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Abstract 

Background: Medical digital twins are computational disease models for drug discovery and treatment. Unresolved 
problems include how to organize and prioritize between disease-associated changes in digital twins, on cellulome- 
and genome-wide scales. We present a dynamic framework that can be used to model such changes and thereby 
prioritize upstream regulators (URs) for biomarker- and drug discovery.

Methods: We started with seasonal allergic rhinitis (SAR) as a disease model, by analyses of in vitro allergen-stim-
ulated peripheral blood mononuclear cells (PBMC) from SAR patients. Time-series a single-cell RNA-sequencing 
(scRNA-seq) data of these cells were used to construct multicellular network models (MNMs) at each time point of 
molecular interactions between cell types. We hypothesized that predicted molecular interactions between cell types 
in the MNMs could be traced to find an UR gene, at an early time point. We performed bioinformatic and functional 
studies of the MNMs to develop a scalable framework to prioritize UR genes. This framework was tested on a single-
cell and bulk-profiling data from SAR and other inflammatory diseases.

Results: Our scRNA-seq-based time-series MNMs of SAR showed thousands of differentially expressed genes (DEGs) 
across multiple cell types, which varied between time points. Instead of a single-UR gene in each MNM, we found 
multiple URs dispersed across the cell types. Thus, at each time point, the MNMs formed multi-directional networks. 
The absence of linear hierarchies and time-dependent variations in MNMs complicated the prioritization of URs. For 
example, the expression and functions of Th2 cytokines, which are approved drug targets in allergies, varied across 
cell types, and time points. Our analyses of bulk- and single-cell data from other inflammatory diseases also revealed 
multi-directional networks that showed stage-dependent variations. We therefore developed a quantitative approach 
to prioritize URs: we ranked the URs based on their predicted effects on downstream target cells. Experimental and 
bioinformatic analyses supported that this kind of ranking is a tractable approach for prioritizing URs.
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Background
Characterization and prioritization of pathogenic mecha-
nisms in complex diseases, such as allergies and autoim-
munity, are challenging because each disease may involve 
altered expression of thousands of genes across multiple 
cell types. On top of this complexity, those alterations 
may differ across different between time points of a dis-
ease process. The extent of such dynamic differences, on 
genome- and cellulome-wide scales, is largely unknown. 
This is an important explanation as to why medication 
is ineffective in some 40~70% of patients with complex 
diseases [1]. Digital twins are a promising concept first 
developed in engineering with the aim of computation-
ally modeling complex systems such as airplanes or cities. 
They help to develop such systems, as well as predict and 
prevent malfunction, more efficiently than would be pos-
sible in real-life situations [2]. The medical counterpart, 
digital twins of patients, has been proposed as a solution 
for integrating the wide range of data relevant for human 
diseases, in order to improve prediction, prevention, and 
treatment [3, 4]. Current examples include the artificial 
lung, which models lung function based on ventilator 
measurements, and the artificial pancreas, which opti-
mizes insulin treatment for type 1 diabetes patients based 
on continuous blood glucose measurements [5, 6]. These 
early, straightforward examples indicate how physiologi-
cal and molecular variables can be used as starting points 
to construct digital twins. However, solutions for charac-
terizing, organizing and prioritizing molecular changes 
on dynamic cellulome- and genome-wide scales are 
needed for diagnostic and therapeutic purposes [7]. Cur-
rently, the construction of digital twins of such complex-
ity is considered intractable [4] as doing so would require 
solutions for a wide range of problems:

1) Characterization of disease-associated changes on 
dynamic cellulome- and genome-wide scales. Sev-
eral studies of complex and malignant diseases indi-
cate that this problem can be solved by genome-wide 
analyses, like single-cell RNA-sequencing. It can, 
however, also be complicated by difficulties in obtain-
ing samples from relevant organs in human diseases, 
particularly if time-series analyses are required [8].

2) Organization and prioritization of scRNA-seq data 
are great challenges because of the large number of 
differentially expressed genes across multiple cell 
types. An ideal solution would be to identify an 

upstream regulator (UR) in one cell type that acti-
vates downstream genes in other cell types. Examples 
of such genes include IL4 in allergy and TNF in auto-
immune diseases. Decades of research have shown 
that these are key regulators of important down-
stream pathways. This concept has, in turn, led to 
approved drugs targeting these UR genes [9]. How-
ever, these drugs show considerable variations in effi-
cacy [10]. Currently, there is limited understanding of 
the reasons for such variation, and a lack of diagnos-
tic tools to predict which patients will respond to a 
given treatment [11–13]. The reasons for varying effi-
cacy are, therefore, not clearly defined, which raises 
an important question: to what extent have these URs 
and their downstream genes been studied in relation 
to the large number of other differentially expressed 
genes (DEGs) in each disease? The importance lies 
in the possibility that an UR could be co-regulated 
by other genes in multi-directional rather than linear 
hierarchies. There could also be other URs that are 
equally or more important. In clinical contexts, URs 
have been empirically prioritized and therapeutically 
targeted in scRNA-seq studies of immunological and 
malignant diseases [11]. However, the systematic pri-
oritization of URs in human diseases, on cellulome- 
and genome-wide scales, is a key unresolved chal-
lenges. One possible solution would be to construct 
multicellular network models (MNMs) of diseases 
based on scRNA-seq data [14–16].

3) Such MNMs show predicted directed molecular 
interactions between cell types. Briefly, such inter-
actions are predicted by bioinformatically inferring 
the URs of genes that are differentially expressed 
in a cell type. If that UR is expressed in another cell 
type, a directed interaction is predicted between the 
cell type harboring the URs and the cell type with 
the DEGs. Ideally, these interactions can be traced 
to one UR gene in each disease. To our knowledge, 
this issue has not been systematically investigated in 
human diseases. However, a recent study of a mouse 
model of arthritis found no single UR gene in an 
MNM derived from scRNA-seq data. Instead, the 
MNM formed a multi-directional network without 
any linear hierarchy. This observation led to applica-
tion of network tools to prioritize cell types. Next, a 
gene module was identified in one of the prioritized 
cell types and therapeutically targeted. Limitations of 

Conclusions: We present a scalable framework for modeling dynamic changes in digital twins, on cellulome- and 
genome-wide scales, to prioritize UR genes for biomarker and drug discovery.
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the study included that UR genes were not systemati-
cally characterized and that the MNM was based on 
scRNA-seq data from one time point during sympto-
matic disease. These data could represent late-stage 
changes, which were induced by an UR gene only 
active at an earlier, pre-symptomatic stage. We have 
previously found such linear hierarchy in CD4 + T 
cells in immunological diseases [17].

4) Complex diseases may evolve over long periods, 
ranging from years to decades, before patients 
become symptomatic and receive diagnoses. Such 
processes may involve great molecular variations, 
which could be downstream of an early UR gene. If 
so, time-series analysis, ideally starting before the 
overt disease process, could reveal the UR in ques-
tion. However, time series analyses are practically or 
ethically difficult in animal models and patients.

Here, we aimed to address these challenges using time-
series scRNA-seq analysis of allergen-challenged PBMC 
from patients with seasonal allergic rhinitis (SAR). This 
approach may be optimal for modeling the dynamics of a 
complex disease process because the environmental trig-
ger (pollen allergens) is known and absent outside of the 
pollen season when the patients are asymptomatic. Thus, 
the specific response process can be modelled in vitro by 
stimulating PBMC from SAR patients with a standard-
ized dose of allergen outside of the pollen season. The 
process can be studied using time-series analyses before 
and during stimulation. The allergen is thought to induce 
a linear sequence of cellular events, in which activation 
of type 2 T helper (Th2) cells plays a key role [18]. This 
results in the release of the Th2 cytokines, IL-4, IL-5, and 
IL-13, all of which are approved or candidate drug targets 
in allergic diseases [18]. We constructed MNMs based on 
time-series scRNA-seq analyses of allergen/diluent stim-
ulated PBMC from SAR patients and controls. Instead of 
a linear hierarchy, each MNM showed complex, multi-
directional interactions between all the cell types, even 
before allergen-stimulation. Therefore, no single UR 
cell type or gene could be identified at any of the time 
points. This conclusion was supported by multicellu-
lar dispersion of the Th2 cytokines as well as by the fact 
that blocking one Th2 cytokine had no effect on the lev-
els of other Th2 cytokines. Further analyses of bulk and 
single-cell data from allergic and inflammatory diseases 

in both lesional and non-lesional states revealed multi-
directional networks without linear hierarchies, affirming 
this SAR-based observation and supporting its broader 
application. In the absence of linear hierarchies, we tried 
a quantitative approach to prioritize URs: we ranked the 
URs based on their predicted effects on downstream 
target cells. Experimental and bioinformatics analyses 
supported that such ranking is a tractable approach for 
prioritizing URs, and, thereby, for identifying potential 
biomarkers and drug targets in complex diseases. We 
propose that time series MNMs provide a scalable strat-
egy for modeling and analyzing the dynamics of cellu-
lome- and genome-wide changes in digital twins.

Methods
Study design
In summary, this study describes a scalable frame-
work for inferring UR genes on dynamic cellulome- and 
genome-wide scales (Fig. 1). This framework is based on 
time series scRNA-seq analyses of allergen/diluent stim-
ulated peripheral blood mononuclear cells (PBMC) from 
patients with SAR and healthy controls. We hypothesized 
that UR genes would be found at early time points. In 
order to identify URs, the scRNA-seq data were organ-
ized into directed MNMs of the different time points. We 
reasoned that the predicted directed molecular interac-
tions in the early MNMs could be traced to a UR gene. 
However, no linear hierarchies could be identified in the 
MNMs, even before stimulation. Instead, our analyses of 
single-cell and bulk profiling data from allergic and other 
inflammatory diseases supported a quantitative approach 
to prioritizing UR, which was based on their predicted 
effects on downstream target cells.

Participants
We included sixteen patients with SAR and fourteen 
matched healthy controls, from whom samples were 
obtained outside of the pollen season when both patients 
and healthy controls were asymptomatic. Of these, sam-
ples from fourteen controls and eight SAR patients were 
collected in Linköping, Sweden, and the remainder in 
Vienna, Austria. The samples from Sweden were used 
for isolating and in  vitro culture of PBMC for scRNA-
seq. Also, sera and supernatants were used to determine 
cytokine protein expression levels. The eight remain-
ing samples, which were collected in Vienna, were used 

(See figure on next page.)
Fig. 1 Overview of the study. A Stimulation of PBMCs from SAR patients (red) and non-allergic controls (green) with allergen or diluent. B Key Th1/
Th2 cytokines (IFN-γ, IL-4, IL-5, and IL-13) were measured in supernatants from SAR patients (yellow) and non-allergic controls (blue) over time. C (1) 
Time-series scRNA-seq of PBMC from [19]. (2) Construction of MNMs, showing predicted molecular interactions between cell types at each time 
point. (3) Ranking of URs by the number of cell types that each is predicted to regulate at different time points (see the “Materials and Methods” 
section and Fig. 6). (4) Prioritization of the top-ranking UR that regulates the greatest number of the cell types at the greatest number of time 
points—platelet-derived growth factor B (PDGFB). (5) Validation studies, in which two URs, IL4 and PDGFB, were blocked by specific antibodies
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Fig. 1 (See legend on previous page.)
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for blocking validation studies (Additional file  1). The 
median (range) ages of the patients were 29.5 (23~59) and 
29.5 (21~39) for the healthy controls (Additional file 1). 
The Swedish samples from SAR patients were obtained 
for research purposes at the Department of Clinical Sci-
ences, Linköping University. The patients from Vienna 
were also collected for research purposes at the Depart-
ment of Pathophysiology and Allergy Research, Medical 
University of Vienna. The control samples were obtained 
from the donated blood at the Blood Donor Central at 
Linköping University Hospital. The inclusion criteria for 
SAR patients were a positive history for birch- or grass-
pollen, or both pollens, inducing allergic rhinitis for at 
least 2 years. The sensitivity to birch or grass pollen was 
confirmed with skin prick tests (ALK Abello, Hørsholm, 
Denmark) and by an ImmunoCap Rapid Test (Phadia, 
Thermo Fisher Scientific, Uppsala, Sweden), which tests 
for birch, grass, and house dust mite sensitivity in all 
subjects. Exclusion criteria were positive IgE responses 
to house dust mites as well as any other diseases, includ-
ing malignancies, diabetes mellitus, infectious diseases, 
severe deviation of the nasal septum, or nasal polyps. 
Written, informed consent was obtained from all partici-
pants, and the study was approved by the ethics commit-
tees of the universities of Linköping and Vienna.

In vitro culture of allergen‑challenge of PBMCs
PBMCs were enriched from buffy coats from healthy 
controls and fresh peripheral blood using Lymphoprep 
(Axis-shield, UK) with density centrifugation. PBMCs 
were incubated with birch pollen extract (BPE) (ALK 
Abello, 10 𝜇g/mL) at a density of  106 cells/mL for differ-
ent time periods in RPMI 1640 supplemented with 10% 
fetal bovine serum (FBS) (Gibco, USA). Before obtaining 
the cells, all sera were collected. The sera were aliquoted, 
frozen, and stored at −70 °C. All supernatants were col-
lected after 12 h, 1 day, 2 days, 3 days, 5 days, and 7 days, 
respectively, and aliquoted, frozen and stored at −70 °C.

scRNA‑seq wet lab protocol
The scRNA-seq experiments for the samples from SAR 
patients and controls were performed using the Seq-Well 
technique [19]. In short, single-cell suspensions were 
prepared from cultured cells or fresh blood at each time 
point using standard techniques. Cells were counted and 
co-loaded with barcoded and functionalized oligo-dT 
beads (Chemgenes, Wilmington, Massachusetts, USA, 
cat. no. MACOSKO-2011-10) on microwell arrays syn-
thesized as described with minor changes [19, 20]. For 
each sample, 20,000 live cells and ~110,000 beads were 
loaded per array. The cells and beads co-loaded in the 
microwell array were covered with previously plasma-
treated polycarbonate membranes. Next, the array with 

the cover membrane was placed in a shaker at 37 °C for 
45 min. After the membrane was removed, cell lysis and 
hybridization bead removal, reverse transcription, and 
whole transcriptome amplification were performed. 
Libraries were prepared for each sample using the Nex-
tera XT DNA Library Preparation Kit (Illumina, San 
Diego, USA, cat. no. FC-131-1096) according to the man-
ufacturer’s instructions. Libraries from three samples 
were pooled together for sequencing using the NextSeq 
500/550 system, and sequencing results were analyzed as 
described below.

scRNA‑seq data processing
The single-cell data were processed into digital gene 
expression matrices following James Nemeshof Har-
vard Medical School’s McCarrol Lab’s Drop-seq Core 
Computational Protocol (version 1.0.1, Drop-Seq tools 
v1.12) [21, 22] using bcl2fastq (v2.19.1) conversion [23] 
and Picard software (v2.9.0) [24]. The indexed reference 
for alignment of the reads was generated from GRCh38 
(April 2017, Ensembl) [25] using STAR software (v2.5.3) 
[26]. Only primary alignments towards the reference 
genome were considered during downstream analyses, 
according to the mapping quality using STAR software. 
The quality of cells was assessed by having a minimum 
of 10,000 reads, 400 transcripts, 200 genes, and less than 
20% mitochondrial genes per cell. Outliers were removed 
based on empirical evaluation of the distribution of tran-
scripts count over the cells, i.e., all cells with > 16,000 
transcripts, due to the risk of duplicates in the library 
resulting in two or more cells sharing a cell barcode [27]. 
This processing resulted in a total of 9031, 8873, and 
2871 cells for the non-stimulated, allergen-stimulated, 
and uncultured control, respectively, from the healthy 
individuals, and 5755, 6124, and 2244 cells for the non-
stimulated, allergen-stimulated, and uncultured control, 
respectively, from the allergic individuals. To reduce the 
noise in the data, k-nearest neighbor (KNN)-smoothing 
with Python (v3.7.4) [28] was applied using a k of ~0.1% 
of the total number of cells (i.e., k = 14 and k = 21 for the 
data from allergic and healthy individuals, respectively) 
[29]. This proportional cut-off was selected to ensure 
that between-cell differences are maintained, but also to 
reduce noise optimally. The percentage 0.1% was selected 
based on expected cell type’s percentages among PBMC 
in healthy individuals [30].

Microarray data processing (reference datasets)
To define cell types in the scRNA-seq data as described 
below, reference microarray data from B cells, CD4+, 
CD8+, monocytes, natural killer (NK) cells, naïve T 
cells, PBMC, T helper (Th)1, T helper (Th)17, T helper 
(Th)2, and T regulatory (Treg) cells were processed and 
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analyzed [20]. Briefly, all microarrays were normalized 
using LIMMA R-package (version 3.32.10, R version 
3.4) [31, 32]. We performed background correction 
using background Correct function with method “nor-
mexp,” followed by between arrays quantile normaliza-
tion (normalize Between Arrays, method “quantile”). 
All probes with an expression below 1.2 times the back-
ground signal were removed.

Cell type identification
To cluster the cells and define the cell types, refer-
ence component analysis (RCA) (v1.0) was performed 
[33] in R (v3.4) [32], for the healthy and patient group 
separately. The cells were projected against reference 
bulk-profiling data in a stepwise manner using differ-
ent references for deeper subtyping in each step. First, 
cells were identified as monocytes, dendritic cells, B 
cells, or T/NK cells. For this step, the reference was 
constructed based on the HG_U133A/GNF1H (Affy-
metrix) gene atlas data set [34, 35], including only the 
cell types of interest, as described in the original paper 
[33]. In short, all genes with log10 (fold change) expres-
sion values greater than or equal to 0.5, relative to the 
median across all samples, were included. The result-
ing reference contained 746 genes (Additional file 2). T/
NK cells were then further divided into CD4+ T cells, 
CD8+ T cells, and NK cells. Thereafter, CD4+ T cells 
were divided into their subtypes: Th1-, Th2-, Th17-, 
and regulatory T cells. For these steps, the references 
were constructed based on the microarray data from 
[20], including only the cell types of interest in each of 
the references. Here, all genes with log10 (fold change) 
expression values greater than or equal to 0.3 and 1, rel-
ative to the median across all samples, were included, 
resulting in references containing 1494 and 316 genes 
for the T/NK and CD4+ T cell subtyping, respectively 
(Additional file  2). The different log10 (fold change) 
cut-offs used to construct these references were based 
on empirical evaluations of the resulting clusters, where 
the aim was to obtain a clear separation of the cell types 
with a minimum number of cells of unclear identity.

During each step in the clustering and cell typing pro-
cedure, we also saved the Pearson correlation P-value 
for each cell from the RCA algorithm. With the aim to 
ensure credible cell types in the data, we removed the 
cells that did not match any cluster (P-value > 0.05 for all 
cell types in the reference), as previously described [20]. 
This filtering process resulted in a loss of ~12% of the 
cells (2345 cells from the healthy samples and 1839 cells 
from the allergic samples).

The clustering is presented in Fig. 3A and commented 
on in Additional file 3: Supplementary note 1.

Global transcriptomic changes analysis
Global transcriptomic changes between time points for 
each cell type separately were assessed with a Euclidian 
distance-based method, as described [36].

For each cell type separately, we calculated average 
expression over all cells of the same type at the same time 
point, generating a library of representative cells (e.g., a 
representative cell of monocytes at day 1 was represented 
as a vector of the same length as the number of expressed 
genes, where the ith value within that vector was an aver-
age expression of the ith gene overall monocytes recov-
ered at day 1). Next, we calculated the pairwise Euclidian 
distance between representative cells of the cell type 
between time points (e.g., monocytes at day 1 and mono-
cytes at day 2). This distance was compared to a random 
distance calculated based on 1000 permutations. In each 
iteration time point labels were shuffled between cells 
of the same type (e.g., a monocyte recovered at day 1 
might have been assigned as a monocyte at day 3 during 
a particular permutation), followed by calculation of the 
random representative cell type at the time point. The 
distance calculated between two different time points for 
each cell type was then compared to the null distribution 
of distances obtained from permutations.

Differentially expressed genes
For single-cell data, DEGs were identified between aller-
gen stimulated and diluent stimulated patients for each 
time point using Monocle (version 2.6.41) [37, 38] in 
R (v3.4) [32], as previously described [20]. When set-
ting up the data for analysis, using newCellDataSet() 
function, a negative binomial distribution was defined 
(expressionFamily=negbinomial) and the lowest detec-
tion limit was set as lowerDetectionLimit= 0.5. Genes 
detected in at least three cells within a group were 
included in differential expression analysis using the dif-
ferentialGeneTest() function. Genes were considered as 
significantly differentially expressed if the q-value < 0.05. 
Additionally, DEGs were calculated between allergen-
stimulated allergic and healthy individuals, for each time 
point, and between uncultured control samples from 
allergic and healthy individuals.

Identification of pathways, URs, and construction of MNMs
Pathways and URs were identified using the ingenu-
ity pathway analysis (IPA) software (2019Q4-2021Q1) 
from January 19 to May 2021 [39]. Specifically, path-
ways in DEGs from bulk and single-cell data were iden-
tified using Canonical Pathways of Core analysis in IPA. 
To construct MNM at each time point, we started by 
identifying disease-associated genes (i.e., DEGs between 
allergen stimulated cells in patients and healthy controls) 
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using the methods described above. If >5000 DEGs were 
found between two groups, the top 5000 DEGs (lowest 
q-values) were used for the IPA analysis, due to limita-
tions of size allowance in IPA. Using those gene lists, 
MNMs were constructed: The Upstream Analysis of IPA 
software was queried for prediction of the URs of cell 
type-specific DEGs for each cell type at each time point 
separately. If such an UR was found in another cell type, 
a directed interaction between the two cell types was 
inferred. This analysis was performed at each time point 
separately. Here, we focused on URs that were secreted 
or membrane bound. If such an UR was found, an inter-
action was assumed between the cell types. For example, 
PDGFB was a predicted UR of DEGs in all cell types at 
day 2. PDGFB was identified as a DEG in monocytes. 
This observation led to the identification of a potential 
directed interaction from monocytes to all other cell 
types at day 2 (Fig.  7C). To reduce complexity, we did 
not incorporate potential autocrine interactions between 
monocytes.

Potential drug identification
All possible drugs targeting DEGs at different time points 
in all cell types separately were identified with Molecules 
of Core analysis in IPA. Top 5000 DEGs were used for the 
IPA analysis, due to limitations of size allowance in IPA.

Identification and ranking of the most important predicted 
URs or pathways
First, we analysed the top 5000 DEGs in all cells at all 
time points by IPA (version 2019Q4-2020Q1) from Janu-
ary 19 to May 2021 [31]. We identified all predicted URs 
and retrieved the lists of URs of each cell type, which 
were selected according to the following criteria: P-value 
<0.05 and |z-score| ≥2. Next, we counted the number of 
occurrences for each significant UR of each cell type at 
each time point. Finally, we ranked all significant URs, 
or pathways, based on the number of occurrences. We 
repeated the same analyses for enriched pathways of each 
cell type at each time point.

In vitro validation assays
For blocking experiments, PBMCs (1 ×  106 cells) from 
eight SAR patients were stimulated for 5 days with 10 
μg/mL BPE in the absence or presence of either a neu-
tralizing anti-human IL-4 antibody (MAB204) or anti-
human PDGF-BB antibody (AF-220-NA, both from R&D 
Systems, Minneapolis, USA) at a concentration of 5 μg/
mL. Cell culture supernatants were collected at day 5 
and the levels of IL-6, IL-13, and VEGF were measured 
by Luminex technology on a Bio-Plex 200, according to 
the manufacturer’s specifications (Bio-Rad Laborato-
ries, California, USA). After collection of cell culture 

supernatants, PBMCs (2 ×  105 cells) were transferred to 
a 96-well plate and after another 16 h, T-cell prolifera-
tion was evaluated using incorporation of tritiated thymi-
dine. Stimulation indices (SI) were calculated by dividing 
counts per minute (cpm) measured in stimulated cultures 
by cpm in cultures without stimuli.

Validation experiment using human magnetic multiplex 
beads assay
The detection sensitivity for the protein and cytokine 
assays were CCL5 1.8 pg/mL; IL-4, 9.3 pg/mL; GM-CSF 
(CSF2): 4.1 pg/mL; IFN-α: 0.26 pg/mL; IFN-γ: 0.4 pg/mL; 
IL1RN, 18.0 pg/mL; IL-5, 0.5 pg/mL; IL-13, 36.6 pg/mL; 
PDGF-BB, 0.2 pg/mL. We used a five-parameter logis-
tic curve to get the standard curve. Any sample that fell 
outside the recovery range (70~130%) in the curve area 
was considered inaccurate. If protein values lay outside 
of the detection limit for calculations, we assumed they 
were either the highest detection limit or a value of zero. 
We then performed a double-sided Wilcoxon rank sum 
test, by IBM SPSS statistics version 26, to compare pro-
tein concentrations in serum and supernatant between 
patients and healthy controls.

Other datasets information
In this study, we used two bulk profiling datasets and 
two scRNA-seq datasets, which included inflammatory 
diseases, namely atopic dermatitis (AD), ulcerative coli-
tis (UC), and Crohn’s disease (CD). The bulk microarrays 
were used to analyze the gene expression in endoscopic-
derived intestinal mucosal biopsies from patients with 
inflammatory bowel diseases (UC and CD) and healthy 
controls, and intestinal mucosal biopsies included both 
lesional and non-lesional gut mucosa in GSE75214 [40] 
(in total 97 UC patients, eight CD patients, and 11 con-
trols). GSE32924 [41] included paired samples of both 
lesional and non-lesional skin from 12 patients with AD 
compared with normal human skin from eight healthy 
controls [41]. Using GEO2R [42] with default settings, 
we identified DEGs between lesional and healthy con-
trol samples, as well as between non-lesional and healthy 
controls, in the gut or skin, from patients with UC, CD, 
or AD. The data were annotated using the National 
Center for Biotechnology Information (NCBI) generated 
platform [43]. They were then adjusted for multiple test-
ing using the Benjamini-Hochberg procedure [44]. The 
data were then sorted to only include significant DEGs 
(FDR < 0.05) for downstream analysis, which included 
GWAS gene enrichments. Genome-Wide Association 
Studies (GWAS) genes were obtained from DisGeNET 
[45] (data downloaded on Feb 9, 2021). In total, 416 
GWAS genes for CD, 359 genes for UC, and 126 genes 
for AD were retrieved. Enrichment analyses of GWAS 
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genes respective DEGs were performed using Fisher’s 
exact test. All genes from respective datasets were used 
as background for the enrichment analysis.

URs were identified using The Upstream Analysis of 
IPA. Significant URs were selected based on |z-score|≥2 
and overlap P-value < 0.05. Similarly, all drugs with pos-
sible effects on DEGs were identified using Molecules 
of Core analysis in IPA as described above. To view how 
DEGs were predicted to interact with each other in AD 
(GSE32924 [41]), we created a gene network using Net-
works of Core analysis in IPA. First, Molecules tool was 
used to identify all possible networks representing inter-
actions between single UR and a single-downstream 
effect (function/disease) and the dataset genes involved 
in both. The top five networks with the highest consist-
ency score were merged and visualized as a graph.

The scRNA-seq data for UC included 12 colon biop-
sies from five patients including four non-inflamed and 
four inflamed biopsies as well as four healthy individu-
als [46]. The DEGs between biopsies from non-inflamed 
tissues from patients and healthy controls, as well as 
between inflamed biopsies from patients and healthy 
controls were downloaded from [46] and used for 

further downstream analyses. The scRNA-seq data for 
CD (E-MTAB-8901) included ileum biopsies from seven 
patients and eight healthy individuals, where five sam-
ples were from inflamed tissue, two samples from non-
inflamed tissue, and eight samples from healthy control 
tissue [47]. Using the processed data, with cell types as 
identified in [47], we identified DEGs between non-
inflamed and healthy ileums, as well as between inflamed 
and healthy ileums, using Monocle as described under 
the “Differentially expressed genes” section above.

Results
Allergen‑stimulation induces a Th2‑like response in PBMC 
from SAR patients
To establish a complex disease model, we performed 
in vitro allergen-challenge of PBMCs from SAR patients 
and healthy controls [48]. Sera and supernatants were 
harvested before and after 12 h, as well as after 1, 2, 
3, 5, and 7 days of incubation. Serum levels of IL-4 
(P-value = 0.01) and IL-13 (P-value = 0.039), but not 
IL-5, were significantly higher in allergic patients than 
in healthy controls (Fig.  2). In supernatants of allergen-
challenged PBMCs from allergic patients, IL-4 was 

Fig. 2 Th1/2cytokine levels in supernatants from allergen-stimulated PBMC and sera from healthy controls and allergic patients. A IL-4, IL-5, and 
IL-13 levels in sera. B IFN-γ, C IL-4, D IL-5, and E IL-13 levels in supernatants. *P-value < 0.05, **P-value < 0.01, Wilcoxon signed rank test
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significantly higher at early time points, while IL-5 and 
IL-13 increased at later time points (Fig. 2C, E). All Th2 
cytokines showed considerable inter-individual differ-
ences between patients (Additional file 3: Fig. S1). In con-
trast to Th2 cytokines, no significant differences in the 
signature Th1 cytokine IFN-γ were found between SAR 
patients and controls (Fig. 2B). These data were in agree-
ment with current understanding of allergic inflamma-
tion resulting from increased activity of Th2 cells relative 
to Th1 cells and thereby support our disease model [49].

scRNA‑seq shows great diversity of gene expression 
changes in SAR patients across time points and cell types
The increase of Th2 cytokines in supernatants supported 
their potential UR roles in this in vitro model of allergic 
inflammation. However, previous studies by us and oth-
ers have shown altered expression of thousands of genes 
in allergen-stimulated CD4 + T cells [49]. To assess the 
roles of Th2 cytokines relative to the many other DEGs, 
we performed Seq-Well-based massively parallel scRNA-
seq on PBMC from three SAR patients and four healthy 
controls at all time points before and after allergen or 
diluent treatment. After filtering using a minimum of 
10,000 reads and 400 transcripts per cell, we captured 
34,897 cells after performing quality controls, with an 
average of 712 cells per individual and time point (Addi-
tional file 4). Cell type classification was performed using 
Reference Component Analysis (RCA, the “Materials and 
Methods” section ) [33]. In total, we identified ten cell 
types, or subsets thereof, namely B lymphocytes, mono-
cytes, dendritic cells, CD8+ T lymphocytes, NK cells, 
naïve T (NT) cells, regulatory T (Treg) cells, Th1 cells, 
Th2 cells, and Th17 cells (Fig. 3A, Additional file 3: Fig. 
S2 and S3).

To assess systematically global transcriptome shifts 
triggered by allergen stimulation in cells derived from 
allergic patients, we performed Euclidian distance- and 
permutation-based analyses (Fig. 3B; the “Materials and 
Methods” section). In summary, these analyses showed 
that allergens stimulated a great diversity in transcrip-
tomic shifts across time points, in which Th2 cytokines 
were not most differentially expressed: In short, for each 
cell type analyzed separately, we computed an aver-
age expression profile and analyzed how much each cell 
type’s expression profile differed from each other. Next, 

we performed differential gene expression analyses, com-
paring patients and controls at each time point following 
allergen-stimulation, and for each cell type separately 
(the “Materials and Methods” section). These DEGs 
reflected a great diversity of pathways across cell types 
and time points. The median number of pathways per cell 
type was 195 (0–288) (Fig.  3C, Additional file  5). Since 
this diversity was found even before allergen-stimulation, 
analysis of that time point did not indicate an early UR 
pathway that activated other pathways in a linear hier-
archy (Fig.  4A). This complexity suggested that specific 
therapeutic targeting of the most significant pathway 
in one cell type would not suffice because of multiple 
other activated pathways in the same or other cell types. 
Indeed, the DEGs from the scRNA-seq data could be 
targeted by 1619 possible drugs (Fig.  4B). The median 
number of drugs targeting DEGs in any cell type at any 
time point was 231 (range: 1–671) (Additional file  6). 
Thus, an impractical number of drugs targeting multi-
ple pathways might be needed. This cellular and molec-
ular diversity was also found when specifically focusing 
on Th1 and Th2 cytokines. Although patients displayed 
Th2-like responses, and controls had Th1-like responses 
when comparing allergen- and diluent stimulated cells, 
these responses varied greatly across cell types and time 
points. A similar complexity was found in comparisons 
between allergen-stimulated cells from patients and con-
trols (Additional file 7).

In order to assess systematically the UR roles of Th2 
cytokines relative to other URs, we bioinformatically 
inferred all URs of the DEGs in each cell type. These 
URs were ranked based on the number of cell types and 
time points at which the URs had significant effects on 
the DEGs they were predicted to regulate (Additional 
file 8). These analyses were performed for DEGs derived 
from comparisons between allergen-stimulated cells 
from patients and controls, in all cell types at all time 
points. In other words, we searched for and prioritized 
the URs that differed the least between time points. 
Instead of Th2 cytokines, the top-ranking URs (rank 
number) were PDGFB (1), IFN alpha and beta recep-
tor subunit 2 (IFNAR2) (2) and its ligand IFNA2 (15), 
prolactin (PRL) (3), and C–C motif chemokine ligand 5 
(CCL5) (14) (Additional file 8 and Fig. 7D). All of these 
genes were predicted URs before allergen-stimulation, 

(See figure on next page.)
Fig. 3 Diversity of gene expression across cell types and time points. A Principal component visualization of how each single-cell transcriptome 
correlated with cell type-specific bulk transcriptomes [33]. Only allergic patients’ cells stimulated with allergen are presented in the figure. Cells 
were classified into subsets in three main steps using RCA [33]. B Dot plot showing global transcriptomic shifts assessed with Euclidian distance (Ed) 
compared to a random distribution. Red and blue colors denote that empirical Ed was higher and lower than the random mean Ed, respectively. 
The size of the nodes represents empirical Ed. C Dot plot presenting all pathways enriched in DEGs at any time point in Treg cells. The colors of 
the dots represent different time points (not significant – ns, enrichments are shown with gray color), whereas their size denotes enrichment 
significance -log10(P-value)
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Fig. 3 (See legend on previous page.)
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Fig. 4 Ranking of pathways and therapeutic targets. A Heatmap of top 50 pathways ranked based on their enrichment in different cell types at 
different time points (|z-score|≥ 2 and P-value < 0.05). The color intensity of orange and blue boxes indicates significance of enrichment. Gray boxes 
indicate non-significant predictions. An orange box indicates directions of the differential expression that match the predicted direction, while a 
blue box indicates the opposite (z-score ≥2 or ≤−2, respectively). B Heatmap representing top 50 drugs predicted to target most of the cell types 
at most time points. A blue square means that the drug was predicted to target a cell type at the time point, and a white square denotes that 
the drug was not predicted to target a cell type at the time point. Drug names identified with IPA were matched with DrugBank drug names. For 
matching drugs American Hospital Formulary Service (AHFS) classification numbers were retrieved, and the overriding categories listed at RxID [50] 
are reported in the figure. The inserted boxes on the right correspond to the top 30 pathways (A) and drugs (B) in the left boxes
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as well as most other time points. We next analyzed the 
protein products of the highest-ranking URs in superna-
tants from the eight SAR and six healthy control samples. 
We found significant increases of PDGF-BB and IFN-α at 
most time points, while CCL5 was only significant at 12 h 
and 1 day (Fig. 5).

To obtain a functional overview of the mechanisms 
regulated by the top-ranking URs, we performed pathway 
analysis of the DEGs that were predicted to be regulated 
by these URs. Pathway analysis of the putative PDGF-BB-
regulated genes showed that these had highly pleiotropic 
effects of potential relevance for allergies: B cell signaling, 
cell migration and proliferation, immune response, and 
cytokine-related pathways, for example, via IL-6, IL-7, IL-8, 
and IL-15 signaling (Additional file 9). The corresponding 
analyses of IFN-α and CCL5-regulated DEGs also showed 
enrichment of cytokine-related pathways (Additional files 
10 and 11). Interestingly, IL1 receptor antagonist (IL1RN), 
an anti-inflammatory gene, decreased at all time points 
in most cell types. This observation supports previous 
research pointing to IL1RN as a potential drug for treating 

allergies [51]. Taken together, these results showed multi-
ple URs and pathways the functions of which varied greatly 
across cell types and time points. Collectively, the DEGs 
interacted in multi-directional networks, rather than lin-
ear, unidirectional hierarchies, between cell types. The 
highest ranking Th2 cytokine URs were IL5 (rank number 
13) and IL4 (59). By contrast, IL13 did not have significant 
predicted effects on downstream mRNA expression levels 
in any of the cell types (Additional file  8). This observa-
tion was consistent with the significant early increases of 
IL-4 and IL-5 protein levels, while IL-13 did not increase 
significantly until day 7 (Fig.  2), such that downstream 
effects of IL-13 could be delayed compared to IL-4 and 
IL-5. This delay also suggested a possible linear hierarchy 
in which IL-4 and/or IL-5 regulated IL-13. To test this pos-
sibility, we examined if neutralization of IL-4 in allergen-
stimulated PBMC from SAR patients affected the levels of 
IL-13, and two other proteins predicted to be regulated by 
IL-4, namely IL-6 and vascular endothelial growth factor 
A (VEGFA). The addition of neutralizing anti-IL-4 (aIL-
4) antibodies resulted in a significant decrease of IL-6, but 

Fig. 5 Protein expression patterns of predicted URs in supernatants of allergen-stimulated PBMC from SAR patients and controls. A PDGF-BB, B 
IFN-α, and C CCL5 levels in supernatants. *P-value < 0.05, **P-value < 0.01, Wilcoxon signed rank test



Page 13 of 21Li et al. Genome Medicine           (2022) 14:48  

not of IL-13 or VEGFA levels (Fig. 6A–C). To demonstrate 
that the observed effect was not due to a reduced T cell 
response to allergen, we assessed allergen-induced lym-
phoproliferation in the absence or presence of aIL-4. The 
proliferation of allergen-specific T cells was not affected by 
aIL-4 antibodies (Fig.  6D). Taken together, these analyses 
suggested that Th2 cytokines had variable regulatory roles 
relative to other URs and that there was no linear hierar-
chy between IL-4 and IL-13. Since in vitro stimulation may 
not be representative of the complex interactions between 
immune and stroma cells in allergic tissues, we assessed 
the in vivo relevance of our findings by comparisons with 
bulk profiling data from patients with AD [41]. None of the 
three Th2 cytokines were differentially expressed or pre-
dicted UR (Additional file 3: Fig. S4 and Additional file 12). 
Similar to the scRNA-seq data the DEGs formed a complex 
network in which no linear hierarchy was found (Addi-
tional file 3: Fig. S5). Pathway analysis of the bulk profiling 
data also showed a great diversity (Additional file 12).

Time series MNMs support multidirectional interactions 
without linear hierarchies
A limitation of the above analyses of molecular interac-
tions is that they were performed in each cell type sep-
arately, without considering intercellular interactions. 
Thus, although we did not find that intracellular interac-
tions were organized in linear hierarchies, it is possible 
that there could be such hierarchies between cell types. 
If so, the interactions might be traced to a UR gene, par-
ticularly at early time points at which the disease pro-
cess was initiated. To test this possibility, we constructed 
multicellular network models (MNMs) of all the time 
points and found predicted directed molecular interac-
tions between cell types. Yet again, however, none of the 
MNMs showed interactions that were organized in uni-
directional linear hierarchies. The interactions were bio-
informatically inferred by linking the DEGs in each cell 
type to their predicted UR in all other cell types (Fig. 7A) 
[39]. For example, PDGFB increased in monocytes at day 

Fig. 6 Effects of neutralization of IL-4 on IL-13, IL-6, and VEGF from allergen-stimulated PBMC from SAR patients. A IL-16, B IL-13, and C VEGF levels 
in supernatants harvested at day 5; D allergen-specific lymphoproliferation. Red lines in box plots indicate median values, *P-value < 0.05, Wilcoxon 
signed rank test. The different shapes of data points represent different SAR patients

(See figure on next page.)
Fig. 7 Construction of MNMs and prioritization of URs. A (1) Determination of DEGs (red) in a cell type (gray). (2) Bioinformatic identification of the 
predicted UR of the DEGs. (3) Identification of another cell type (blue) in which that UR is differentially expressed. (4) A directed interaction from 
the blue to the gray cell type is formed. B Example of one MNM (at 0 h) which was constructed based on directed interactions as described in 
A. C MNMs created at each time point. Node sizes correspond to the number of DEGs between cells isolated from patients compared to healthy 
controls. Edge width represents the number of predicted URs. Edge color corresponds to the source cell. D Heatmap of top 40 URs ranked based 
on the number of cell types that each UR is predicted to regulate at different time points. Color intensity boxes indicate the statistical significance of 
predictions. Grey boxes indicate non-significant predictions. A positive z-score indicates that the direction of the differential expression matches the 
predicted direction (orange), while a negative z-score indicates the opposite (blue). The inserted boxes on the right correspond to the top 20 URs 
in the left boxes. E, F Dynamic UR-target models showing predicted cell-type targets of PDGF-BB and IL-4 in allergen-stimulated patients. Node size 
denotes the significance of the association (z-score)



Page 14 of 21Li et al. Genome Medicine           (2022) 14:48 

Fig. 7 (See legend on previous page.)
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2 and was a predicted UR of DEGs in all cell types, which 
led to the identification of a directed interaction from 
monocytes to all other cell types at day 2 (Fig.  7A–C). 
However, all MNMs from allergen-stimulated PBMC 
from patients vs. controls, as well as between allergen vs. 
diluent stimulated PBMC in SAR patients and controls, 
were multi-directional without any evident linear hierar-
chies (Fig. 7B, C, Additional file 3: Fig. S6). Importantly, 
even before allergen-stimulation, a highly complex, 
multi-directional MNM was found. At each time point, 
we found a median of 10 (range 1–23) URs that were pre-
dicted to target a median of 2 (1–9) cell types.

Ranking and prioritization of URs based on their 
downstream effects
Since no single-UR gene could be identified at any time 
point, we reasoned that a tractable strategy to prioritize 
URs would be to rank them based on their downstream 
effects. In short, the rank of each UR was inferred from 
the number of predicted target cell types with signifi-
cant enrichment of downstream genes of that UR among 
DEGs at all time points (Fig. 7D–F, Additional file 8).

We focused on PDGFB because it had the highest 
rank at all time points, even before allergen-stimulation; 
the pleiotropy of its downstream DEGs; and consist-
ent increases of its protein product at all time points. 
We tested the effects of a neutralizing anti-PDGF-BB 
(aPDGF-BB) antibody on the release of IL-6, IL-13, 

and VEGF from allergen-stimulated PBMC. The analy-
ses were performed on PBMC from eight different SAR 
patients, and the cytokines were selected because they 
are the predicted targets of PDGF-BB [52–55]. This stim-
ulation resulted in significant decreases of IL-6 and IL-13 
(Fig.  8A, B). We also observed a tendency for reduced 
VEGFA, however, without reaching statistical signifi-
cance (Fig. 8C). Allergen-induced T cell proliferation was 
not affected (Fig. 8D).

Taken together, these analyses supported that URs 
could be ranked and prioritized, despite the large and 
time-dependent variations on cellulome- and genome-
wide scales. However, the ranking strategy could be con-
founded by being derived from an in vitro model of only 
one disease. We therefore proceeded to test the strategy 
in in vivo data from other diseases.

Meta‑analysis of inflammatory diseases supports 
the importance of URs that are shared across time points 
and cell types
The time series scRNA-seq analysis of allergen-stimu-
lated PBMC in SAR pointed to two systems-level factors 
complicating the prioritization of URs: multiple patho-
genic mechanisms that (1) interact in multidirectional 
networks, rather than in linear hierarchies and (2) vary at 
different disease stages. To examine if these factors were 
generalizable to other diseases, we analyzed bulk and 
single-cell profiling data from non-lesional and lesional 

Fig. 8 Effects of PDGF-BB neutralization on the release of IL-6, IL-13, and VEGF from allergen-stimulated PBMC. A IL-6, B IL-13, and C VEGF levels in 
supernatants harvested at day 5; D allergen-specific lymphoproliferation. Box plots are shown, red lines indicate median values, * P-value < 0.05, 
Wilcoxon signed ranks test. The different shapes of data points represent different SAR patients
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biopsies from three other diseases, AD, ulcerative colitis 
(UC), and Crohn’s disease (CD), as well as from healthy 
controls [40, 41, 46, 47]. We reasoned that the two types 
of biopsy specimens represented different stages of each 
disease, similar to PBMC before and after allergen-stim-
ulation. Indeed, the bulk profiling data from each disease 
showed thousands of DEGs that differed greatly between 
the two states (Additional files 12, 13, and 14). These 
DEGs formed multi-directional networks that were 
enriched for multiple pathways and URs, which only par-
tially overlapped (Additional file 3: Fig. S6). For example, 
in UC, there were 2889 DEGs in non-lesional and 9387 
DEGs in lesional gut biopsies. These DEGs were the 
predicted targets of 206 and 708 drugs, respectively, of 
which 175 overlapped (Additional file 13). In support of 
the pharmacological relevance of prioritizing overlapping 
URs, TNF was a top-ranking UR in both non-lesional and 
lesional biopsies, which agrees with the known impor-
tance of TNF as a drug target; however, lesional gut biop-
sies also included other top-ranking URs like IFNG, IL1B, 
and colony-stimulating factor 2 (CSF2). All four URs, 
and the DEGs they were predicted to regulate, interacted 
in partially overlapping networks without any evident 
linear hierarchy. Moreover, there were 99 other URs in 
non-lesional and 315 URs in lesional gut in UC. A similar 
complexity was found in AD and CD (Additional files 12 
and 14).

The absence of linear hierarchy could depend on the 
UR predictions being derived from bulk profiling data, 
which do not distinguish between molecules that inter-
act within or between cells. To address this limitation, we 
constructed scRNA-seq-based MNMs from non-lesional 
and lesional gut biopsies from patients with CD and 
UC [46, 47]. Similar to MNMs from allergen-stimulated 
PBMC from SAR patients, we found multi-directional 
networks of great diversity between non-lesional and 
lesional biopsies (Fig. 9, Additional file 3: Fig. S5). In CD, 
the MNMs were the predicted targets of 643 and 2114 
drugs in non-lesional and lesional biopsies (Additional 
file 15). The corresponding numbers for UC were 957 and 
1359 drugs, respectively (Additional file 16). There were 
135 and 668 predicted URs in non-lesional and lesional 
biopsies of CD as well as 167 and 325 in UC, respec-
tively, of which 120 and 141 overlapped. Similar to the 
bulk-profiling data, TNF was the top-ranking UR in non-
lesional and lesional UC. TNF was also top-ranking URs 
in CD, but not in non-lesional CD. The top-ranking URs 
in CD and UC included PDGFB, IFNA2, IL1, and IFNG. 
Taken together, both bulk and single-cell data indicated 
that prioritization of drug targets would be complicated 
by multiple URs, which differed between disease stages. 
We reasoned that the prioritization could be simplified 
by searching for DEGs and URs that were enriched for 

genetic variants identified by Genome-Wide Associa-
tion Studies (GWAS). We identified GWAS genes from 
each disease using DisGeNET (data downloaded from 
February 9, 2021 version). We identified 416 genes for 
CD, 359 genes for UC, and 126 genes for AD. We applied 
Fisher’s exact test to test the enrichment of GWAS genes 
in DEGs. We found that DEGs from bulk-profiling data 
from UC and CD, but not AD, were enriched for GWAS 
genes. The enrichment was more significant in lesional 
than non-lesional states of UC and CD. The respective 
P-values for lesional and non-lesional states were 4.44 
×  108 and 0.028 for UC. The corresponding P-values 
for CD were 9.34 ×  107 and 0.039. The GWAS-enriched 
DEGs from lesional states were part of a wide variety of 
inflammatory, proliferative, and metabolic pathways, 
some of which were also significant in non-lesional UC 
(Additional file 17). Those overlapping pathways included 
IL-17 signaling (increased) and cholecystokinin/gastrin-
mediated signaling (increased). Both pathways con-
tain URs that are potential drug targets, namely IL17A, 
IL17RA, and TNF. In CD, the GWAS-enriched DEGs 
from the lesional biopsies were also components of a 
wide variety of pathways. The corresponding DEGs from 
non-lesional biopsies were not enriched for any path-
ways; however, one of the top URs, triggering recep-
tor expressed on myeloid cells 1 (TREM1), regulated 
one of the most significant GWAS-enriched pathways 
in lesional CD, namely TREM-1 signaling. TREM-1 is a 
major amplifier of innate immune responses and a drug 
candidate in inflammatory diseases [56].

Discussion
Despite increasing numbers of drugs that precisely tar-
get genes considered URs, many patients do not respond 
adequately to drug treatment. One reason for this sig-
nificant pharmacological shortcoming is the complex-
ity of the cellulome- and genome-wide changes in many 
diseases. Other reasons are that diagnosis and treatment 
are often delayed because of the late occurrence of symp-
toms in disease processes that evolve over long periods. 
The aim of medical digital twins is to bridge this gap by 
providing dynamic multi-scale models of diseases or 
individual patients. Broadly speaking, a digital twin has 
been defined as an in silico model that brings together 
the technology to map, monitor, and control real-world 
entities by continually receiving and integrating data 
from the physical twin to provide an up-to-date digital 
representation of the physical entity [57].

Early examples, like the artificial pancreas, which is 
currently undergoing clinical trials [6], as well as meth-
ods to integrate multi-scale data, support the poten-
tial of digital twins [58]. However, limitations of these 
examples are that they neither show disease-associated 
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changes on cellulome- and genome-wide scales, nor 
prioritize between such changes. This type of analysis 
of disease-associated changes and their prioritization 
is crucial for identification of the most relevant disease 
genes, as well as diagnostic and therapeutic targets [3]. 
In this study, we hypothesized that these problems could 
be resolved by time series scRNA-seq-based MNMs 
to trace UR cell types and genes. We found that these 
MNMs could model disease-associated gene expression 
changes across multiple cell types in four immunologi-
cal diseases, as well as molecular interactions between 
those cell types. Because the interactions formed multi-
directional networks, rather than linear hierarchies, 

tracing the molecular interactions to an UR cell type and 
gene was impossible in any of the diseases. Instead, the 
MNMs were regulated by multiple URs that could be 
ranked quantitatively based on their cellular and molec-
ular effects. In agreement with the known efficacy of 
drugs targeting TNF in autoimmune diseases, this gene 
was among the top-ranking URs in both UC and CD. In 
SAR, IL-4 was a significant, but not a top-ranking UR. 
Together, these findings support that MNMs are appli-
cable to model cellulome- and genome-wide changes in 
diseases and potentially to prioritize URs. We propose, 
therefore, using MNMs as a scalable approach to inte-
grate such models in digital twins. However, our findings 

Fig. 9 MNMs of different states of UC and CD. A Lesional state in CD, B non-lesional state in CD, C lesional state in UC, and D non-lesional state in 
UC
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also indicate levels of complexity that challenge current 
paradigms for diagnostics and therapeutics. While such 
challenges may seem intractable, the suffering and costs 
associated with the large number of patients who do not 
respond to treatment emphasize the urgency in address-
ing systematically those challenges. Our strategy to iden-
tify and rank URs may be one solution. For example, in 
UC and CD, the top ranking URs included candidate 
drug targets other than TNF, such as IL-1 and IFNG, sug-
gesting that combinatorial treatments may be needed. As 
recently reviewed, such combinations may include bio-
logical drugs specifically targeting individual URs, more 
broadly acting immunosuppressive drugs, as well as new 
modalities like cellular therapies [59]. In addition to tar-
geting one or more top-ranking URs, another solution for 
personalized treatment combinations could be to target 
DEGs that are enriched for GWAS genes. This goal could 
be met by targeting the URs of those DEGs or other 
broadly acting modalities targeting the DEGs. We found 
that lesional states of UC and CD were enriched for 
GWAS genes, which belonged to pathways with a wide 
range of inflammatory, metabolic, and cell proliferative 
functions. This pleiotropy is supported by meta-analyses 
of GWAS, which implicate large numbers of genes of low 
or moderate effects that collectively contribute to com-
plex diseases [60–62]. Such meta-analyses are consistent 
with the notion that diseases reflect multiple perturba-
tions of complex intracellular networks [63]. Although 
the complexity and stage-dependent variations of the 
molecular changes, as well as the lack of linear hierarchy, 
make drug target prioritization a formidable challenge, 
our study points to other possible solutions for further 
studies. Stage-dependent variations indicate that a drug 
may be effective at one time point, but not another. This 
conclusion was supported by our studies of SAR and AD, 
in which Th2 cytokines, which are known drug targets, 
had variable mRNA and protein expression levels, ranks, 
and downstream experimental effects. This problem may 
be resolved by time series analysis to prioritize and tar-
get URs that have high ranks across multiple time points. 
Indeed, top-ranking URs in SAR, like PDGFB, had con-
sistent expression changes and downstream experimental 
effects. In UC, TNF had high ranks, which is consistent 
with drugs targeting TNF being extensively clinically 
used for autoimmune diseases. However, given the heter-
ogeneity of the effects of top-ranking URs, it is likely that 
combinatorial treatments will be required.

An important limitation of this study is that it is 
restricted to cellular and molecular changes. Although 
such changes are primary targets of pharmacological 
interventions, construction, analyses, and clinical imple-
mentation of digital twins will require integration and 

analyses of multiple types of clinically relevant data [3, 4]. 
Other technical limitations include problems associated 
with processing of scRNA-seq data, such as drop-outs. 
We have attempted to address such issues as described 
and commented upon in Additional file 18. Inference of 
ligand-receptor interactions based on IPA could be con-
founded by knowledge-bias. IPA is a commercial software 
that is based on comprehensive mining of the medical lit-
erature. Other non-commercial tools have been recently 
described that may be less knowledge-biased [14–16] To 
compensate for this potential limitation, we performed 
functional and bioinformatics analyses, such as searching 
for GWAS enrichment. It should also be noted that IPA 
also includes data from multiple, less biased, databases. 
Another potential limitation is that samples from SAR 
and AD patients were taken from sensitized individuals, 
which means that early, undetected events that influence 
later events in linear hierarchies cannot be excluded. 
Such early events may be inferred using gene regulatory 
networks [17]. Another problem is that the complexity 
of scRNA-seq analyses with current technologies makes 
their use in clinical settings impractical. However, there 
are case reports of scRNA-seq-guided treatments of 
individual patients with immunological and malignant 
diseases [64, 47]. One solution could be to structure 
centralized analyses to facilitate clinical implementation 
of scRNA-seq analyses [3, 8, 48, 65]. In clinical settings, 
this may result in time-dependent personalized prescrip-
tions of drug combinations, tailored to the time-varying 
disease state of an individual. Time-dependent prescrip-
tions could be simplified by focusing on treating states 
in which MNMs are least complex. For example, in UC 
and CD, MNMs from non-lesional tissues were less com-
plex than in lesional [3, 4]. Thus, biomarkers and drugs 
specifically targeting non-lesional MNMs or URs could 
be used during remission, to prevent relapse. Another 
option could be to develop drugs that convert lesional 
to non-lesional states in order to guide remission-induc-
ing therapies. Despite these challenges, the medical and 
economic needs to improve treatment efficacy, as well 
as genomic and computational advances, may pave the 
way for digital twins that include MNMs for predictive, 
preventive, and personalized treatment. This will require 
construction of multi-scale digital twins, which allow 
automated drug response predictions, as well as tools 
to functionally understand those predictions. Given the 
complexity of those challenges, large-scale international 
collaborative efforts will likely be required [3, 4].

It should be noted that our analyses are limited to 
allergic and autoimmune diseases. Therefore, further 
studies of other diseases are needed to examine if the 
findings are scalable.
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Conclusions
We present a scalable framework to model and pri-
oritize between dynamic changes in digital twins, on 
cellulome- and genome-wide scales. The importance 
lies in that each allergic and inflammatory disease may 
involve thousands of differentially expressed genes 
across multiple cell types, which vary at different dis-
ease stages. Therefore, prioritization of biomarkers 
and drug targets is formidable challenges. The novel-
ties lie in that organization and analysis of cellulome- 
and genome-wide data in digital twins have recently 
been described as intractable. We propose that our 
framework allows organization and prioritization of 
UR genes for biomarker and drug discovery. This may 
have far-reaching clinical implications, including iden-
tification of biomarkers for personalized treatment, 
new drug candidates, and time-dependent personal-
ized prescriptions of drug combinations.
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