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OBJECTIVE—Low birth weight is associated with diabetes in
adult life. Accelerated or “catch-up” postnatal growth in response
to small birth size is thought to presage disease years later.
Whether adult disease is caused by intrauterine �-cell–specific
programming or by altered metabolism associated with catch-up
growth is unknown.

RESEARCH DESIGN AND METHODS—We generated a new
model of intrauterine growth restriction due to fatty acid syn-
thase (FAS) haploinsufficiency (FAS deletion [FASDEL]). Devel-
opmental programming of diabetes in these mice was assessed
from in utero to 1 year of age.

RESULTS—FASDEL mice did not manifest catch-up growth or
insulin resistance. �-Cell mass and insulin secretion were strik-
ingly increased in young FASDEL mice, but �-cell failure and
diabetes occurred with age. FASDEL �-cells had altered prolif-
erative and apoptotic responses to the common stress of a
high-fat diet. This sequence appeared to be developmentally
entrained because �-cell mass was increased in utero in FASDEL
mice and in another model of intrauterine growth restriction
caused by ectopic expression of uncoupling protein-1. Increasing
intrauterine growth in FASDEL mice by supplementing caloric
intake of pregnant dams normalized �-cell mass in utero.

CONCLUSIONS—Decreased intrauterine body size, indepen-
dent of postnatal growth and insulin resistance, appears to
regulate �-cell mass, suggesting that developing body size might
represent a physiological signal that is integrated through the
pancreatic �-cell to establish a template for hyperfunction in
early life and �-cell failure with age. Diabetes 57:2698–2707,
2008

L
ow birth weight predisposes to type 2 diabetes,
cardiovascular disease, and premature death
(1,2), prompting the hypothesis (3) that impairing
growth in early life programs metabolic disease in

adulthood. Much of this programming is attributed to
postnatal catch-up growth, which is linked to insulin
resistance and cardiovascular disease later in life (4).
Modeling impaired growth in utero using calorie restric-

tion (5), protein malnutrition (6), prenatal glucocorticoid
administration (7), or ligation of the uterine arteries (8)
produces catch-up growth and glucose intolerance.
Catch-up growth is associated with changes in food intake,
metabolism, and insulin resistance that confound the
search for mechanisms linking low birth weight and adult
disease. In particular, insulin resistance increases �-cell
mass (9) and makes it difficult to determine whether adult
disease is caused by in utero �-cell–specific programming
instead of altered body composition and feeding behavior
associated with accelerated postnatal growth.

Insulin and its downstream signals are critical for
growth and development in species ranging from worms
and insects to mammals (10–15). In Drosophila, body size
is sensed in the fat body (equivalent to the vertebrate liver)
to antagonize insulin-induced growth by ecdysone (16). If
an analogous process occurs in mammals, �-cells are
likely involved because they are affected by mediators of
body size, including insulin, amino acids, and other signals
(17). These factors also regulate fatty acid synthase (FAS),
which catalyzes the first committed step in fatty acid
biosynthesis (18). FAS is regulated by nutrients indepen-
dent of insulin, suggesting that it could be important for
nutrient-dependent growth. Its global loss results in early
embryonic lethality (19). Tissue-specific inactivation of
FAS is possible (20), and, surprisingly, the loss of FAS in
pancreatic �-cells has no effect on �-cell mass or the
capacity to secrete insulin (21). Thus, FAS, unlike glucoki-
nase (22) and insulin receptor substrate (IRS)-2 (23), is not
required for normal �-cell function.

Here, we report that FAS heterozygous mice are born
small yet have expanded �-cell mass and increased insulin
secretion without insulin resistance. This hyperplastic
�-cell phenotype was reversed by promoting growth in
utero, and increased �-cell mass was confirmed in another
model of intrauterine growth restriction (IUGR). De-
spite the absence of catch-up postnatal growth, FAS-
deficient mice develop diet-induced diabetes and �-cell
failure with age.

RESEARCH DESIGN AND METHODS

Protocols were approved by the Washington University Animal Studies
Committee. FASflox/flox mice in a mixed (BL/6 and 129) background (20) were
mated to EIIaCre�/� transgenic mice (24) to yield mice heterozygous for the
floxed allele with (FAS deletion [FASDEL]) and without (wild type) Cre.
Littermates were used as controls for all experiments. Confirmation of FAS
gene rearrangement and genotyping were as described (20). Mice expressing
uncoupling protein (UCP)-1 in skeletal muscle (UCP-Tg) (25) at low levels do
not have growth restriction, but those with high-level expression (26) are
runted and were used in this study. Standard chow was Purina 5053. Mice
were fed a Western diet (Harlan-Teklad TD88137) for 10 weeks at various
ages.

Female wild-type (wt/flox EIIaCre�) or UCP-Tg mice were mated for 1
night (1700–0600 h) and observed for the presence of a vaginal plug. Sperm in
the vaginal smear marked day 0.5 of pregnancy. Females were placed in
individual maternity cages until E18.5, when fetuses were delivered by
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C-section, body weights and nasoanal lengths were recorded, and mice were
analyzed.

Serum glucose, cholesterol, triglycerides, free fatty acids, C-peptide, insu-
lin, and leptin; body composition and indirect calorimetry; glucose and insulin
tolerance tests; and FAS enzyme activity from freshly harvested tissues were
assayed as described (20,21). Food intake was measured over 1 week in
metabolic cages, following a week of acclimatization, and expressed as a
function of lean body mass (g0.75). Feed efficiency was calculated as the ratio
of body weight gained per day over the 10-week high-fat feeding period to food
intake per day.
Islet isolation and insulin secretion. Pancreatic islets were isolated by
collagenase digestion and hand-picked for secretion assays as described (21).
Ten islets of similar size per condition were cultured in media containing
either 3 or 16.7 mmol/l glucose, and insulin secreted in the media was assayed.
Insulin content was measured as described (21,27).
Hyperglycemic clamp studies. A square-wave hyperglycemic clamp was
performed (28). Indwelling catheters were placed into the right internal
jugular veins of mice, and animals recovered for 3 days. Saline was infused by
microinjector pump for 30 min then baseline insulin and C-peptide were
measured. Twenty percent D-glucose was infused rapidly to achieve target
glucose of 300–350 mg/dl, which was maintained for 2 h with frequent
monitoring. Tail bleeds were performed every 30 min to sample serum insulin.
C-peptide was assayed at the end of the clamp.

Histology, immunohistochemistry, and morphometry. E18.5 embryos
were fixed in 10% buffered formalin and embedded in paraffin. Then, 10-�m
sections made through the entire embryo were stained with hematoxylin and
eosin. Pancreata were dissected from adults and fetuses, weighed, immersion
fixed in Bouin’s solution, and embedded in paraffin, and 10 separate 5-�m
sections 150–200 �m apart were mounted. Immunohistochemical and mor-
phometric analyses for islet area, architecture, �-cell density, and �-cell and
non–�-cell mass by point-counting morphometry utilized described methods
(21,27–29). Unless otherwise specified, images are representative of eight
sections from a total of five to six animals per group.

For �-cell proliferation and apoptosis, sections were double immuno-
stained with anti-insulin and either anti–proliferating cell nuclear antigen
(PCNA) (1:200; Cell Signaling) or anticleaved caspase-3 (1:1,000; Cell Signal-
ing) followed by appropriate secondary antibodies (Vector). At least 500–
1,000 �-cell nuclei were counted per pancreas (three to four pancreata per
condition), and data are expressed as the percentage of insulin plus PCNA (or
cleaved caspase-3)-positive cells. Pancreatic, brain, and whole-mount embryo
sections were also stained with anti–473Ser-phosphorylated Akt (1:1,000; Cell
Signaling) and anti-insulin (1:500; Sigma-Aldrich) then detected with appro-
priate reagents.

Adipose tissue from gonadal fat pads was fixed in formaldehyde, and then
10-�m sections were mounted on glass slides and stained with hematoxylin
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FIG. 1. Generation of FASDEL mice. A: FASflox/flox mice with loxP sites (‹) flanking exons 4–8 (u) were mated with EIIaCre�/� animals to yield
FAS-deficient wt/flox EIIaCre� (post-Cre allele; FASDEL) and littermate control wt/flox EIIaCre- mice (wt). B: DNA from heart (HRT), liver
(LVR), islets (ISL), epididymal fat pads (FAT), kidney (KID), and cerebral cortex (COR) produced a 317-bp product (lanes 1–6, bottom panel)
using the primers denoted by small arrowheads in A, indicating appropriate deletion of exons 4–8 of the FAS gene. This product was absent in
wild-type (WT) tissues (top panel). C–E: RT-PCR for FAS and L32 expression (C), Western blotting for FAS and actin (D), and FAS enzyme
activity (E) in the indicated tissues from wild-type (WT) and FASDEL mice. F: Wild-type (WT) and FASDEL pups at birth (top panel) and their
body weight (bottom panel). G and H: Growth curves of male (G) and female (H) wild-type (WT) and FASDEL mice depicting body weight (top

panel) and naso-anal length (bottom panel) with age. E–H: Results are means � SE of 12–15 animals per group. *P < 0.05 vs. the corresponding
wild-type mice. (Please see http://dx.doi.org/10.2337/db08-0404 for a high-quality digital representation of this image.)
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and eosin. Diameter and area were measured in at least 300 cells per mouse in
each group with MetaVue imaging software (version 6.1; Molecular Devices).
In vitro apoptosis. Apoptosis was measured in islets cultured overnight in 10
mmol/l glucose RPMI media containing 10% fetal bovine serum using the
ApoPercentage kit (Biocolor), as described (29). Apoptotic cells, which
appeared bright pink against the white background of phenol red–free RPMI
were counted manually in a blinded fashion.
RT-PCR and immunoblotting. Snap-frozen tissue samples in liquid nitrogen
were processed for RNA extraction using Trizol, cDNA was prepared by
reverse transcription, and real-time PCR was performed (20,21). Primers were
FAS (forward 5�-AGGCTACACAGGCTCCAAATGA-GTACC-3�, reverse 5�-
AACCAACTGAACCTGAGCACACTGC-3�) and L32, an invariant control (for-
ward 5�-TAAGCGAAACTGGCGGAAAC-3�, reverse 5�-TCATTTTCTTCGCTGC
GTAGC-3�).

Tissue samples were homogenized in a buffer containing protease and
phosphatase inhibitors (20). Twenty-five micrograms of each tissue protein
extract was resolved on SDS-PAGE, transferred to polyvinylidene fluoride
membranes, and blotted using the following antibodies: FAS (1:1,000; a
generous gift from Sonia Najjar), total and 473Ser-phosphorylated Akt (1:1,000;
Cell Signaling), pancreatic duodenal homeobox factor-1 (1:1,000; Upstate),
total and 389Thr p70S6 kinase (1:1,000; Cell Signaling), IRS-2 (1:500; Upstate),
UCP-1 (1:1,000; Alpha Diagnostics), and actin (1:5,000; Sigma-Aldrich). After
incubation with the appropriate secondary antibodies (1:7,500), bands were
detected by chemiluminescence (ECL kit; Amersham) (20).
Statistics. Values are expressed as means � SE. Statistical comparisons were
performed using an unpaired, two-tailed Student’s t test (when two groups
were analyzed) or ANOVA. If the overall F was found to be significant for the
latter, comparisons between means were made using appropriate post hoc
tests. Correlations between birth weight (independent variable) and �-cell
mass (dependent variable) were studied using linear regression models. P

values �0.05 were considered significant.

RESULTS

FAS heterozygous mice are haploinsufficient. We gen-
erated mice with whole-body heterozygous FASDEL by
crossing FASflox/flox mice (20) with EIIaCre�/� transgenic
mice (24), which delete loxP-flanked DNA at the two- to
eight-cell stage. FASDEL (FAS wt/flox EIIaCre�) mice had
exons 4–8 deleted (Fig. 1A). FAS gene rearrangement was
demonstrated by Southern blotting and by PCR (20,21) in

an assay yielding a 317-bp product (Fig. 1B, bottom). FAS
message, protein, and enzyme activity were decreased by
�50% in FASDEL tissues (Fig. 1C–E). There were no
genotype differences in placental weights or morphology
(not shown).

FASDEL mice were haploinsufficient. FASflox/flox �
EIIaCre�/� crosses yielded a 3:1 ratio of wild-type to
FASDEL pups (1:1 predicted). There was no sex difference
with this cross, but female FASDEL mice mated to wild-
type males produced fewer surviving heterozygous pups
than the reciprocal cross. To minimize the effects of
maternal environment and increase FASDEL yield, preg-
nancies were carried by wt/flox EIIaCre� (wild-type)
females.

FAS haploinsufficiency was manifested by a 22% de-
crease in birth weight (Fig. 1F) and a persistent decrease
in weight and length without catch-up growth (Fig. 1G and
H). EIIaCre mice (without flox) studied in parallel grew
normally, indicating that the phenotype was not mediated
by Cre. Postnatal survival in FASDEL pups was normal.
FASDEL mice suckled appropriately and remained runted
postweaning, despite normal food intake and oxygen
consumption (online appendix Table 1 [available at http://
dx.doi.org/10.2337/db08-0404]).
Early growth restriction impairs �-cell reserve with

age. Chow-fed, 3-month-old FASDEL mice had lower
serum glucose compared with wild-type mice. Insulin
content of whole pancreas and isolated islets was in-
creased (online appendix Table 1). Free fatty acids were
decreased by �30% in 3-month-old FASDEL mice, suggest-
ing relative hyperinsulinemia (since insulin suppresses
lipolysis). In contrast, chow-fed, 12-month-old FASDEL
mice tended to have higher fasting glucose, hypoinsuline-
mia, and decreased whole-pancreas and islet insulin con-
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tent than 12-month-old wild-type mice (online appendix
Table 1).

FASDEL mice maintained a lower weight on a high-fat
diet (HFD) at 3 and 12 months of age (Fig. 2A–D).
Metabolic parameters for both HFD groups were similar at
3 months of age, but feed efficiency was decreased and VO2
increased in FASDEL compared with wild-type mice at 12
months of age (online appendix Table 2).

High-fat feeding had opposite effects on insulin levels in
3-month-old compared with 12-month-old FASDEL mice.
Three-month-old FASDEL mice on the HFD had lower
glucose, hyperinsulinemia (Fig. 3A), and enhanced glucose
tolerance (Fig. 3B) compared with wild-type mice. Twelve-
month-old FASDEL mice on the HFD were hyperglycemic
(Fig. 3C, top), hypoinsulinemic (Fig. 3C, bottom), and
glucose intolerant (Fig. 3D), which is striking because
adiposity was decreased in FASDEL mice (online appen-
dix Table 2).

FASDEL �-cell function was increased in early life and
decreased in later life. In 3-month-old HFD-fed FASDEL

mice, insulin levels were higher than in controls after
glucose injection (Fig. 3E), and cultured islets from these
mice secreted 2.5-fold more insulin than controls in re-
sponse to glucose (Fig. 3F). By 12 months the pattern was
reversed; insulin secretion was decreased in FASDEL
compared with wild-type mice (Fig. 3G and H). Similar
trends were present in 6- and 10-month-old FASDEL mice
(not shown).

Insulin secretory function was also studied using a
square-wave hyperglycemic clamp. With glucose between
300 and 350 mg/dl for 2 h (Fig. 3I and K), insulin (Fig. 3J)
and C-peptide (Fig. 3M) secretion were increased in young
FASDEL mice and decreased (Fig. 3L and N) in old
FASDEL mice compared with wild-type mice. Insulin
content of pancreas and islets (online appendix Table 2)
mirrored age-dependent effects on insulin secretion. Insu-
lin mRNA content was unaffected (not shown). Thus, FAS
haploinsufficiency produces insulin hypersecretion in early
life and hyposecretion with age.
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�-Cell mass in FASDEL mice. Islet area and �-cell mass
in mice on the HFD were increased in 3-month-old FAS-
DEL mice but decreased in 12-month-old wild-type mice
(Fig. 4A–C). Pancreatic weights did not differ by genotype
(online appendix Table 2). The same effects on mass were
seen with the standard chow diet (Fig. 4C) and at 2 and 4
weeks of postnatal life (not shown). Unlike wild-type
mice, which compensated for age and high-fat feeding by
increasing �-cell mass (Fig. 4C), 12-month-old FASDEL
mice had and approximately fourfold-reduced �-cell mass
(Fig. 4C). This was not due to FAS deficiency, since

�-cell–specific FAS knockout mice have no �-cell pheno-
type (21).

�-Cell mass, a predictor of diabetes (9), reflects cell
proliferation, size, neogenesis, and apoptosis (30). Prolif-
eration, assessed in vivo with PCNA staining, was in-
creased in 3-month-old FASDEL compared with wild-type
islets with the HFD (Fig. 4D and E). Wild-type mice
demonstrated an approximately fourfold compensatory
increase with age in the number of proliferating �-cells,
but older FASDEL mice had a 39% decrease (Fig. 4E).
Similar results were seen with standard chow (not
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shown). Wild-type and FASDEL islets showed similar
abundance and staining pattern for 	-cells as well as for
acinar architecture and cell density (not shown).

Islet number was similar in each genotype and age-
group on both diets. For example, on the HFD at 12
months, islet number per mm2 pancreas was 0.84 � 0.23 in
wild-type vs. 0.79 � 0.43 in FASDEL mice (n 
 6, P 
 NS).
Dividing �-cell area by �-cell nuclei showed that �-cell size
was unaffected by genotype (HFD-fed wild-type mice:
125 � 4 �m2, n 
 100; HFD-fed FASDEL mice: 119 � 5
�m2, n 
 110; P 
 NS). Similar results were obtained at
older ages, on the standard chow diet, and with estimates
of cell density (not shown). Three-month-old FASDEL
islets had more cells per islet (Fig. 4F) and increased DNA
content per islet (FASDEL: 42.3 � 2.3 ng/islet, n 
 8; wild
type: 28.9 � 1.5 ng/islet, n 
 6; P � 0.001). In the older
FASDEL mice, both cell number (Fig. 4F) and DNA
content per islet (wild type: 54.3 � 4.3 ng/islet, n 
 8;
FASDEL: 32.9 � 2.1 ng/islet, n 
 8; P � 0.001) were
decreased. Thus, increased �-cell mass in young FAS
haploinsufficient mice is due to hyperplasia.

Apoptosis was increased in old, but not young, FASDEL
islets. Proapoptotic caspase-3 was unaffected in 3-month-
old wild-type and FASDEL islets but increased more than
fourfold in FASDEL compared with wild-type islets at 12
months (Fig. 4G and H). Staining dispersed islets for
phosphatidylserine translocation (31) confirmed a �3.5-
fold increase in apoptotic cells in 12-month-old FASDEL
mice (Fig. 4I and J).

Phosphorylated Akt and pancreatic duodenal ho-

meobox factor-1, which regulate �-cell mass, islet de-
velopment, and insulin secretion, were increased in
3-month-old compared with 12-month-old FASDEL is-
lets (Fig. 4K, lanes 3 and 4 vs. 7 and 8). Total Akt (not
shown) and actin content (Fig. 4K) were unaffected.
Relative to wild-type mice, FASDEL 389Thr phosphory-
lation of p70S6K was increased at 3 months and de-
creased at 12 months (Fig. 4K, lanes 3 and 4 vs. 7 and
8), consistent with growth promotion and apoptosis
suppression by this protein.
Insulin responses in FASDEL mice. FASDEL mice were
more insulin sensitive than their control littermates at 2
weeks of age (not shown) and at 3 months on both
standard chow and HFD (Fig. 5A). This effect was not
detected at 12 months (Fig. 5B). Adipocyte size, recipro-
cally related to insulin sensitivity, was decreased in HFD-
fed FASDEL mice (Fig. 5C and D) and on standard chow
diet (not shown), suggesting that FASDEL mice are not
insulin resistant. Phosphorylated Akt in liver and muscle
(Fig. 5E) and IRS-2 protein (Fig. 5F) in liver were in-
creased in young FASDEL compared with wild-type mice.
These molecules were decreased in 12-month-old FASDEL
mice (Fig. 5E and F), reflecting their hypoinsulinemia.
Body size and pancreatic �-cell mass. In �15 litters at
E18.5 (when distinct islets appear) (31), FAS haploinsuf-
ficiency decreased fetal body weight by 21% (Fig. 6A and
B) and body length by 23% compared with wild-type
littermates, changes associated with a doubling of �-cell
mass (Fig. 6C and D) (online appendix Fig. 1A). Islet area
was increased approximately twofold, which is associated
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with increased proliferation and decreased apoptosis (Ta-
ble 1) without effect on �-cell size or density (not shown).
Since pancreatic weight, acinar architecture, and 	-cells
were unaffected (not shown), increased E18.5 FASDEL

insulin content (Table 1) appears to be due to increased
�-cell mass. Increased phosphorylated Akt was present in
E18.5 islets and whole fetus (especially brain) (Fig. 6E),
suggesting that expanded �-cell mass in FASDEL fetuses is
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TABLE 1
Morphometric parameters in E18.5 wild-type and FASDEL fetuses after feeding either standard chow or HFD to dams during
gestation

Parameters at E18.5
Standard chow during gestation HFD during gestation
Wild type FASDEL Wild type FASDEL

Islet number per mm2 0.28 � 0.06 0.31 � 0.09 0.29 � 0.12 0.32 � 0.14
Islet area (%) 0.54 � 0.09 1.04 � 0.07* 0.58 � 0.10 0.80 � 0.07†
Insulin plus PCNA-positive cells (%) 1.02 � 0.22 2.14 � 0.14* 1.34 � 0.17 1.67 � 0.11†
Insulin plus caspase-3–positive cells (%) 4.70 � 1.10 1.12 � 0.18* 4.50 � 1.80 2.28 � 0.14*†
Insulin content (ng/mg pancreas) 50.1 � 5.7 73.4 � 3.2* 54.7 � 3.8 62.8 � 3.5†

Data are means � SE. Complete pancreas sections from 10 to 12 fetuses at E18.5 of each genotype were analyzed. *P � 0.05 vs. the
corresponding wild-type control. †P � 0.05 vs. the FASDEL fetuses from standard chow–fed dams during gestation.
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not due to insulin resistance. In support of this notion,
glucose and free fatty acid levels were decreased, whereas
insulin levels were increased in E18.5 fetuses (online
appendix Table 3).

Feeding a HFD instead of standard chow to timed-
pregnant females to force fetal growth preferentially in-
creased the size of FASDEL mice and abolished the
genotype difference in body weight (Fig. 6F and G) and
�-cell mass (Fig. 6H and I). E18.5 FASDEL fetuses from
HFD-fed dams with increased body size showed a 25%
reduction in �-cell mass (Fig. 6G and I, bottom) (online
appendix Fig. 1A) and a 23% decrease in islet area (Table
1), largely due to an increase in apoptosis compared with
FASDEL fetuses from standard chow–fed dams (Table 1).

The association between fetal body size and fetal �-cell
mass was also confirmed in a different model of intrauter-
ine growth restriction, mice with ectopic expression of
UCP-1 in skeletal muscle (25,26) (Fig. 7A, top). Decreased
body size (Fig. 7A–C) persists and peripheral insulin
sensitivity is increased in these mice (26). Islet area and
�-cell mass in E18.5 UCP-1 fetuses from �10 litters were

inversely associated with intrauterine body size (Fig.
7D–F) (online appendix Fig. 1B). Increased �-cell mass
was due to a combination of increased �-cell proliferation
and decreased apoptosis (Fig. 7G and H).

DISCUSSION

Small infants have abnormal glucose metabolism as
adults, often preceded by the complicating effects of
catch-up growth (32,33). Here, we demonstrate that IUGR,
in the absence of insulin resistance or catch-up growth, is
associated with pancreatic �-cell hyperplasia with hyper-
function in early life and �-cell loss with secretory failure
in later life. These findings identify �-cell–specific devel-
opmental programming as a potential contributor to insu-
lin secretory dysfunction and disease.

In utero growth restriction was associated with an
expansion of �-cell mass (Figs. 4A and 6C). Glucose and
insulin are unlikely to be responsible. Glucose can stimu-
late �-cell replication (34), but islet hyperplasia occurs
without hyperglycemia (35). Hyperinsulinemia and insulin
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signaling have been implicated in expansion of �-cell mass
(36,37), but mice lacking insulin genes (Ins1�/�Ins2�/�)
(12,38) and both the insulin receptor and Igf1 receptor
(Insr�/�Igf1r�/�) (39) have increased fetal �-cell mass,
which is the opposite of expected results if �-cell growth
were insulin dependent. Though we cannot rule out effects
of FAS deficiency in other tissues on �-cell mass, a specific
decrease in �-cell FAS expression is unlikely to contribute
to the phenotype in FASDEL mice since �-cell–specific
inactivation of FAS has no effect on �-cell mass or function
(21).

Instead, the data suggest that intrauterine body size may
regulate �-cell mass. Both FASDEL and UCP-Tg E18.5
fetuses, distinct models with in utero growth restriction
(Figs. 6A and 7A) achieved through different mechanisms,
had increased �-cell mass (Figs. 6D and 7F) (online
appendix Fig. 1). Growth-restricted double knockout
Ins1�/�Ins2�/� and Insr�/�Igf1r�/�mice (12,39) also
have increased fetal �-cell mass. Single knockout Insr�/�

mice are not growth restricted and have normal fetal �-cell
mass (40).

However, not all models show a clear link between body
size and �-cells. Decreased fetal body size induced by
maternal protein restriction in the last trimester of preg-
nancy in rats increased �-cell insulin content in E21.5
fetuses, but their �-cell mass was reduced (41). The
Goto-Kakisaki rat, a type 2 diabetes model, has decreased
�-cell mass in E21.5 fetuses, but E21.5 body weights of
Goto-Kakisaki and wild-type animals are similar (42). In
addition, offspring from other IUGR models, achieved by
maternal caloric restriction (5) or by ligating the uterine
arteries (8), either show no alteration in �-cell mass or
have decreased islet mass with IUGR, respectively. These
models, in contrast to the FASDEL mice, produce catch-up
growth and glucose intolerance.

The hypothesis of �-cell mass regulation by body size is
supported by our data, showing that overcoming IUGR
with high-fat feeding of dams during gestation normalized
both fetal �-cell mass (Fig. 6H and I) and pancreatic
insulin content (Table 1) in E18.5 FASDEL fetuses. These
data also demonstrate nutrition-dependent developmental
plasticity, as high-fat feeding does not correct the FASDEL
phenotype in adulthood. This implies the existence of a
critical time period in utero allowing modification of fetal
growth to impact �-cell function. �-Cell adaptation to body
size is plastic during development, and this plasticity
establishes a template for metabolic homeostasis in
adulthood.

Insulin signaling, while not critical for fetal �-cell
growth, does appear to be responsible for the growth of
most other somatic tissues in utero. In Drosophila, inac-
tivation of insulin production (15), the insulin receptor
(11), and several downstream signaling components, in-
cluding IRSs (10), phosphoinositide 3-kinase (13), and
p70S6 kinase (14), decreases body size. Double knockout
Ins1�/�Ins2�/� and double knockout Insr�/�Igf1r�/�

mice (12,39) are growth retarded as are mice with inacti-
vation of IRS-1 (43). Consistent with these observations,
increased �-cell mass in both FASDEL (Figs. 4A and 6C)
and UCP-Tg (Fig. 7D) mice likely represents a homeostatic
response to normalize intrauterine growth. This concept is
presented schematically in Fig. 7I. Decreased body size
could prompt an increase in �-cell mass, leading to in-
creased insulin secretion in an attempt to normalize body
size by promoting growth. A similar adaptive response
may be seen in small-for-gestational-age humans, who

manifest insulin levels 2.5-fold higher than controls (44),
mirroring hyperinsulinemia in young FASDEL mice (Fig.
3A, bottom). These data, in concert with our demonstra-
tion that increasing intrauterine growth (Fig. 6F and G)
normalized fetal �-cell mass (Fig. 6H and I), imply that
optimal body size might be sensed and provide feedback
to pancreatic �-cells (Fig. 7I), the only cell type that
produces insulin. �-Cells respond to nutrients and other
signals during development (17,31), making them ideal for
integrating inputs to coordinate growth. A precedent for
sensing optimal body size involving insulin signaling exists
in Drosophila (16).

Data for �-cell mass in humans with IUGR are inconsis-
tent. One group reported a decrease (45) and another no
change in islets from IUGR fetuses (46). These data are not
directly comparable with our work because we studied
mice near the end of gestation (E18.5), while human
fetuses in both of these studies were analyzed early in the
third trimester when islet morphogenesis is not complete.

Our results suggest that �-cell hyperfunction, even when
it occurs in the absence of peripheral insulin resistance,
can lead to insulin secretory failure. Increased �-cell mass
and insulin hypersecretion in early life (Fig. 3) entrains
�-cells to fail in later life (Figs. 3, 4, and 7I). These data
provide a mechanistic basis for observations made in Pima
Indians, people with an unusually high prevalence of
diabetes despite hyperinsulinemia and intact insulin sen-
sitivity (47). Among Nauruans, progression to diabetes is
associated with loss of insulin secretory capacity rather
than a loss of insulin sensitivity (48), a phenomenon
recapitulated in FASDEL mice. Our data are also consis-
tent with previous work (49) associating early increases in
�-cell mass with defects in insulin secretion undermining
�-cell compensation required to maintain glucose ho-
meostasis with age. The underlying reason is unclear, but
an inadequate blood supply in hyperplastic islets could be
involved (50).

A perhaps surprising outcome of recent genome-wide
association studies was the observation that �-cell genes
are the dominant driver of metabolic disease. Our work
indicates that intrauterine body size appears to be sensed
and integrated through the �-cell to modulate insulin
secretion. Increased �-cell mass developing in response to
decreased body size programs the �-cell to fail, possibly by
limiting its capacity to adapt to conditions, such as high-fat
feeding, that demand increased insulin secretion. FASDEL
mice could be useful for defining the mechanisms under-
lying �-cell failure.
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