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The alarmin cytokine interleukin (IL)-33 plays an important proinflammatory role in type 2
immunity and can act on type 2 innate lymphoid cells (ILC2s) and type 2 T helper (TH2) cells
in eosinophilic inflammation and asthma. The mechanistic target of rapamycin (mTOR)
signaling pathway drives immune responses in several inflammatory diseases, but its role
in regulating bone marrow responses to IL-33 is unclear. The aim of this study was to
determine the role of the mTORC1 signaling pathway in IL-33-induced bone marrow ILC2
responses and its impact on IL-33-induced eosinophilia. Wild-type mice were intranasally
exposed to IL-33 only or in combination with the mTORC1 inhibitor, rapamycin,
intraperitoneally. Four groups were included in the study: saline-treated (PBS)+PBS,
rapamycin+PBS, PBS+IL-33 and rapamycin+IL-33. Bronchoalveolar lavage fluid (BALF),
serum and bone marrow cells were collected and analyzed by differential cell count,
enzyme-linked immunosorbent assay and flow cytometry. IL-33 induced phosphorylation
of the mTORC1 protein rpS6 in bone marrow ILC2s both ex vivo and in vivo. The observed
mTOR signal was reduced by rapamycin treatment, indicating the sensitivity of bone
marrow ILC2s to mTORC1 inhibition. IL-5 production by ILC2s was reduced in cultures
treated with rapamycin before stimulation with IL-33 compared to IL-33 only. Bone
marrow and airway eosinophils were reduced in mice given rapamycin before IL-33-
exposure compared to mice given IL-33 only. Bone marrow ILC2s responded to IL-33 in
vivo with increased mTORC1 activity and rapamycin treatment successfully decreased IL-
33-induced eosinophilic inflammation, possibly by inhibition of IL-5-producing bone
marrow ILC2s. These findings highlight the importance of investigating specific
cells and proinflammatory pathways as potential drivers of inflammatory diseases,
including asthma.
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1 INTRODUCTION

While type 2 inflammation and eosinophilia are typically associated
with allergic asthma, they can also be present during non-allergic
asthma. The mechanisms behind non-allergic asthma are not fully
understood, though it is believed to be caused by an altered airway
epithelium response to environmental factors. Interleukin (IL)-33 is
released from the airway epithelium when triggered by
environmental factors, including allergens (1). Thus, IL-33, a
member of the IL-1 family, is an important inflammatory driver
in eosinophilic inflammation and asthma (2–5). IL-33 signaling is
involved in both allergic and non-allergic eosinophilic
inflammation. This includes type 2 cytokine production by type 2
innate lymphoid cells (ILC2s) and T helper 2 (TH2) cells, both of
which express the IL-33 receptor ST2 (6–11). Mouse lung ILC2s
play a central role in worsening antigen-induced inflammatory
responses mediated by IL-33 (10). Higher expression of IL-33 is
associated with asthma severity, and IL-33 is considered a
promising therapeutic target for eosinophilic asthma (2, 12, 13).
Indeed, patients with eosinophilic asthma display elevated serum
levels of IL-33 compared to non-eosinophilic phenotypes (14).

Eosinophils develop from progenitor cells in the bone marrow,
and IL-5 is crucial for cell migration, terminal differentiation, and
proliferation (7, 15, 16). ILC2s are potent producers of type 2
cytokines, including IL-5, and play important roles in several
diseases, including asthma (2, 17–19). We have previously
identified bone marrow ILC2s as an early source of IL-5 after
IL-33 challenge, demonstrating that bone marrow ILC2s are
important mediators central to eosinophil development (20). In
addition, we have shown in two different IL-33-dependent murine
models of allergic airway inflammation, i.e. papain and house dust
mite (HDM), that bone marrow ILC2s are IL-33-responsive cells
(9, 21). Furthermore, we demonstrated that the adaptive immune
system was dispensable during both papain challenge and IL-33-
induced eosinophilic airway inflammation, exhibiting ILC2s as
potent sources of type 2 cytokines driving the eosinophilic
inflammation. However, the mechanisms regulating the
inflammatory properties of bone marrow ILC2s in IL-33-
induced inflammation are still poorly understood.

The mechanistic target of rapamycin (mTOR) signaling
pathway regulates many cellular processes including cell
metabolism, migration, differentiation and cytokine responses
(22, 23). The mTOR signaling pathway is implicated in several
inflammatory diseases (23–27) and rapamycin, an inhibitor of
mTOR Complex 1 (mTORC1), can suppress eosinophil
differentiation in both allergic and non-allergic airway
inflammation (28–30). Zhang et al. reported that eosinophil
infiltration in mouse lung was impaired after treatment with
rapamycin and other mTOR inhibitors in an ovalbumin-
induced asthma model (31). Furthermore, the same group
showed increased mTOR levels in serum from children with
asthma exacerbations compared to patients in asthma remission
(31). Another murine study reported decreased eosinophilia when
rapamycin was administered together with HDM, but worsened
inflammation when rapamycin was administered during ongoing
eosinophilic inflammation (28). Thus, the effects of mTORC1
inhibition on eosinophilic inflammation remain unclear.
Frontiers in Immunology | www.frontiersin.org 2
Accumulating evidence indicates that ILCs have tissue-
specific functions (32). ILC2s exhibit different phenotypes and
functions at different localizations, and single-cell profiling
identified ILC2 subsets that expressed distinct activating
receptors (33). Salmond et al. reported an important role for
the mTOR signaling pathway in the inflammatory functions of
lung ILC2s and CD4+ TH2 cells during IL-33-induced
eosinophilic inflammation (30). However, the role of mTOR in
the regulation and function of bone marrow ILC2s remains
elusive. Thus, the overall aim of this study was to determine
the role of the mTORC1 signaling pathway in vivo in response to
IL-33 in bone marrow ILC2s. We further investigated whether
mTORC1 inhibition, by rapamycin treatment, modifies
inflammatory properties of bone marrow ILC2s in IL-33-
induced eosinophilic inflammation.
2 MATERIALS AND METHODS

2.1 Mice
Wild-type (WT) mice, C57BL/6J were purchased from Charles
River (Sulzfeld, Germany) or obtained via in-house breeding
(University of Gothenburg, Sweden). Male mice used in all
experiments were 10 – 12 weeks old, housed in pathogen-free
conditions and given food and water ad libitum. All animal
experiments were approved by the Gothenburg County Regional
Ethical Committee (permit numbers 126/14 and 2459/19).

2.2 In Vivo Model
WT mice were given 1 µg recombinant murine (rm) IL-33
(PeproTech, Rocky Hill, NJ, USA) intranasally (i.n.) every
other day for a total of 5 days. Rapamycin doses (2 mg/kg,
R0395, Sigma-Aldrich, St. Louis, MO, USA, dissolved in
dimethyl sulfoxide) were administered intraperitoneally (i.p.)
one hour before each i.n. IL-33 administration. Control mice
received phosphate buffered saline (PBS) vehicle i.n. and i.p.,
where the i.p. injection contained the same concentration of
dimethyl sulfoxide for mice receiving rapamycin. Four groups
were included in the study: PBS+PBS, rapamycin+PBS, PBS+IL-
33, and rapamycin+IL-33, where the former in each group
describes the i.p. dosing and the latter describes the i.n. dosing.

2.3 Sample Procedures
Serum, bronchoalveolar lavage fluid (BALF) and bone marrow
cells were collected 24 h after the final exposure. Blood was
obtained by puncturing the heart. BALF was collected by
instilling 0.25 mL of PBS through the tracheal cannula,
followed by gentle aspiration and a second lavage of 0.25 mL.
BALF cells were processed for differential cell count analysis and
cell-free BALF and serum were processed for mediator analysis
by enzyme-linked immunosorbent assay (ELISA). Bone marrow
cells were obtained from left and right femurs flushed with 5 mL
wash buffer each (2% fetal bovine serum in 1xPBS) and filtered
through a 100 µm cell strainer (CellTrics®, Sysmex, Goerlitz,
Germany). Bone marrow cells were then processed for
differential cell count, ex vivo stimulations and flow cytometry.
The red blood cells were lysed using red blood cell lysis buffer
June 2022 | Volume 13 | Article 915906
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(0.1 mM EDTA in distilled water/0.8% NH4Cl, Sigma-Aldrich/
Merck Chemicals) and incubated for 10 min on ice.

2.4 Mediator Measurements
Concentrations of serum IL-5 and BALF CCL24/eotaxin-2
were measured using mouse ELISA DuoSets (R&D Systems,
Minneapolis , MN) according to the manufacturer ’s
instructions. The BM Chemiluminescence ELISA (POD)
substrate kit (Roche Diagnostics GmbH, Roche Applied
Science, Mannheim, Germany) was used for detection of
signal and luminescence was measured on a Varioskan™
LUX multimode microplate reader (ThermoFisher Scientific,
Vantaa, Finland). Samples below the detection limit were set
to zero.

2.5 Differential Cell Count
Approximately 10,000-50,000 cells were collected via cytospin (425
x g, 6 min, Shandon Cytospin 3 centrifuge) and stained with
Hemacolor® Rapid stain (Merck, Darmstadt, Germany) according
to the manufacturer’s protocol. Eosinophils were assessed under an
Axioplan 2 microscope (Carl Zeiss Jena GmbH).

2.6 Ex Vivo Stimulation of Bone Marrow
Cells With Rapamycin and IL-33
for Intracellular Analysis
2.6.1 mTORC1 Activity in ILC2s and TH Cells
To determine if the mTORC1 signaling pathway was activated
in ILC2s and TH cells, bone marrow cells from naïve WT mice
were incubated for one hour with rapamycin (50 ng/mL). Cells
were stimulated with rmIL-33 (100 ng/mL) for 15 minutes.
Complete cell medium was used as a control, containing
RPMI-1640 (HyClone™; GE Healthcare Life Sciences, South
Logan, UT, USA), 10% fetal bovine serum (Sigma-Aldrich),
2 mM L-glutamine (HyClone), 100 U/mL penicillin, 100 mg/
mL streptomycin (HyClone), 1 mM sodium pyruvate (Sigma-
Aldr ich) . Phosphory la ted r ibosomal prote in rpS6
(pRPS6), an mTORC1 target, was measured by intracellular
flow cytometry.

2.6.2 Intracellular IL-5 Measurements in ILC2s
A total of 4 x 106 bone marrow cells from naïve WT mice were
incubated for one hour with rapamycin (50 ng/mL), followed by
3 h stimulation with rmIL-33 (100 ng/mL). Monensin (BD
GolgiStop™, BD Biosciences, Erembodegem, Belgium) was
added to all samples (4 mL GolgiStop™/6 mL media) before
IL-33 stimulation. The frequency of IL-5+ ILC2s was measured
by intracellular flow cytometry.

2.7 Flow Cytometry
2.7.1 Surface Staining
Bone marrow cells were resuspended in 2% mouse serum (Dako,
Glostrup, Denmark) and surface antibodies were added (30 min,
4°C, in the dark). For ex vivo experiments, cells were also stained
with viability dye (Live/Dead™Fixable Aqua stain, Invitrogen,
Life Technologies Corp, Eugene, Oregon, USA). Cells were
washed, then fixed (BD CellFix™, BD Biosciences) for 15 min
in the dark at room temperature and washed before intracellular
Frontiers in Immunology | www.frontiersin.org 3
staining or direct analysis. For intracellular staining, monensin
(4 µL GolgiStop™/6 mL buffer) was added to all solutions prior
to fixation.

2.7.2 Intracellular Staining of IL-5
After fixation, cells were washed and permeabilized using 0.1%
saponin (Sigma-Aldrich) in Hank’s balanced salt solution. Anti-
IL-5 antibodies or isotype control antibodies (Table S1) were
added and incubated 40 min (in the dark, at room temperature)
followed by washing and flow cytometric analysis.

2.7.3 Phospho-Protein Analysis of ILC2s
and TH Cells
Bone marrow cells were resuspended in 2% mouse serum (Dako)
and surface antibodies were added (30 min, 4°C). Cells were
washed and fixed (BD Cytofix™, BD Biosciences) for 10 min in
the dark at 37°C. Cells were washed and permeabilized using ice-
cold Phosflow™ Perm Buffer II (BD Biosciences) followed by 30
min incubation on ice. Cells were washed, stained for
intracellular anti-S6 (60 min in the dark, at room temperature,
Table S1), and washed again before analysis.

2.7.4 Analysis
Flow cytometric analysis was performed using a BD FACSVerse™

flow cytometer running BD FACSuite™ version 1.0.6. Collected
data were analyzed by FlowJo™ software (BD Biosciences).
Eosinophil progenitors and mature eosinophils were defined as
SSC l oCD45+CD34+CD125+ and SSCh iCD45+CD34-

CD125loCCR3+Siglec-F+ respectively. TH cells were defined as
SSCloCD45+CD3+CD4+CD8-B220-. Lineage-negative cells were
defined as CD3-CD45R/B220-CD11b-TER-119-Ly-G6/Gr1-

CD11c-CD19-NK-1.1-FceR1-. ILC2s were defined as SSCloLin-

CD45+CD127+CD25+ST2+. Antibodies used are listed in
Table S1. The ST2 expression on ILC2s, chemokine receptor 3
(CCR3) expression on SSChiCD45+CD34-CD125lo, and the
intensity of IL-5 and pRPS6 in ILC2s were estimated by mean
fluorescence intensity (MFI) values. Relative MFI (rMFI) equals
MFI of monoclonal antibody divided by MFI of corresponding
fluorescence minus one value.

2.8 Statistical Analysis
Data are expressed as mean ± SEM and Graphpad Prism 8
Software (Graphpad Software Inc., La Jolla, CA, USA) was used
for statistical analysis. Paired Student’s t-test was used for the ex
vivo experiments, and Mann-Whitney U test was used for in vivo
comparisons. Statistical significance was defined as *p<0.05,
**p<0.01, ***p<0.001 and ****p<0.0001.
3 RESULTS

3.1 Rapamycin Treatment Reduced
IL-33-Induced Bone Marrow and
Airway Eosinophilia
To determine the role of rapamycin in eosinophilia, we
administered rapamycin to C57BL/6 male mice before inducing
eosinophilic inflammation by IL-33 (Figure 1A). As expected, IL-
June 2022 | Volume 13 | Article 915906
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33 induced airway and bone marrow eosinophilia (Figures 1B, C)
and elevated CCL24/eotaxin-2 levels (Figure 1D) in BALF
compared to control groups. Reduced levels of airway and bone
marrow eosinophils and lower concentrations of CCL24/eotaxin-2
were observed in IL-33-exposed mice given rapamycin versus IL-
33-exposure alone. Analysis of bone marrow eosinophils by flow
cytometry revealed an increase of mature eosinophils in mice
exposed to rmIL-33 compared to control mice given PBS. Mice
treated with rapamycin before IL-33-exposure exhibited
normal levels of mature eosinophils, i.e., similar numbers as
control mice (Figure 1E). Furthermore, the expression of the
chemokine receptor CCR3, which is highly expressed on
eosinophils and a receptor for eotaxins, was analyzed on
eosinophils. The CCR3 expression on mature eosinophils was
significantly reduced in the rapamycin-treated and IL-33-
exposed group, suggesting impaired recruitment of
eosinophils to the airways (Figure 1F). No difference in
eosinophil progenitor numbers or expression of the IL5Ra
were seen among the treatment groups (Figures 1G, S1).

3.2 The mTORC1 Signaling Pathway
Is Critical for IL-5 Production by
Bone Marrow ILC2s
We have previously demonstrated that during IL-33-driven
inflammation, bone marrow ILC2s produce IL-5, a critical
cytokine for eosinophil differentiation (20, 21). In the current
Frontiers in Immunology | www.frontiersin.org 4
study, we found a decrease in IL-5-producing bone marrow
ILC2s in cultures treated with rapamycin before rmIL-
33 compared to cultures stimulated with IL-33 only
(Figures 2A, B). Additionally, rMFI revealed decreased overall
intensity of IL-5 in ILC2s after pre-treatment with rapamycin
(Figure 2C). In vivo, we found a lower concentration of IL-5 in
serum from mice pre-treated with rapamycin before IL-33
exposure compared to mice treated with PBS before IL-33
exposure (Figure 2D).

3.3 IL-33 Induces mTORC1 Activity in
Bone Marrow ILC2s Ex Vivo
To determine the mTORC1 activity in bone marrow ILC2s after
IL-33 stimulation, we measured phosphorylation of the known
mTORC1 target rpS6 by intracellular flow cytometry. The gating
strategy for bone marrow pRPS6+ILC2s is shown in Figure 3A.
IL-33-stimulation of bone marrow cultures induced
phosphorylation of rpS6+ ILC2s compared to controls
(Figure 3B). Rapamycin inhibited the basal pRPS6+ ILC2s
signal compared to media only (Figure 3B). The overall
intensity of pRPS6 in bone marrow ILC2s was increased after
IL-33 stimulation compared to controls. This effect was inhibited
in cultures treated with rapamycin in addition to IL-33
(Figure 3C). Because ILCs share some immune functions with
T cells, we also examined mTORC1 activity in bone marrow TH

cells compared to ILC2s. IL-33 did not induce rpS6
A

B D

E F G

C

FIGURE 1 | Rapamycin reduced IL-33-induced eosinophilia in BALF and bone marrow. (A) C57BL/6 male mice received rapamycin or PBS i.p. one hour before intranasal
challenges of rmIL-33 or PBS. Analysis was performed 24 h after the final challenge. (B) Number of eosinophils in BALF and (C) bone marrow assessed by differential cell
count. (D) CCL24/Eotaxin-2 concentration in BALF quantified by ELISA. (E) Number of mature eosinophils among all CD45+ leukocytes in the bone marrow. (F) CCR3
expression on mature eosinophils measured by relative mean fluorescence intensity (rMFI). (G) Number of eosinophil progenitors among all CD45+ leukocytes in the bone
marrow. Data are representative of 1 – 3 independent experiments (4 – 12/group) and displayed as mean ± SEM. Mann-Whitney U test. *P < 0.05, **P < 0 .01 and ****P <
0.0001. Eos, Eosinophil; BM, Bone marrow; Mat Eos, Mature eosinophil; EoP, Eosinophil progenitor; Rapa, Rapamycin; i.p, intraperitoneal; i.n., intranasal; PBS+PBS, PBS i.p.
and PBS i.n; Rapa+PBS, Rapa i.p. and PBS i.n.; PBS+IL-33, PBS i.p. and IL-33 i.n.; Rapa+IL-33, Rapa i.p. and IL-33 i.n.
June 2022 | Volume 13 | Article 915906
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phosphorylation in bone marrow TH cells compared to controls
(Figure 3D). Additionally, controls showed that only a small
percentage of TH cells were pRPS6+ at baseline and that
rapamycin further reduced this basal activity (Figures 3D, E).

3.4 IL-33 Induces mTORC1 Activity in
Bone Marrow ILC2s In Vivo
After demonstrating the induction of mTORC1 activity in bone
marrow ILC2s after IL-33 stimulation and the reduction of
mTORC1 activity by rapamycin treatment, we investigated this
mechanism in ILC2s in vivo. The number of ILC2s was similar in
all experiment groups (Figure 4A), though an increase in
Frontiers in Immunology | www.frontiersin.org 5
pRPS6+ ILC2s was observed in mice challenged with IL-33
compared to controls (Figure 4B). A reduction of pRPS6+

ILC2s was observed in mice pre-treated with rapamycin before
IL-33 exposure. The intensity of the pRPS6 signal was increased
in IL-33-exposed mice compared to controls (Figure 4C) and
decreased in mice treated with rapamycin in addition to IL-33
(Figures 4C, D).

3.5 Decreased ST2 Expression on TH Cells
After Rapamycin Treatment
It has been shown that IL-33 induces mTOR activation through
ST2 signaling (30). Therefore, we investigated the effect of
A B DC

FIGURE 2 | Decreased IL-5 production by bone marrow ILC2s after rapamycin treatment and IL-33 stimulation ex vivo. (A) Number of IL-5+ ILC2 cells. (B) Number
of IL-5+ ILC2s in rapamycin+IL-33 and PBS+IL-33 mice shown as fold change (FC). (C) IL-5 intensity in ILC2s measured by relative mean fluorescence intensity
(rMFI). (D) Concentration of IL-5 in serum. Data are representative of 1 – 3 independent experiments (3 – 10/group). Paired Student’s t-test (A ,C), Mann-Whitney U
test (D). *P < 0.05, **P < 0.01 and ****P < 0.0001. Rapa, Rapamycin; i.p, intraperitoneal; i.n., intranasal; PBS+PBS, PBS i.p. and PBS i.n; Rapa+PBS, Rapa i.p. and
PBS i.n.; PBS+IL-33, PBS i.p. and IL-33 i.n.; Rapa+IL-33, Rapa i.p. and IL-33 i.n.
A
B

D E

C

FIGURE 3 | IL-33 induced high mTORC1 activity in bone marrow ILC2s ex vivo. (A) Gating strategy for quantifying mTOR activity in ILC2s measured by pRPS6 after
IL-33 stimulation of cultured bone marrow cultures. (B) Number of pRPS6+ ILC2s and (C) pRPS6 intensity in ILC2s measured by relative mean fluorescence intensity
(rMFI). (D) Number of pRPS6+ TH cells and (E) pRPS6 intensity in TH cells measured rMFI. Data are representative of 1 – 2 independent experiments (4 – 7/group).
Paired Student’s t-test. *P < 0.05, **P < 0 .01, ***P < 0.001 and ****P < 0.0001. Rapa, Rapamycin.
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rapamycin on ST2 expression on TH cells, mature eosinophils
and ILC2s in vivo. The number of ST2+ TH cells was increased in
mice exposed to IL-33 and decreased in mice exposed to
rapamycin in addition to IL-33 (Figure 5A). Additionally,
rapamycin treatment reduced ST2 expression on TH cells in
control mice given saline. In contrast to TH cells, rapamycin
treatment did not affect the ST2 expression on eosinophils or
ILC2s (Figures 5B, C). Mice exposed to IL-33 showed an
increase in ST2+ mature eosinophils and ST2 expression on
ILC2s (Figures 5B, C).
4 DISCUSSION

In this study, the mTORC1 signaling pathway in bone marrow
ILC2s was investigated using an IL-33-induced in vivo model.
Furthermore, the mTORC1 inhibitor, rapamycin, was used to
Frontiers in Immunology | www.frontiersin.org 6
investigate how the treatment affected proinflammatory
properties of bone marrow ILC2s in vivo. We show for the
first time, at the single-cell level, that IL-33 promoted high
mTORC1 activity, as measured by the phosphorylation of the
known mTORC1 target rpS6 in bone marrow ILC2s both ex vivo
and in vivo. Moreover, this activity was reduced by
rapamycin treatment.

There is substantial evidence that IL-5 is a critical cytokine
acting on numerous processes in eosinophil biology, driving
eosinophilic diseases. Eosinophils develop from CD34+

progenitor cells in the bone marrow, where IL-5 promotes
terminal eosinophil differentiation and trafficking of bone
marrow eosinophils to the airways during different
inflammatory conditions (16, 34–36). IL-33 stimulation of
bone marrow cultures from naïve WT mice revealed an
increased IL-5 production by bone marrow ILC2s and
confirmed our previous studies (9, 20, 21). In the current
A B DC

FIGURE 4 | IL-33 induced high mTORC1 activity in bone marrow ILC2s in vivo. (A) Number of ILC2s among all CD45+ leukocytes in the bone marrow. (B) Number
of pRPS6+ ILC2s and (C) pRPS6 intensity in ILC2s measured by relative mean fluorescence intensity (rMFI) in mice exposed to IL-33+rapamycin or PBS. (D) Fold
change (FC) rMFI pRPS6 in mice exposed to IL-33+rapamycin and PBS+IL-33. Data are representative of 2 independent experiments (6 – 8/group). Mann-Whitney U
test. *P < 0.05 and **P < 0.01. Rapa, Rapamycin; i.p, intraperitoneal; i.n., intranasal; PBS+PBS, PBS i.p. and PBS i.n; Rapa+PBS, Rapa i.p. and PBS i.n.; PBS+IL-
33, PBS i.p. and IL-33 i.n.; Rapa+IL-33, Rapa i.p. and IL-33 i.n.
A B C

FIGURE 5 | Decreased ST2 expression on bone marrow TH cells after rapamycin treatment and IL-33 challenge. (A) Number of ST2+ TH cells and (B) mature
eosinophils. (C) ST2 expression on ILC2s shown as relative mean fluorescence intensity (rMFI). Data are representative of 1 – 3 independent experiments (4 – 11/
group). Mann-Whitney U test. *P < 0.05 and **P < 0.01. TH, T helper cell; ST2=IL-33 receptor; Mat Eos, Mature eosinophil; Rapa, Rapamycin; i.p, intraperitoneal;
i.n., intranasal; PBS+PBS, PBS i.p. and PBS i.n; Rapa+PBS, Rapa i.p. and PBS i.n.; PBS+IL-33, PBS i.p. and IL-33 i.n.; Rapa+IL-33, Rapa i.p. and IL-33 i.n.
June 2022 | Volume 13 | Article 915906
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study, we also demonstrated for the first time that the mTORC1
inhibitor rapamycin significantly reduced the number of IL-5+

ILC2s in bone marrow cultures stimulated with IL-33.
Furthermore, rapamycin also exhibited an effect under basal
conditions, as demonstrated by decreased IL-5 production in
bone marrow ILC2s in mice given saline.

Extensive evidence indicates that ILCs have tissue-specific
functions, and more research is needed to better understand the
properties of ILC2s in different tissues during various
inflammatory conditions. A lower IL-5 production by lung
ILC2s has been reported after rapamycin treatment (30). The
same study reported the absence of pRPS6 in sorted lung ILC2s
stimulated with IL-33 and rapamycin in vitro compared to ILC2s
stimulated with IL-33 only (30). We found that rapamycin
inhibited IL-5 production by bone marrow ILC2s, thus
decreasing the eosinophilic inflammation induced by IL-33.
Furthermore, our study demonstrated, in vivo, that bone
marrow ILC2s act similarly to lung ILC2s during eosinophilic
inflammation driven by IL-33.

Assessment of bone marrow eosinophils revealed a decrease
in mature eosinophils in IL-33-exposed mice pre-treated with
rapamycin compared to mice given IL-33 only. We have
previously shown that ILC2s produce large amounts of IL-5 in
response to IL-33 which is in contrast to eosinophil progenitors
that produce low levels of IL-5 (20). Moreover, we further
demonstrate that rapamycin treatment had no effect on IL-
5Ra expression on eosinophil progenitors which remained the
same in all treatment groups. Together, these data indicate that
the lower IL-5 production by bone marrow ILC2s observed in the
present study may explain the decreased number of mature
eosinophils in mice treated with rapamycin. Our data suggest
that the mTORC1 signaling pathway is critical for eosinophilic
inflammation and type 2 responses mediated by IL-5-producing
ILC2s in the bone marrow. A decrease in airway and mature
bone marrow eosinophils in mice treated with rapamycin and IL-
33, compared to IL-33 only, indicates that rapamycin may affect
the maturation of eosinophils in the bone marrow.

The chemokine receptor CCR3 is highly expressed on
eosinophils and contributes to the accumulation and activation
of eosinophils (15). Expression of CCR3 on mature eosinophils
in the bone marrow remained unchanged in mice exposed to IL-
33 compared to control mice, but was reduced in IL-33-exposed
mice pre-treated with rapamycin compared to mice given IL-33
only. A reduction in mRNA levels of CCR3 in in vitro
differentiated bone marrow eosinophils after rapamycin
treatment have previously been reported, thus suggesting a
cell-intrinsic effect of rapamycin (29). In addition to its role in
eosinophil maturation, IL-5 primes eosinophils for migration to
sites of inflammation by upregulating CCR3 on eosinophils.
Besides a potential cell-intrinsic effect on eosinophils from
rapamycin treatment, the decrease in IL-5+ ILC2s in bone
marrow cultures may indicate that rapamycin affected
eosinophil recruitment to the airways by downregulating
CCR3. Moreover, a decrease in the CCR3 ligand CCL24/
eotaxin-2 was observed in the airways in mice exposed to
rapamycin in addition to IL-33 compared to IL-33 only,
Frontiers in Immunology | www.frontiersin.org 7
further suggesting that the recruitment might be affected.
Taken together, reduced expression of CCR3 on eosinophils
and CCL24/eotaxin-2 in the airways could potentially explain
the decrease in airway eosinophilia observed in mice given
rapamycin in addition to IL-33.

Our findings confirm previously reported reduced airway
eosinophilia after rapamycin treatment in IL-33-exposed mice
(30). Furthermore, several studies have also reported a decrease in
eosinophils in the airways of mice treated with rapamycin in OVA-
induced allergic eosinophilic inflammation (29, 31, 37). One study
reported paradoxical effects of rapamycin in HDM-induced airway
eosinophilia (28). In that study, rapamycin decreased eosinophilia
when administered together with HDM, but increased eosinophilia
when administered after an established HDM-induced
inflammation. These findings highlight the complexity of mTOR
activation and the need for further investigation into how
rapamycin affects eosinophilic inflammation.

Several immune cells express ST2, including ILC2s, TH cells
and eosinophils (38, 39). We have previously shown that bone
marrow ILC2s, TH cells and mature eosinophils all respond to
IL-33 by upregulating the ST2 receptor in mice exposed to IL-33,
papain or HDM compared to control mice (9, 20, 21). Moreover,
it has been proposed that IL-33 induces mTOR activation
through ST2 signaling in experiments performed on a murine
TH2 clone (30). However, little is known about how mTOR
inhibition affects ST2 expression on immune cells in the bone
marrow. In the present study, we demonstrated a decrease in
ST2+ TH cells in mice pre-treated with rapamycin in both IL-33-
exposed mice and control mice, whereas ST2 expression was not
affected on mature eosinophils or ILC2s in any of the examined
groups. Further kinetic studies are needed to investigate the
clinical impact of decreased ST2 expression after rapamycin
treatment. Kinetic studies would also reveal whether ST2
expression on eosinophils and ILC2s varies at other time
points or if the altered ST2 expression after rapamycin
treatment is unique for TH cells. In contrast to ILC2s which all
express ST2, approximately 15% of all bone marrow TH cells of
control mice expressed ST2. The difference in ST2 expression
may explain the absence of rpS6 phosphorylation after IL-33
stimulation in TH cells. A detailed characterisation of T cell
subsets was not addressed in the current study. Thus, in future
studies, it would be interesting to determine the effects of
rapamycin treatment on ST2 expression in both TH2 cells and
T regulatory cells and assess the downstream effects during IL-
33-induced inflammation.

Clinical trials of anti-IL-33 therapies for asthma are already
underway. For patients who do not respond to currently
available pharmacological treatments, it is imperative to
identify new disease mechanisms during IL-33 inflammation
(40, 41). Indeed, future studies that target both mTOR signaling
pathways are warranted to deepen the mechanistic
understanding of how the mTOR signaling pathways regulate
bone marrow ILC2s during IL-33-driven inflammation.

To conclude, we demonstrated for the first time that bone
marrow ILC2s responded to IL-33 in vivo with increased
mTORC1 activity. Rapamycin treatment decreased IL-33-induced
June 2022 | Volume 13 | Article 915906
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eosinophilic airway inflammation, possibly by inhibiting IL-5-
producing bone marrow ILC2s. Collectively, our data support
previous studies demonstrating beneficial effects of rapamycin
treatment during eosinophilic inflammation. The mTORC1
signaling pathway might be a disease driver and a future
therapeutic target in inflammatory diseases including asthma.
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