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Abstract

The outbreak of COVID-19 has led to there being a worldwide socio-economic crisis, with

major impacts on developing countries. Understanding the dynamics of the disease and its

driving factors, on a small spatial scale, might support strategies to control infections. This

paper explores the impact of the COVID-19 on neighborhoods of Recife, Brazil, for which

we examine a set of drivers that combines socio-economic factors and the presence of non-

stop services. A three-stage methodology was conducted by conducting a statistical and

spatial analysis, including clusters and regression models. COVID-19 data were investi-

gated concerning ten dates between April and July 2020. Hotspots of the most affected

regions and their determinant effects were highlighted. We have identified that clusters of

confirmed cases were carried from a well-developed neighborhood to socially deprived

areas, along with the emergence of hotspots of the case-fatality rate. The influence of age-

groups, income, level of education, and the access to essential services on the spread of

COVID-19 was also verified. The recognition of variables that influence the spatial spread of

the disease becomes vital for pinpointing the most vulnerable areas. Consequently, specific

prevention actions can be developed for these places, especially in heterogeneous cities.

Introduction

The World Health Organization (WHO) declared the coronavirus disease 2019 (COVID-19)

pandemic in March 2020 [1]. It is a vascular disease caused by the severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV2) virus, which perturbs multiple organ systems and prompts

clinical manifestations in the lungs, heart, and kidneys, in particular [2,3]. In the early stages of

the pandemic, the spread of the disease was mainly mitigated by non-pharmaceutical interven-

tions [4], which were then complemented with vaccination programs [5] as technology

evolved. However, changes of intervention measures [6] along with the emergence of highly
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contagious variants of the virus [7] have affected the rates and the patterns of the spread of

COVID-19.

Spatial-temporal analysis might be a valuable tool to capture the dynamic behavior of the

pandemic. One of the most regularly applied approaches in this context is spatial analysis, in

which cluster and hotspot analysis, interpolation, and space–time scan statistics have been the

main techniques used [8]. For instance, in China, spatial clustering patterns, over time, of

cumulative cases of COVID-19 at the city [9] and county-levels [10] showed a shift from hot-

spots of larger coverage to few specific places. In global terms, evidence suggests that there is a

sort of spread of COVID-19 cases from developed countries to less affluent countries [11].

South America saw its geographic centroid for COVID-19 cases generally shifting from

west to east in Brazilian areas, up to January 2021 [12]. In Brazil, the centroids of cases and

deaths started in São Paulo state (Southeast region), then progressively moved north until

early May 2020 [13]. The COVID-19 epidemic increased rapidly across northeastern Brazil up

to May 2020, at which time it was the metropolitan areas (mostly in the coastal areas) that

were reported as having clusters of cases, even though there was an already relevant spread

towards the countryside [14]. Understanding the transmission dynamics within local commu-

nities is important in order to develop strategies to combat the spread of the disease.

Additionally, another valuable analysis is investigating risk factors and determinants of

COVID-19. Spatial regression tools have been used as a means to analyze the influence of

these factors on the number of COVID-19 cases, incidence rate, the mortality rate and the

case-fatality rate across space [15–17]. Some demographic indicators have been identified as

crucial factors for the spreading of COVID-19, including the positive associations of cases of

the disease with the elderly population [16,18,19], the percentage of people between 15 and 64

years-old [20], and the density of the population [16,19,21]. Different socio-economic factors

are also found to positively impact COVID-19 incidence rates, such as income per capita [15],

household income [16,22], life expectancy at birth [15], and the area deprivation index [18],

whereas others affect them inversely including access to education [23]. Specifically, racial/eth-

nic minority relationships varied from positive with COVID-19 cases in regions of the USA

[16,18] to negative with COVID-19 deaths in England [17]. In terms of health conditions,

COVID-19 cases have positive associations with diabetes rates [16,19], while there are negative

associations with smokers on the global scale [20] and with morbidity in South Korea [23].

Healthcare access [23] and available hospital beds [19] are also negatively related to the spread

of COVID-19 cases. Finally, the built environment can be positively associated with COVID-

19 cases with regard to the average height of buildings [21], and the density of commercial

facilities and of roads [24], likewise negatively with the average street length [21].

Nonetheless, these relationships seem to vary according to the spatial scale, the study area

and the phase of the outbreak [8]. On a global scale, population density, older populations, and

household size are crucial predictors in early weeks of the reported spread of COVID-19,

whereas the impacts of interpersonal contact and the globalization of trade are greater over

time [11]. The mobility of the population also has a valuable role in this scenario, on varying

spatial scales, since highly connected places [25] and areas with great service from bus stops

and subway stations [26] showed a significant effect on the spread of the disease. Finally, an

increase of mobility in the state of New York—due to the relaxation of restrictive measures—

moved the COVID-19 clusters from counties of high population density to low ones [27].

Knowledge about the determinants and the community spread of the disease may support the

development of specific sanitary strategies for the pandemic scenario. Strategies need to be cre-

ated, evaluated, controlled and sustained by information on local characteristics.

In this regard, Brazil has been one of the most severely affected countries throughout the

pandemic [12]. Brazil is a very large and complex country which is unequal in terms of public
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health and socio-economic matters, so there is not a unique explanation for the spatial spread

of the virus across states [13]. Mortality risks tend to be higher for older men in Brazilian

municipalities, whereas young adults and women are prone to higher risks of infection [28].

Also at the municipality-level in Brazil, a spatial regression model identified 13 indicators posi-

tively associated with the COVID-19 incidence rate, including the activity rate of people aged

10 to 14 years; the percentage of people aged six to 14 years who do not attend school; and the

percentage of employed persons aged 18 or over who have completed elementary school [15].

In fact, the COVID-19 pandemic has been most severe in the poorest and most unequal

regions of Brazil, such as the states of the Northeast region [6]. A recent study found that these

states have suffered from a large number of infections and also a high mortality risk due to the

deprived socioeconomic status of the poor and unsatisfactory health care conditions [28].

Considering the singular characteristic of the Northeastern states of Brazil, this study analy-

ses the spatial patterns and driving factors of the spread of COVID-19 in the city of Recife, cap-

ital of Pernambuco state. So far, we found that previous studies about these topics in Recife

were restricted to the association of the number of COVID-19 cases with the number of users

of public transportation systems [29] and socio-economic factors [30]. Therefore, in this

study, we adopted a three-stage methodology, in which we have investigated the spatial-tem-

poral trend of the disease within the city and the impact on COVID-19 rates of local facilities

that continued to function even during lockdown periods. Subsequently, we investigated the

joint effect caused by socio-economic factors and the continuation of essential services on the

spatial spread of COVID-19 confirmed cases and on the case-fatality rate on a neighborhood-

level scale.

Data and methods

Design

This study develops a spatial evaluation to comprehend the behavior of the outbreak of coro-

navirus across the neighborhoods of Recife, Brazil. Statistical approaches (correlation, quartile

and regression analysis) were combined with GIS-based methods (hotspots and spatial regres-

sion analysis) for the purpose of exploring local characteristics that may make places more sus-

ceptible to the spatial spread of COVID-19. A brief summary of the methodology is set out in

Fig 1.

The city of Recife is the capital of the third most populated state in the Northeast region of

Brazil (Pernambuco). Recife covers an area of 218 km2 and the estimated population is 1.55

million [31]. The city is located on the coast, in the Southern Hemisphere, and below the Equa-

tor. Recife has a tropical and humid climate, with an annual average temperature of about

26˚C and a small variation of 5˚ C, approximately. It has the highest GDP per capita and is the

second-most densely populated city in NE Brazil [31]. Moreover, the city had the highest

Municipal Human Development Index (MHDI) among Northeast state capitals in 2010

(0.772), but it had just the 13th best performance out of 27 state capitals and was the 210th best

city index nationally [32]. On the other hand, in 2019, Recife had the highest Gini index

(0.612) among Brazilian state capitals, which reveals its heterogeneity and the extreme inequal-

ity of the distribution of income [33]. For instance, some neighborhoods are considered

wealthy, but they also contain sizeable favelas. In some cases, a neighborhood is surrounded by

others with almost the opposite socio-economic conditions even although they are in the same

zone of the city [34]. There are two zones in Recife which have a very high HDI: one in the

North and the other in the South. The latter mainly covers the Boa Viagem neighborhood. On

the other hand, two-thirds of the districts (namely 42 out of 62) are classified as having either a

low or average HDI [34]. Fig 2 shows the location of Recife and its neighborhoods.
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Fig 1. Ordered steps of the present study.

https://doi.org/10.1371/journal.pone.0268538.g001

Fig 2. Location of the study area. Sources: Brazilian Institute of Geography and Statistics (IBGE) 2021, and software

ArcGIS 10.4.1.

https://doi.org/10.1371/journal.pone.0268538.g002
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Data collection

The numbers of reported cases and data on deaths were obtained from the Planning and Man-

agement Secretariat of the state of Pernambuco, Brazil [35]. Daily records on Recife were pro-

vided at the city-level, but there was a lack of reliable data at finer scales. Georeferenced data

were available only at the neighborhood-level, from 16 April to 3 July 2020, in cumulative

form, and were published approximately once a week.

Socio-economic and demographic factors were selected to represent the main characteris-

tics of the neighborhoods in terms of population structure and living conditions. In this

regard, a set of 15 census indicators was extracted from the 2010 Brazilian Census [36], and is

described in Table 1. We extended this set to characterize the impact of the presence of non-

stop services (the so-called essential services) during the pandemic, since their locations have

the potential for crowds to form and for premises to become overcrowded. So, six environ-

mental facilities—that represent each of these services—were considered based on the classifi-

cation proposed by the Planning and Management Secretariat of the state of Pernambuco,

Brazil [37]. Georeferenced point data concerning these places were extracted from Google

Maps and Google Earth platforms. These facilities are spatially described in Table 2 by means

of Kernel density estimation [38]. However, they were analyzed throughout the paper in the

form of counting in the polygons that delimit the neighborhoods of Recife.

Data analysis

An initial investigation presented Recife’s epidemiological situation regarding confirmed cases

over time starting with when the first cases were confirmed in March 2020. A 7-day moving

average was applied to the data on daily infections at the city-level, thereby seeking to reduce

sudden variability due to reporting biases such as the lack of testing and the delay in recording

cases and deaths [39]. The impact of restricting and relaxation measures imposed by the State

Government of Pernambuco and the City Council of Recife on the variability of the rate of

Table 1. Descriptive statistics of census indicators.

Indicator Max Min Mean Standard deviation Definition

Income (R$) 10000.00 510.00 2054.50 2131.17 Average household income per month

Population 122922 72 16358.55 18274.11 Total of residents per neighborhood

RPH 4.5 1.73 3.25 0.30 Residents per household

Literacy (%) 0.9789 0.7159 0.8627 0.0533 Literate residents over 6 years old

Piped water (%) 0.9954 0.1250 0.8367 0.1709 Households supplied with piped water

Sewage disposal (%) 1.0000 0.0484 0.5628 0.2930 Households supported by sewer network

Electricity (%) 1.0000 0.9226 0.9979 0.0080 Households supplied with electricity

Garbage collection (%) 1.0000 0.7346 0.9755 0.0438 Households served by garbage collection service

Owned home (%) 0.8687 0.4577 0.7268 0.0695 Homes owned by their residents

Rented home (%) 0.5141 0.1111 0.2231 0.0648 Homes rented by their residents

Age 0 to 9 12149 6 2147.05 2306.98 Residents separated by age group per neighborhood

Age 10 to 19 15129 0 2613.43 2791.56

Age 20 to 39 41556 30 5649.29 6325.24

Age 40 to 59 33813 15 4015.44 4653.87

Age over 60 20275 9 1933.23 2479.59

The data regarding COVID-19 rates and their explanatory factors (including the facilities) were joined to the administrative boundary shapefile of Recife neighborhoods

obtained from the Brazilian Institute of Geography and Statistics (IBGE) (https://downloads.ibge.gov.br/) using ArcGIS 10.4.1. This software was also used to produce

the maps.

https://doi.org/10.1371/journal.pone.0268538.t001
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new infections was also discussed. These government actions include the following: closing of

non-essential commercial activities; mandatory use of masks; strict quarantine; reopening of

building supply stores, beauty salons, suburban retailers, malls, and places of worship [37].

In order to comprehend disparities in the spread of COVID-19 on a small scale, neighbor-

hoods were explored using a spatial cluster analysis as applied for other diseases [40,41]. Geor-

eferenced data obtained from ten specific days between 16 April and 3 July 2020 at intervals of

roughly one week were considered. Nevertheless, we were able to represent the ascending,

peaking and descending behaviors of the curve of infections.

At first, for each of the ten dates, we checked if the cumulative confirmed COVID-19 cases

and the case-fatality rate (which means the total number of deaths divided by the total number

of cases) were spatially dependent across the study area. In this regard, the spatial statistic

Global Moran’s I [42,43] was performed considering spatial weights obtained from inverse dis-

tance and contiguity of edges and borders among neighborhoods. Then, Local Moran’s I [44]

was implemented for cumulative confirmed cases and the case-fatality rate—which means the

total number of deaths divided by the total number of cases. This statistic assessed the spatial

autocorrelation associated with each neighborhood of the study region in terms of a few sur-

rounding spatial units. It was calculated for each area i = 1,. . .,n in:

Ii ¼
Pn

j¼1
Wijðyi � �yÞðyj � �yÞ
1

n

Pn
j¼1
ðyj � �yÞ

ð1Þ

where y means the COVID-19 reported cases or case-fatality rates for the ith area or its jth neigh-

boring areas, and Wij means a weight that represents proximity for the pair of areas i and j (in this

case, the inverse distance between them). As a result, the location of statistically significant spatial

Table 2. Description of essential services and their spatial density.

Essential

service

Definition Spatial density of the essential services

Bakeries Shops where baked goods are made and sold

Banks Financial institutions licensed to provide services such as receiving deposits and

making loans

Bus terminals Places formed by waiting areas, stands for buses and ticket offices where buses

start and end their routes

Grocery

stores

A range from small shops to large supermarkets which sell food and general

items for domestic use

Lottery shops Official banking correspondents that provide financial services, receive payment

of utility bills, pay social protection benefits, and sell lottery products

Pharmacies Stores where medicinal drugs are sold or given out

Sources: Brazilian Institute of Geography and Statistics (IBGE) 2021, and software ArcGIS 10.4.1.

https://doi.org/10.1371/journal.pone.0268538.t002
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clusters and outliers could be identified, represented in maps and further explored. These clusters

are called High-High (high values surrounded by high values; or hotspots) and Low-Low (low val-

ues surrounded by low values), whereas the outliers are the High-Low (high values surrounded by

low values) and Low-High (low values surrounded by high values) entities [45].

We also investigate patterns of driving factors within spatial clusters and outliers to under-

stand the spread of COVID-19 in the study area. Thus, we emphasized distinctive community

characteristics associated with highlighted clusters, at different stages of the pandemic. The

investigation of the determinants aims to test if the pattern of the spread of COVID-19 in

Recife follows the global pattern [11]. Moreover, we explore the impact of the local demogra-

phy, expecting that the population [16,19,21] and the economically active population [20] fac-

tors would be highly associated with the occurrence of the disease. Finally, as COVID-19 cases

are positively associated with the density of commercial facilities [24], we expect an analogous

behavior regarding the presence of essential services.

For this purpose, 15 socio-economic factors were submitted to quartile analysis, and Spear-

man’s rank correlation tests were conducted in relation to case-fatality rates only. Additionally,

the relevance of the dataset of 6 essential services was ratified due to its linear connection with

case-fatality rates noticed in scatterplots, which justified the use of a Pearson’s product-

moment correlation.

Subsequently, we have performed several regression analyses. Regression methods are

widely applied in health-related studies [15–22,46,47]. The Ordinary Least Squares (OLS)

regression technique [48] was used to reveal the strength of the relationships between the

dependent and the most significant explanatory variables throughout different stages of the

pandemic. A regression analysis was applied using as a dependent variable only the cumulative

data on COVID-19 infections gathered from the latest date then available, July 3rd, 2020. To

further our exploratory concern, initially, essential services and socio-economic factors were

treated separately, thus assuring that relevant relationships among explanatory variables from

each dataset would not be discarded. An OLS regression was run twice, one per dataset. Corre-

lated variables were eliminated when they had a variance inflation factor (VIF) greater than 7.5

as previously verified in other COVID-19 health studies [49,50]. We used a stepwise method

based on the Akaike Information Criterion (AIC) in order to reduce both sets of determinants

to their non-redundant cores [51].

An extended investigation was undertaken by performing regression analysis for both data-

sets, socio-economic and non-stop services facilities, as a way of understanding their likely

synergistic effect for predictions. The OLS method was adopted, but now considering the same

ten dates from which georeferenced data on infections at the neighborhood-level were avail-

able. The reason is to understand what determinants became statistically significant over time

as the pandemic evolved and government measures were in force. In this study, multi-source

data can be used since we have complementary full datasets for the populations studied [52],

on which a one-to-one linkage procedure was applied for complete observations, instead of

sample-based datasets [53].

A k-fold cross-validation procedure [54] was applied to evaluate possible overfitting of the

OLS regression models. The dataset of COVID-19 cases regarding the neighborhoods was split

into randomly selected k = 5 folds of similar size. A fold of the data was held-out for final vali-

dation (testing), while the remaining k-1 formed the training set (learning). For these remain-

ing subsets, k-1 iterations of training and validation were performed on them and the RMSE

(root mean square error) was measured for each fold. The average RMSE of these iterations

was compared to the same metric of the initially held-out fold. If the results are found to be

close according to the context, i.e. a maximum difference of around 4 units, then there is no

significant overfitting.
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We are dealing with geospatial data, so Geographically Weighted Regression (GWR) [55]

was used as a way of relaxing OLS assumptions that the observations and the error terms are

independent and constant over the study region [45]. GWR takes into account the spatial auto-

correlation and allows relationships among variables to vary over space and to be determined

for each location [55]. In this method, a kernel function with a bandwidth parameter is used to

calculate a local weights matrix in terms of the distance between each pair of spatial units [56].

Considering i = 1,. . .,n as each sample location, GWR is mathematically denoted by [56]:

yi ¼ bi0 þ
Pp� 1

k¼1
bikxik þ εi ð2Þ

where yi is the dependent variable of COVID-19 confirmed cases at neighborhood i, xik is the

value of the kth explanatory variable at location i, βi0 is the intercept, βik is the regression coef-

ficient for the kth explanatory variable, p is the number of regression terms, and εi is the ran-

dom error at location i. Cumulative count data has been applied in studies of COVID-19,

especially at a small-scale level such as neighborhood or county-level [57] and grid [58]. The

study of [59] predicted cumulative confirmed and cured cases of COVID-19 at a province-

level, while [60] considered the number of deaths. Furthermore, the use of count data as a

dependent variable instead of some sort of rates at the neighborhood-level is advocated by

[61], and it is widely applied in the context of studies of crime [62].

OLS and GWR statistical performances were compared, thereby taking account of the

reduced set of determinants found by using data acquired from July 3rd, 2020. Then we deter-

mined how GWR outputs explain the spread of COVID-19 in each neighborhood, and we also

elucidated how every relevant factor impacts on the prominence of hotspots for new cases.

According to the spatial context, an adaptive Gaussian kernel function was chosen with a view

to adjusting the weighting for the density of infections. The kernel bandwidth parameter was

estimated by means of a corrected Akaike Information Criterion (AICc) approach, based on

which the optimal number of neighboring areas was found. Finally, in order to check if there is

no spatial dependence on GWR residuals, Global Moran’s I [42,43] was applied to them. The

weighting was once again based on the contiguity of edges and borders among neighborhoods.

Spatial analysis was conducted on ArcGIS 10.4.1 software, while the statistical tests and

OLS regressions were performed on the R 3.6.1 platform.

Results

An evolution of cases over time in the city of Recife was plotted on Fig 3, including relevant

actions taken by the State Government and the City Council. It was noted that these authorities

took an early decision to close facilities when first cases were reported. Only a few types of

facilities were allowed to open, including supermarkets, grocery stores, bakeries, and pharma-

cies [37]. As daily infections were increasing, the state governor issued an edict obliging the

population to wear masks in public places. However, as fines were not imposed on shoppers

but on the owners of the commercial facilities they entered, adherence to the measure became

more dependent on the willingness of the general public to wear masks and intense supervi-

sion at the entrances to commercial premises.

These measures were not sufficient to flatten the increase in cases of infection, so in mid-

May, a 15-day strict quarantine was imposed in five municipalities in Pernambuco, including

Recife. People were only allowed to leave their homes to seek essential services, for which they

had to show proof, and vehicles were only allowed on roads according to a vehicle rotation sys-

tem based on the final number of the number plate [34]. Transmissions of the virus peaked in

late May 2020 and the cases seemed to have been stabilized at a low level for that moment (July
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8th, 2020), even though restrictions were then gradually relaxed and places in which people

congregate such as shopping malls and commercial premises were reopened.

Spatial clustering analysis of cumulative COVID-19 cases and case-fatality

rate

A significant spatial dependence (p< 0.05) was found in Recife neighborhoods for the case-

fatality rate on the majority of dates, according to Global Moran’s I, with an increasing ten-

dency of significance as the pandemic evolved. On the other hand, the clustering of reported

cases was significant for the first date analyzed and the last two dates. Consequently, spatial

clusters for cases and the case-fatality rate tend to be formed across the study region.

The locations of these clusters were found by means of Local Moran’s I. The results for the

total number of reported cases per neighborhood are shown in Fig 4. We noted that cases of

the disease at first were concentrated in the South Zone of the city, specifically in the neighbor-

hood called Boa Viagem (Fig 1). Furthermore, it was the only significant spatial cluster on

April 23rd, 2020. As cases increased, other High-High clusters and High-Low spatial outliers

were found in the South, the North and the West Zones of the city.

Moreover, a quartile analysis was developed in the entire city using the 15 census indicators

[36] that are listed and described in Table 1 (see Section 2 above). This analysis concerned the

socio-economic and demographic factors that define the residents’ environment in terms of

average income, population size, extent of home ownership, government support and by age

group. Results revealed social disparities in the clusters shown in red in Fig 4 compared to Boa

Viagem. While Boa Viagem is highly populated and yet well-developed in terms of its access to

sanitation, garbage collection, and of levels of income and literacy, the other hotspots were

Fig 3. Evolution of daily COVID-19 cases in Recife from March 12th to July 8th, 2020.

https://doi.org/10.1371/journal.pone.0268538.g003
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found to have indices for these variables that were lower than at least 50% of all other neigh-

borhoods in Recife.

Case-fatality rate (CFR) hotspots due to COVID-19 were also examined as plotted and

shown in Fig 5. A different spatial pattern arises when these are compared to the clusters of

cases. Over time, the CFR ones remained mostly stable so that High-High clusters usually

formed in the North and Southwest zones, while Low-Low ones were seen in the North and

West zones.

Even though Boa Viagem has been a significant cluster for reported cases since the first

date analyzed, this has not occurred for the case-fatality rate. This neighborhood presents a

high number of cases, but the CFR has been growing in a lower proportion. The first death in

Boa Viagem was confirmed on April 10th, 2020 after 63 cases had been recorded, which repre-

sented 15% of the COVID-19 cases in Recife at that time. Boa Viagem led the number of

deaths in the city from April 27th until July 8th, 2020. However, this neighborhood did not

become the hotspot of CFR in any of the transitional periods, i.e., Boa Viagem had the highest

number of cases but it has had a low number of deaths per cases. On July 3rd, 2020 the neigh-

borhood reached its maximum CFR, 18%, which, however, is considerably lower than the hot-

spots of CFR, for which the percentages were between 34% and 54%.

Fig 4. Spatial distribution of cumulative reported COVID-19 cases in Recife at the neighbourhood-level. Sources: Brazilian Institute of Geography and

Statistics (IBGE) 2021, and software ArcGIS 10.4.1.

https://doi.org/10.1371/journal.pone.0268538.g004
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The results from quartile analysis show that hotspots of case-fatality rate usually present areas

with similar environmental characteristics to those in hotspots of confirmed cases, disregarding

Boa Viagem. For instance, most of these areas have a precarious public service provision and a

low-income population. The opposite characteristics were verified when analyzing the Low-Low

clusters. It has also been observed that neighborhoods in Low-Low clusters (of both case and case-

fatality rate) have fewer residents per household than 75% of all other neighborhoods.

Spearman correlation tests were applied to the case-fatality rate and socio-economic factors

using data from July 3rd, 2020. We detected that CFR is positively associated with residents per

household, whereas it is negatively associated with household income, the literacy rate, access

to the sewage system and to garbage collection, and the total of people over 60 years old.

Comparing previous results, we noted that some places tend to suffer from fewer deaths

due to COVID-19 when residents in such places have a level of income and literacy that is well

above average for Recife. These wealthier areas also have more access to public services and

their number of residents per household is lower than elsewhere in Recife. In contrast to what

was expected, the results also showed that the elderly population was higher in Low-Low clus-

ters of case-fatality. In other words, although the elderly are more prone to catching severe

forms of COVID-19 [63], the incidence of such cases was less in clusters with a high concen-

tration of this population.

Fig 5. Spatial distribution of case-fatality in Recife as a result of cluster analysis.

https://doi.org/10.1371/journal.pone.0268538.g005
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We also examined the presence of essential services (Table 2) in spatial clusters of case-fatal-

ity from July 3rd, 2020 by means of Pearson’s product-moment correlation. After exploring the

Low-Low clusters for the case-fatality rate, the ‘number of banks’ was the only factor signifi-

cantly associated with the CFR (negative). Six out of ten neighborhoods were placed in the

fourth quartile of this determinant.

Association between environmental factors and COVID-19 cases

Local determinants for COVID-19 were explored in greater depth by using spatial regression

analysis. A set of 15 explanatory variables was compiled from census indicators (Table 1),

whereas places that are typically conducive to attracting crowds of people and that operated

even during strict quarantine (Table 2)—and so could have become centers of SARS-CoV2

infections—formed another set.

As an initial exploration, the determinants were processed separately in two regression

models, according to their datasets of origin. We used the cumulative data of COVID-19 con-

firmed cases from July 3rd, 2020 as a response variable in each model based on the OLS method

and reduced the number of determinants to non-redundant sets. Both regression models were

significant (p< 0.001). With regard only to essential services, bakeries, grocery stores, banks

and pharmacies remained in the final set of determinants with a high adjusted R2 of 0.8659. It

was noted that ‘bakeries’ is associated with 77% of the variability in confirmed cases. Consider-

ing only the socio-economic factors, five determinants formed the significant final set (R2 of

0.9521): ‘people between 0 and 9 years old’ and ‘people older than 60 years old’ (extreme oppo-

sites among the age groups), ‘piped water’, ‘garbage collection’ and ‘residents per household’.

The total of residents (factor ‘population’) is associated with nearly 90% of the variability in

COVID-19 cases.

New assessments were made based on an aggregated set of 21 driving factors, regardless of

the origins of this data, to understand how they can interact throughout space. OLS regression

models were built for ten different days between April and July 2020, taking the cumulative

reported cases of COVID-19 as the dependent variable. A smaller and significant set of explan-

atory variables was identified for each day by excluding correlated variables and using the step-

wise method. Findings are summarized in Table 3 and, although determinants were analyzed

together, the final sets were shown separately to clarify patterns. The column called GM, gov-

ernment measures, indicates which decisions were being imposed on each date by local

Table 3. The performance of OLS models over time using combined datasets of determinants.

Date GM a Essential services Socioeconomic factors Adj. R2

April 16th 1 Bakeries, grocery stores, lottery shops, bus terminals Owned home, income 0.8117

April 23rd 1; 2 Bakeries, grocery stores, banks Age 0 to 9, owned home, sewage system 0.8159

May 3rd 1; 2 Bakeries, grocery stores Age 0 to 9, income 0.8331

May 12th 1; 2 Bakeries, grocery stores, lottery shops, bus terminals Age 0 to 9, owned home, income, literacy 0.8689

May 19th 1; 2; 3 Bakeries, grocery stores, lottery shops Age 0 to 9, income 0.8958

May 27th 1; 2; 3 Bakeries, grocery stores, lottery shops Age 0 to 9, income 0.9100

June 3rd 2; 4 Bakeries, grocery stores, lottery shops Age 0 to 9, income 0.9162

June 12th 2; 4 Bakeries, grocery stores, lottery shops Age 0 to 9, owned home, literacy 0.9215

June 24th 2; 4; 5; 6 Bakeries, grocery stores, lottery shops Age 0 to 9, owned home, literacy 0.9255

July 3rd 2; 4; 5; 6 Bakeries, grocery stores, pharmacies Age 0 to 9, income 0.9260

aGovernment measures in 2020: 1. Closing of non-essential commercial activities; 2. Mandatory use of masks; 3.Strict quarantine; 4. Reopening of building supply

stores; 5. Reopening of beauty salons and suburban retailers; 6. Reopening of malls and places of worship.

https://doi.org/10.1371/journal.pone.0268538.t003
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authorities in their attempt to gradually reduce the number of people on the streets or to

enable more people to be on the streets.

Every designed model was found significant (p< 0.001). The adjusted determination coef-

ficient R2 value reached a high level from the first date analyzed. As time progressed in the

pandemic, the correlation of demographic and socioeconomic factors to cumulative cases

increased, which prompted the same pattern for the adjusted R2. For instance, evaluating the

contribution of each determinant in the final model (Table 3) separately in April 16th, ‘baker-

ies’ is associated with 76% of the variability in cases, followed by lottery shops (47%) and ‘gro-

cery stores’ (39%). This same procedure was conducted in July 3rd, resulting in ‘children from

0 to 9 years old’ being associated with 80% of the variability in cases, followed by ‘bakeries’

(77%) and ‘pharmacies’ (73%). However, this increasing tendency for the adjusted R2

remained only until early June 2020, and was followed by a stabilisation pattern. It is likely this

change was due to the scenario of the slow growth of cases in Recife as seen in Fig 3.

Even though the adjusted R2 metrics are high, it is not justified by overfitting. This hypothe-

sis was discarded after each OLS model had been cross-validated based on partitions of the

COVID-19 cases dataset and a comparison of RMSE (root mean square error) indexes. As

‘bakeries’ and/or the children’s age group are part of the models from the first date analyzed,

they appear to be one of the main sources of the high adjusted R2. Other determinants are fre-

quently repeated in the final sets, including ‘income’ and ‘grocery stores’, which reveals their

importance for predicting cases. Furthermore, the variables ‘people older than 60 years old’

and ‘population’ (both highlighted in the initial analysis using separated databases) were disre-

garded after reducing the set of determinants to their non-redundant cores. This likely hap-

pened due to their strong collinearity with ‘bakeries’, namely a Pearson’s correlation of 0.85

(p< 0.001) for the total of residents and 0.93 (p< 0.001) for the elderly. Conclusively, all of

the highlighted determinants in Table 3 (except for ‘bus terminals’) and the factors ‘popula-

tion’ and ‘people aged over 60’ are positively associated with COVID-19 cases.

Spatial associations between environmental factors and COVID-19 cases. Data from

the last day from which there is available georeferenced data at the scale studied, July 3rd, 2020,

were kept for a subsequent evaluation using a spatial regression approach, GWR. So, the fol-

lowing set of relevant explanatory variables was considered: number of grocery stores, number

of pharmacies, number of bakeries, the average income of residents and the total number of

residents aged 0 to 9 years old. We used the cumulative confirmed cases as the dependent vari-

able. According to the AICc approach, the optimal number of 54 neighboring areas per neigh-

borhood was taken as the bandwidth parameter to compute the spatial weights. Finally, the

GWR model resulted in a R2 of 0.960. A Global Moran’s I test applied to GWR residuals

showed an index of -0.028 (p = 0.63), which provided evidence that the residuals are randomly

distributed, and thus the model is adequate. Note that there is a slight improvement from the

OLS results (global analysis) to those of the GWR (local analysis) since adjusted R2 increased

from 0.926 to 0.944. Also, AIC statistics reduced from 935.99 to 916.19, indicating a significant

improvement in the quality of the model [64].

GWR concerns a local prediction to elucidate spatial variations all over the region of inter-

est [55], so the distribution of local R2 in each Recife neighborhood is illustrated in Fig 6. Val-

ues were found to be remarkably high since the minimum one explains 82.8% of reported

cases. It was also observed that the areas with a higher local performance (the red ones) coin-

cide with hotspots for cases (identified in Fig 4), indicating where COVID-19 infections are

concentrated.

A further exploration was made seeking to clarify how every relevant contribution of a deter-

minant to spatial regression modelling could influence a prediction of the number of cases. Fig

7 classifies their coefficients on regression local equations into five categories by the Jenks
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Fig 7. Effects of determinants on prediction of COVID-19 cases according to their coefficients in GWR regression. Sources: Brazilian Institute of

Geography and Statistics (IBGE) 2021, and software ArcGIS 10.4.1.

https://doi.org/10.1371/journal.pone.0268538.g007

Fig 6. Performance of local R2 across the neighborhoods of Recife city. Sources: Brazilian Institute of Geography

and Statistics (IBGE) 2021, and software ArcGIS 10.4.1.

https://doi.org/10.1371/journal.pone.0268538.g006

PLOS ONE A spatial-temporal analysis at the early stages of the COVID-19 pandemic and its determinants

PLOS ONE | https://doi.org/10.1371/journal.pone.0268538 May 17, 2022 14 / 22

https://doi.org/10.1371/journal.pone.0268538.g007
https://doi.org/10.1371/journal.pone.0268538.g006
https://doi.org/10.1371/journal.pone.0268538


Natural Breaks algorithm [65]. When the previously mentioned hotspots are analyzed, it is

noted that the Southern ones were impacted most by the presence of bakeries and their resi-

dents’ average income. The existence of the Western cluster is best explained by the presence of

local pharmacies and grocery stores. Moreover, the strongest influence on the incidence of

COVID-19 in the Northern hotspot came from bakeries, pharmacies and children aged from 0

to 9.

Discussion

Recife started applying deterrent measures in order to reduce contagion immediately after the

first patients were confirmed in March 2020, thereby preventing a collapse in the provision of

hospital care. After the first registered infection, cases took around a month to start a phase of

sustained increase, which may have indicated an initial acceptance by the general public of

these measures. Then a natural relaxation due to fatigue and ignorance about the conse-

quences of COVID-19 was reflected in a wider local transmission of the virus. The public

authorities’ initiative to tighten the quarantine had excellent results. That could be verified as

the peak of contamination was reached when quarantine was still in force, after which the ten-

dency was for the number of new cases to fall and stabilize.

Relationships concerning the explored determinants imply that some neighborhoods are

generally more susceptible to the spread of COVID-19, essentially due to the direct influence

of specific socioeconomic and environmental scenarios–that might be worsened when com-

bined. COVID-19 cases are positively related to better socioeconomic conditions (household

income and public services), a large population (mainly children and elderly) and the presence

of some essential services (especially those connected to daily routine, such as bakeries and

grocery stores). In this context, the size of the population acts as an enabler of more social con-

tact even when social distancing measures are in force, which reiterates what was found by

[16,21]. As to reported cases, hotspots were first verified in the wealthy and densely-populated

neighborhood of Boa Viagem. In contrast, since then, other hotspots with worse socio-eco-

nomic conditions have emerged. A similar pattern was found in the city of São Paulo, Brazil,

but concerning COVID-19 deaths: what was detected was a shift of high risk from the areas

with the best socio-economic conditions to those with the worst conditions [66]. This situation

could have happened in Recife because, according to socio-economic indicators, a substantial

proportion of the population in the Boa Viagem hotspot had the resources to travel more fre-

quently to Brazilian metropolises, or even to other countries. Thus, these people were the first

to be infected elsewhere, and, on their return to Recife, they might have contributed to spread-

ing the disease to those around them. On the other hand, people who live in less privileged

places consequently have less infrastructure in their neighborhoods, nor do their living condi-

tions in their homes enable them to follow advice on social isolation and personal care. This

includes not having enough money to buy preventive health supplies; there being a lack of con-

stant access to piped water; and they do not have the option of working from home. All of

these factors are aggravated by the social impacts of COVID-19 [67].

Bakeries, grocery stores and pharmacies seem to strongly influence the spatial spread of

COVID-19 as observed in the regression analysis results. These findings were similar to a pre-

vious study in a prefecture in China, where these points-of-interest influenced the increase of

the COVID-19 cluster size in the surrounding neighborhoods [68]. Going to and entering bak-

eries and grocery stores are part of the daily routine of regular citizens in the metropolitan

region of Recife, because there is a local habit of buying fresh bread every day in the morning

or late afternoon. According to a study in the city of São Paulo, Brazil, people who live in areas

with a great mix of destinations within 500 m of their residences, including supermarkets,
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food stores and bakeries, were more inclined to walk outside home [69]. In a COVID-19 pan-

demic context, even during strict quarantine restrictions, residents still have to buy primary

groceries and medicines, probably near to where they live. This is particularly true in low-

income neighborhoods of Recife since a significant part of their population cannot afford pub-

lic transportation, which restricts their routine to places they can reach on foot (or riding bicy-

cles at most) [70]. The number of these commercial facilities is significant for predicting

COVID-19, but per se this does not necessarily imply longer lines or crowded spaces that help

to transmit SARS-CoV2. This consequence also depends on the level of demand at specific

times and may be affected by the population of the neighborhood. Finally, the strong collinear-

ity between the number of bakeries and residential population indicates that these facilities are

located where the people are.

The age groups highlighted during the regression analysis reveal that places with a large

number of children (between 0 and 9 years old) and/or seniors (over 60 years old) tend to pres-

ent the largest number of reported cases. A similar result was found regarding the population

aged above 65 at the global scale, specifically in the early weeks of the outbreak [11]. Studies

affirm that most asymptomatic cases of COVID-19 are verified in children [71], so there is a

high chance of their not being submitted to tests in Brazil because there is a lack of testing

capacity [72]. Moreover, schools and daycare centers had been closed in Recife since mid-

March 2020 [52], which stimulated those younger groups to stay at home and, therefore, it was

likely that they would spread the virus to their relatives. But studies from China show that chil-

dren have a lower incidence of SARS-CoV2 and are less prone than other groups to being

infected by it [73]. Hence, a more in-depth exploration needs to be carried in order to deter-

mine whether this pattern also happened in Brazil, even though our results imply the opposite.

On the other hand, there should be a focus on the elderly since a study specified that an

increase in coronavirus infection among elderly people had a direct correlation with the risk of

infections among other age groups [74]. Therefore, tightening social distancing for the elderly

and other measures, such as analyzing spatial accessibility and healthcare resources [75], to

reduce the risks they face could positively affect the whole of society. Furthermore, comorbidi-

ties are associated with a higher risk of severe cases of COVID-19 that demand specialized clin-

ical care [76], so Brazilians aged over 60 need to be taken into account since they have almost

12 times higher odds of developing multiple chronic diseases than young adults [77].

Government measures to control the transmission of the virus were imposed in advance,

less than a week after the first reported COVID-19 case in the state of Pernambuco. Notwith-

standing, their mild severity in addition to a growing lack of society support were some of the

reasons why the curve of infections did not flatten sooner. Then a 15-day milder version of the

lockdown adopted in other countries was implemented in mid-May 2020, which led to a sus-

tained tendency of incidences to fall and stabilize at a lower level. A lockdown is effective in

reducing the number of new cases, particularly when it lasts for at least 10 days [78]. Our find-

ings reaffirm what a previous study found about the positive effects of the strict quarantine in

Pernambuco, which helped to increase the number of people who adopted and maintained

social distancing and to reduce the reproduction rate of the virus [6].

Some factors were considered relevant for the majority of the dates examined regarding the

evolution of COVID-19 cases, but were cut in regression analysis from the most recent set of

determinants after the quarantine period. That was the case of lottery shops, owned home and

literacy, and all of them positively affected the variability of reported cases. Lottery shops,

which also act as sub-agencies of a public bank, have been used along with Caixa Econômica

Federal bank agencies to make the payment of emergency aid to at least 25% of the Brazilian

population since April 2020 [79]. So, the presence of these facilities could have acted as a way

for promoting long queues with social distancing not being respected and physical
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overcrowding between socially vulnerable people [80]. For their part, literate people tend to

have more information about the disease, but we cannot assume that they consider this subject

as weighty and/or they may not have the resources to follow all the recommendations on isola-

tion. This direct association of literacy diverges from other studies [15], so that our findings

seem to give a distinctive characteristic of Recife’s neighborhoods. Finally, ownership of one’s

own home does not point up a clear social difference among the hotspots of COVID-19 cases.

This determinant was found statistically significant considering data gathered on the first and

last dates examined. So it remained relevant in hotspots of cases even though the disease

advanced from privileged areas to others that are historically known for under-privileged liv-

ing conditions [34].

Confirmed cases remained stable or in decline for a while during the period evaluated—

even after restrictive measures were relaxed -, which denoted a possible control of the pan-

demic. Nevertheless, at the end of 2020, Brazilian cities suffered a second wave of the COVID-

19 outbreak. This was intensified as new SARS-CoV2 variants with greater transmission

power started to spread worldwide [7]. Further studies should verify whether the patterns

identified in the first wave of infections in 2020 have been maintained, and they should also

consider the pace of vaccination campaigns.

This paper has some limitations since there is significant underreporting of COVID-19

cases and deaths in Brazil due to the limited availability of tests, and the capacity of local sur-

veillance services. Further analysis should include more recent data to represent socio-eco-

nomic characteristics, in addition to the previous health status of infected people regarding

comorbidities. Finer variations in the behavior of the disease could also be captured by explor-

ing spatial units that are even smaller than neighborhoods, such as census tracts. Another limi-

tation refers to the influence of possible confounded variables and other extraneous variables

in the model, although there is no consensus in the literature about the best strategy for dealing

with them [81]. According to [82], it is equally possible that adding control variables intro-

duces overcontrol and endogenous selection biases, thus creating alternative interpretations

rather than ruling them out. Additionally, it is known that it is difficult, if not impossible, to

include a comprehensive list of all factors influencing the spread of COVID-19 in a commu-

nity. Thus, we believe that our findings outweigh these limitations.

Conclusion

This study combined spatial clusters and statistical analysis to evaluate the influence of socio-

economic factors and essential services on the spread of COVID-19 (in terms of reported cases

and case-fatality) in the city of Recife, Brazil. Our findings reveal that an increased risk of

transmissions was associated with children and the elderly, the size of the population, house-

hold income, the level of education, and the presence of some facilities that have remained

open throughout the pandemic. Moreover, the spatial spread of the disease occurred by mov-

ing from well-developed to deprived neighborhoods during the initial stages of the pandemic.

What was also found was for there to have been a tendency for there to have been harsh

impacts (due to higher case-fatality rates) on socially vulnerable and densely populated com-

munities, specially those with many everyday places that are prone to overcrowding (e.g. bak-

eries, grocery stores).

Brazil manages a public health system that is widespread in all federative units, even though

the country has continental dimensions and faces complex challenges. However, currently,

public agencies have been going through management difficulties. In this sense, this study can

support strategic decisions to help mitigate the spread of COVID-19 not only in Brazil, but

also in other developing and economically emerging countries. Furthermore, in the long term,
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knowledge produced during the COVID-19 pandemic in this heterogeneous context, regard-

ing local characteristics and spatiotemporal patterns, can be used to structure policies for tack-

ling new epidemics of viral infectious diseases.
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