiga-
tions are required to extract limited but well-diversified solutions in
the search process of HBA.

Despite numerous solutions found by NIHBA, the selection of
promising solutions poses a new challenge to decision-makers. It is
therefore important to have a good solution ranking approach.
Solutions may be roughly ranked according to the frequency of indi-
vidual knockouts in addition to their subsystem distribution or by a
scoring system with manual settings (Schneider and Klamt, 2019).
Thus, a more systematic solution ranking is desirable. Another limi-
tation of this work is the use of constraint-based models. While
constraint-based models make it possible to investigate large-scale
metabolic networks, they do not capture the dynamic nature of bio-
logic systems. Further investigations are needed to make NIHBA ap-
plicable to dynamic models or hybrid models (Kim et al., 2018) for
better metabolic engineering applications.

4 Materials and methods

4.1 Flux balance analysis
A metabolic network of m metabolites and n reactions has a stoi-
chiometric matrix S that is formed by stoichiometric coefficients of
the reactions. Let J be a set of n reactions and vj the reaction rate of
j 2 J, Sv represents the concentration change rates of the m metabo-
lites. FBA aims at optimizing a linear biological objective cTv when
the system is at steady state (i.e. the concentration change rate is
zero for all the metabolites) and v is subject to thermodynamic
constraints:

maxv cTv
s:t: Sv ¼ 0

lbj � vj � ubj; j 2 J
; (1)

where lbj and ubj are the lower and upper flux bounds of reaction j,
respectively. c is a weight vector specifying the degree of importance
to the biological objective.

4.2 Network interdiction-based strain design and

reformulation
NI for strain design considers metabolic engineers as interdictors or
adversaries who attempt to maximally disrupt host cells’ activity
that biochemicals of interest are not overproduced due to homoeo-
stasis. The strain design task can, therefore, be formulated as a
max–min problem:

max
y2Y

min
v

cPv; (2a)

s:t:Sv ¼ 0; (2b)

lbjð1� yjÞ � vj � ubjð1� yjÞ; j 2 �J ; (2c)

lbj � vj � ubj; j 2 J n �J; (2d)

where cP is a coefficient vector for the target biochemical. That
is, cP is a vector of zeros except for the P-th element (the index
of the target biochemical reaction) which is set to one. Y ¼

fy 2 f0; 1gj�J jj
P

j2�J yj < Kg (K is the maximum allowable number
of knockouts), and yj indicates the reaction j is inactive (vj ¼ 0)
if yj ¼ 1 and active otherwise. �J is a subset of J, containing

candidate knockout reactions.
Observing that in the follower problem jvjjyj ¼ 0 always holds

for all j 2 J, we can eliminate all the flux constraints imposed by yj,
i.e. Equation (2c), by rephrasing the inner objective function in a

Lagrangian manner:

min
v

cPvþ
X

j2�J
Mjjvjjyj; (3a)

s:t: Sv ¼ 0
lbj � vj � ubj; j 2 J

g; (3b)

where Mj is a large positive Lagrange multiplier and

M ¼ ðM1; . . . ;Mj�J jÞ. The reformulated follower problem is equiva-
lent to the original problem in the sense that they have the same op-
timal value provided that Mj is sufficiently large for all j 2 �J such

that vj ¼ 0 when yj ¼ 1. The value of Mj used in this work is around
100 (e.g. randomly drawn from [90,110]).

The reformulated follower function (3a) can be linearized by
adding auxiliary variables uj ¼ maxðvj;�vjÞ. As a result, we have

the reformulated bi-level framework:

max
y2Y

cPv; (4a)

s:t: min
v;u

cPvþ
X

j2�J
Mjujyj; (4b)

s:t: Sv ¼ 0
uj � vj; uj � �vj; j 2 �J
lbj � vj � ubj; j 2 J

g: (4c)

4.3 Hybrid benders algorithm
The bi-level problem (4) is reformulated to a standard MILP by

applying LP duality to the follower problem (4b–4c). For simplicity,
the resulting MILP is written in the following compact form

max
y;x

�cx (5a)

s:t:
X

j2�J
yj < K (5b)

�Sx ¼ 0 (5c)

Axþ By � b (5d)

yj 2 f0; 1g; x 2 Rnþm �R5n
þ ; (5e)

where �S ¼ ½S 0m;5nþm�, and

A¼

�I 0 0 0 0 0 0
I 0 0 0 0 0 0
I 0 �I 0 0 0 0
�I 0 �I 0 0 0 0
0 ST 0 I �I I �I
cP 0 0 �lbT ubT I I

2
6666664

3
7777775
;B¼

0
diagðUÞ

0
0

�diagðMÞ
0

2
6666664

3
7777775
;b¼

0
U
0
0
0
0

2
6666664

3
7777775
:

(6)

where U is a vector of maximum absolute flux for each reaction, i.e.
Uj¼maxðjlbjj; jubjjÞ; 8j2 J.

The single-level reformulation (5) can be solved, like OptKnock,
by modern MILP solvers. However, the big-M terms in (5) lead to a
week LP relaxation (Codato and Fischetti, 2006), therefore, causing

difficulties for MILP solvers. Besides, the model size of (6) increases
rapidly for large metabolic networks, and as a result, a large-scale

MILP has to be solved.
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Benders decomposition avoids these drawbacks as it can deal
with complicating binary variables and easy continuous variables
separately. Like Benders decomposition (Codato and Fischetti,
2006), our HBA decomposes (5) into a binary integer programming
master problem (MP) (7) and an LP slave problem (SP) (8) for fixed
y ¼ �y:

MP : �z ¼ max
y;z

z (7a)

s:t:
X

j2�J
yj < K (7b)

z � ðb� ByÞTpo 8o 2 O

ðb� ByÞTpf � 0 8f 2 F
g Benders cuts (7c)

yj 2 f0; 1g; z � 0; (7d)

SP : z ¼ max
x

�cx (8a)

s:t: �Sx ¼ 0 ½k� (8b)

Ax � b� B�y ½p� (8c)

where O and F are sets that correspond to the extreme points po and
extreme rays pf of the dual of SP, respectively. In each iteration, the
Benders decomposition algorithm derives the dual vector p from the
SP (8) for y ðy ¼ �yÞ which is the solution to the MP in the previous
iteration. In practice, a Benders cut is obtained by solving the dual
of (8) rather than the primal. Two scenarios exist when solving the
dual of (8): if the optimal value of the dual of SP is bounded, it
means the SP is feasible, then an optimality cut z � ðb� ByÞTpo

generated from the extreme point po is added to the MP; if it is un-
bounded, it means the SP is infeasible, then a feasibility cut
ðb� ByÞTpf � 0 generated from the extreme ray pf is added to the
MP to avoid unboundedness of the dual of SP in future iterations.

The classic Benders decomposition is not able to generate effect-
ive Benders cuts rapidly for our strain design problem, and there-
fore, requires a huge of iterations (consequently long computation
time) before it converges. Here, we introduce an HBA with two
strategies to speed up the convergence process.

Figure 8 shows a simplified flowchart of HBA. An implementa-
tion of the algorithm in MATLAB can be found in https://github.
com/chang88ye/NIHBA.

4.3.1 Pareto optimal cuts

Let po be the dual vector of p corresponding to (8), a standard
Benders optimality cut is:

CutðpoÞ : z � ðb� ByÞTpo (9)

Since po may not be unique, it is important to select an effective
cut CutðpoÞ. Magnanti and Wong (1981) proposed to use Pareto op-
timal cuts to improve convergence. CutðpoÞ is said to be Pareto opti-
mal if no other Cutð�poÞ exists such that
ðb� ByÞT �po � ðb� ByÞTpo for any y 2 Y and at least one y 2 Y
enables a strict inequality. There are a few methods available for
identifying a Pareto optimal cut, but most of them have to solve the
SP (8) twice, which may increase computational time significantly.
We turn to the approach of Sherali and Lunday (2013) where a
Pareto optimal cut can be generated by solving only once in each it-
eration a slightly different SP:

�SP : z ¼ max
x

�cx (10a)

s:t: �Sx ¼ 0 ½k� (10b)

Ax � ðb� B�yÞ þ lðb� BŷÞ ½p� (10c)

where l is a sufficiently positive value and ŷ is a core point in the

relative interior of the convex hull of Y. In this paper, ŷ is updated
by 0:5ðŷ þ �yÞ whenever a new feasible y ¼ �y is produced in the iter-
ation of Benders decomposition. l is not calculated as in Sherali and

Lunday (2013) but rather fixed to 1e�8 after multiple trials.

4.3.2 Local branching

Another technique we used for accelerating the convergence of

Benders decomposition is local branching, which is particularly ef-
fective when problems have binary variables (Baena et al., 2018; Rei
et al., 2009). Suppose y0 is a feasible solution in Y, the idea behind
local branching is to divide the feasible region of (7) into two subre-
gions by the Hamming distance between y and y0:

DHðy; y0Þ ¼
X

y0
j
¼0

yj þ
X

y0
j
¼1
ð1� yjÞ: (11)

In every iteration of Benders decomposition, the MP (7) is solved
in the subregion DHðy; y0Þ < r (where r is a positive integer and the
maximum is the cardinality jyj of y). This leads to two scenarios:
there is either a feasible or infeasible y in the subregion
DHðy; y0Þ < r. If a feasible solution �y is obtained, Benders cuts are
generated by solving (10) with �y. If not, it means the value of r may
be too small, and DHðy; y0Þ > rþ 1 is added to the MP (7) to stop re-
exploration in the neighbourhood of y0 with the radius r. r is then
increased by one at a time until DHðy; y0Þ < r renders the MP (7)

feasible. Note that y0 has to be updated by �y if �y gives (7) an object-
ive value worse than that of the SP (8), implying that no better solu-
tion can be obtained from the neighbourhood of y0.

4.4 Additional improvement strategies
HBA involves solving the MP (7) and SP (8) in a repeated manner.
For efficiency, the following two strategies are used:

• Terminating the MP program prior to optimality. Suboptimal

solutions to the MP are sufficient to generate valid Benders cuts.

Therefore, the MP is terminated when a MIP Gap of 1þ
300=ðiter0:5 þ 1Þ (where iter is the iteration counter) is reached.

• Reversing local branching whenever the �z value of the MP is

worse than z value of the SP. �z estimates the upper bound of the

problem (2). �z < z indicates the global optimum does not exist

r > |y|

Δ(y, y′) < r

Δ(y, y′) < r

SP

π

Δ(y, y′)≥r+1

r←r+1

y = ȳ

z̄

LB=z if LB<z

z

r=1, LB=−∞, z̄=+∞

z̄ > z

Δ(y, y′)≥r+1

y′=ȳ

Fig. 8. Flowchart of HBA
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in the corresponding local branching and a reverse local branch-

ing should, therefore, be used.

4.5 Model reduction and candidate selection
The truncation of model size and candidate knockout set has great
computational benefits. GEM models can be significantly simplified
by compressing linear reactions and removing dead end reactions
(those carrying zero fluxes). Likewise, many reactions can be
excluded from consideration with a priori knowledge that, for ex-
ample, they are vital for cell growth or their knockout is not likely
to improve target production. We followed the model reduction pro-
cedure by Lun et al. (2009) and candidate selection procedure by
Feist et al. (2010), resulting in a candidate set of 150–350 reactions
for different target products from the latest E.coli GEM iML1515
(Monk et al., 2017) where the maximum uptake rates for glucose
and oxygen are all 20 mmol/gDW/h.

4.6 Computational implementation
First of all, all the NI models were transformed into MILPs using
duality theory (Burgard et al., 2003). Then, the resulting MILPs
were implemented in MATLAB 2018b to be compatible with the
Cobra Toolbox 3.0 (Heirendt et al., 2019) where we carried out
simulations. All the MILPs were solved by Gurobi 7.5 (Gurobi
Optimization, 2018) with both Heuristics and MIPFocus were set to
1 as suggested by Egen and Lun (2012). A time limit of 2 h was
applied to each MILP while performing computations on Ubuntu
16.04 LTS with an IntelV

R

CoreTM i5 Quad Core processor.

Data and software availability

The data and software used and the tool developed are all available
online:

• GEM model: iML1515 from BIGG database (bigg.ucsd.edu).
• Simulation software: Cobra toolbox 3.0 (https://opencobra.

github.io/).
• MILP solver: http://www.gurobi.com/.
• NIHBA: https://github.com/chang88ye/NIHBA.
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