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Abstract
The SARS-CoV-2 pandemic has raised particular concern for people with Multiple Sclerosis, as these people are believed to 
be at increased risk of infection, especially those being treated with disease-modifying therapies. Therefore, the objective of 
this review was to describe how COVID-19 affects people who suffer from Multiple Sclerosis, evaluating the risk they have 
of suffering an infection by this virus, according to the therapy to which they are subjected as well as the immune response 
of these patients both to infection and vaccines and the neurological consequences that the virus can have in the long term. 
The results regarding the increased risk of infection due to treatment are contradictory. B-cell depletion therapies may cause 
patients to have a lower probability of generating a detectable neutralizing antibody titer. However, more studies are needed to 
help understand how this virus works, paying special attention to long COVID and the neurological symptoms that it causes.

Keywords SARS-CoV-2 · Multiple sclerosis · Disease-modifying therapies · Immunity · Adjuvant treatments · Neuro-
COVID

Introduction

On March 11, 2020, the World Health Organization (WHO) 
declared the coronavirus disease 2019 (COVID-19) as a pan-
demic, just 3 months after the appearance of the first cases in 
Wuhan (China) [1]. On May 26, 2022, the cases confirmed 
by the WHO are 524,339,768 and 6,281,260 deaths have 

been registered worldwide [2]. This pandemic has placed 
enormous pressure on medical resources and, in most coun-
tries, health care systems have had to reconfigure to manage 
the increase in severe COVID-19 cases and reduce the risk 
of vulnerable patients [3, 4].

The genome of the type 2 coronavirus that causes severe 
acute respiratory syndrome (SARS-CoV-2) comprises 13 to 
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15 open reading frames (ORF), of which 12 are fundamen-
tal, encompassing 11 genes that code for proteins (Fig. 1) 
[5, 6]. This virus consists of four main structural proteins 
[7]. The spike protein (S) enables the attachment and entry 
of SARS-CoV-2 to the host cells; The membrane protein 
(M) is a component of the viral membrane; the nucleocapsid 
protein (N) binds to viral RNA and supports the formation 
of the nucleocapsid and the envelope protein (E) that plays a 
role in viral assembly, release, and pathogenesis (Fig. 2) [8, 
9]. When infection occurs, the first responders are alveolar 
macrophages [9]. This signal causes transcription factors 
such as IRF3/7 (interferon regulation factor) and NF-κB 
(nuclear factor kappa B) to be activated and the produc-
tion of type I and III interferon (IFN) begins, as well as the 
secretion of interleukin 6 (IL-6) and interleukin 1β (IL-1β), 
which induces the recruitment of neutrophils and cytotoxic 
T cells [7, 10]. CD4 + T cells aid in the adaptive response, 
by stimulating CD8 + T cells and B cells [11]. In addition, 
they induce a Th1 response [12], which plays a dominant 
role in the adaptive immune response to viral infections [9, 
11]. This response causes an increase in the secretion of pro-
inflammatory cytokines, IFN-γ and Tumor Necrosis Factor 
alpha (TNF-α) [12]. Th17 cells produce IL-17, even more 
monocytes, macrophages, and neutrophils are recruited, and 
more cytokines are stimulated [9, 13, 14]. In certain cases, 

the levels of these cytokines are very high, due to a dysregu-
lated immune response of the host, causing what is known 
as “Cytokine Storm”.

SARS-CoV-2 has become a serious challenge for many 
areas of medicine, including neurology [15]. In this sense, 
since the beginning of the pandemic, there has been a special 
concern for those people suffering from Multiple Sclerosis 
(MS), especially those who are being treated with disease-
modifying therapies (DMTs) [16], since it is believed that 
these patients may be at higher risk of infection or of hav-
ing a more severe course of COVID-19 than the general 
population. This disease affects 2.5 million people in the 
world [17], being the most common cause of non-traumatic 
disability in young adults [18] between 20 and 30 years of 
age [19] (Fig. 3).

Therefore, the objective of this review is to describe how 
COVID-19 affects people who suffer from MS, evaluating 
the risk they have of suffering an infection by this virus, 
according to the therapy to which they are subjected, as well 
as the immune response of these patients to both the infec-
tion and the vaccines and the long-term neurological impact 
the virus may have.

Methodology

A literature search was performed in the PubMed and Sco-
pus databases, without language limitations. The search was 
limited to articles published between 2020 and 2021. The 
keywords “COVID-19”, “SARS-CoV-2”, and “Multiple 
Sclerosis” were used. These terms were searched for alone 
or in combination, for example by combining “SARS-CoV-2 
AND Multiple Sclerosis”. In addition, the references of rel-
evant studies, reviews, and editorials were also searched 
from the articles read. Specific references were also sought 
to write sections that were added throughout the writing of 
the manuscript, using keywords such as “disease-modifying 
therapies”, “vaccines”, and “adjuvant therapies”. With these 
searches, a total of 257 articles were collected, including 
original articles, review articles, and abstracts. Articles deal-
ing with the impact of home confinement on quality of life 
and muscle performance in patients with multiple sclerosis 
were excluded; therefore, 142 articles were included. After 
reading these manuscripts, 72 more articles were searched, 

Fig. 1  SARS-CoV-2 genomic organization. Image made with Inkscape based on the article made by Dos Santos 2021 [5]

Fig. 2  Structure of SARS-CoV-2 with the main structural proteins. 
Image made with Inkscape based on the article made by Dos Santos 
2021 [5]
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Fig. 3  Cellular and molecular mechanisms involved in multiple scle-
rosis. BBB blood–brain barrier, CNS central nervous system, TCR  
T-cell receptor, MHC-II major histocompatibility complex II, VCAM-
1 vascular cell adhesion molecule 1, Th1,Th17 cells T helper 1, T 
helper 17, IL-18 interleukin 18, IL-10: interleukin 10, IL-17 inter-
leukin 17, IL-1β interleukin 1 β, IL-1α Interleukin 1α, TNF tumor 
necrosis factor, IFN interferon, MMP-9 matrix metalloproteinase-9, 

iNOS nitric oxide synthase, CP carbonylated proteins, LPO lipid per-
oxidation products, NO nitric oxide, MDA malondialdehyde, GSSG 
oxidized glutathione, GPx glutathione peroxidase, GSH reduced 
glutathione, SIRT3 sirtuin 3, NF-κB factor nuclear kappa B, mtDNA 
mitochondrial DNA, 8-OHdG 8-hydroxy-2′deoxyguanosine, SOD 
superoxide dismutase, CAT  catalase, ROS reactive oxygen species, 
RNS reactive nitrogen species, Nrf2 nuclear erythroid-related factor 2

Fig. 4  Methodology for the 
literary search
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so that, finally, 214 scientific productions were included in 
the review (Fig. 4).

Interaction COVID‑19 and multiple sclerosis

PwMS, especially those with severe forms of the disease, 
are generally more prone to infections [16, 20]. The pan-
demic has also had a negative impact on the mental health 
of pwMS [21], since the fear of get the disease [22], home 
confinement [23], and social distancing have caused an 
increase in levels of anxiety and depression in these patients 
[21]. A study conducted by Ramezani et al., 2021 in 410 
pwMS from Iran, reported that in the first wave, the preva-
lence of anxiety and depression in these patients was 31.2% 
and 39.3%, respectively [24]. The urgency to ensure the 
treatment of COVID-19 patients, left little leeway for the 
development and implementation of consistent strategies 
to continue the care of people with chronic diseases [25]. 
Despite the fact that during the pandemic, many diseases 
have been treated through the use of telemedicine, becoming 
a feasible tool to maintain patient care and reduce the risk 
of exposure to SARS-CoV-2 for both patients and workers 
of health [26, 27], the impact of COVID-19 on the health 
care system has been dramatic. The system had to undergo 
important changes, such as the postponement of surgeries 
and non-urgent medical care [28]. In patients with multiple 
sclerosis, regular physical activity is considered essential for 
disease management. These people usually require physi-
otherapists to carry out rehabilitation exercises, which, due 
to home confinement and social distancing rules, was unfea-
sible [29]. This has also led to an increase in fear of relapse 
in pwMS, due to the uncertainty about the management of 
the disease and access to health services [30]. Despite all 
benefits of telemedicine during the COVID‐19 pandemic, 
the telemedical examination does not seem to be able to 
replace personal consultation fully [28].

COVID‑19 in patients with multiple sclerosis

Role of DMTs in viral infection

Due to the higher rate of infection and mortality because 
of the COVID-19, among patients with chronic diseases, a 
concern has been raised with pwMS, since, normally, their 
treatment is based on DMTs [16]. In general, 70% of pwMS 
are treated with DMTs [31, 32]. DMTs are classified into 
two categories: Immunomodulators, are medications used to 
help regulate or normalize the immune system, and Immu-
nosuppressants, which temporarily or permanently alter the 
functioning of the immune system [33]. Based on this, a 
safety problem has been raised with respect to the use of 
these treatments, since patients who use them could be more 

vulnerable to SARS-CoV-2 infection [20, 34]. Currently 
approved DMTs, to control autoimmunity in MS, affect 
multiple immune mechanisms, including the inhibition of 
immune cell trafficking, the depletion of subsets of these 
cells, as well as the alteration of their function and the inhi-
bition of cell replication [35, 36]. Most of these DMTs are 
directed against CD4 + and Th17 T cells, memory (CD19 + , 
CD27 +), and naive B cells (CD19 + , CD27) [3, 37, 38].

DMTs are distinguished in two main categories, first-line 
DMTs (moderate effective; Oral administration or injection) 
(IFN-β, Glatiramer Acetate, Teriflunomide and Dimethyl 
fumarate) and second-line DMTs (high effective; Infusi-
ble or oral therapies) (Natalizumab, Fingolimod, Alemtu-
zumab, Cladribine and anti-CD20 treatment, Rituximab, 
Ocrelizumab, and Ofatumubab), as escalation therapy [39]. 
First-line therapies are moderately effective, but not immu-
nosuppressive, and have excellent long-term safety profiles 
[40], while second-line therapies show greater efficacy, but 
cause immunosuppression and/or immunomodulation [41].

Considering the effects of these therapies, it is of special 
interest to study how they affect the risk of SARS-CoV-2 
infection in people who are being treated with them. Since 
the beginning of the pandemic, numerous clinical cases, 
research, and reviews have been published in this regard.

Regarding the first-line DMTs, Glatiramer Acetate [3] 
causes blockage of MHC-II in immunological synapsis and 
shift from Th1 to Th2 immune responses [39]. This has 
been associated with a lower risk of SARS-CoV-2 infection 
in pwMS, like IFN-β, which has powerful antiviral effects 
in  vivo [42] and reduces antigen presentation and Th1 
expression [39]. In fact, in the study by Reder et al. (2021) 
obtained that those pwMS treated with therapies whose 
mechanism of action causes a reduction in Th1 responses 
and increase the anti-inflammatory response Th2, that is, 
IFN-β and Glatiramer Acetate, were less likely to develop 
COVID-19, compared with other DMTs [36].

Due to the potentially reduced risk of developing COVID-
19 in pwMS treated with IFN-β or glatiramer acetate [43], 
the probability of death using either of these therapies is 
very low. This is confirmed in the systematic reviews by 
Sharifian-Dorche et al., 2021 and Zrzavy et al. 2021, in 
which they show that no patient treated with IFN-β and con-
firmed COVID-19, died [44, 45]. Zrzavy et al. 2021 in their 
review reports a fatal case of a pwMS treated with Glati-
ramer Acetate and Sharifian-Dorche et al., 2021 reported 2 
deaths (1.4%) in pwMS of the 140 treated with Glatiramer 
Acetate infected by SARS-CoV-2 [32, 44, 46]. Some authors 
consider that IFN-β treatment can be started and continued 
in the case of a SARS-CoV-2 infection [47]. However, other 
authors state that IFN-β could be protective in the early 
stages of infection, but could become harmful in the stages 
of hyperinflammation, by facilitating the invasion of the 
lungs and other organs by macrophages [48, 49]. Despite 
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this, both therapies are being tested as possible treatments 
in cases of SARS-CoV-2 infection [50].

Teriflunomide is an agent that selectively and revers-
ibly inhibits dihydroorotate dehydrogenase, and through 
this mechanism, teriflunomide reduces the level of immune 
activation without the major immunosuppression that occurs 
with several other MS DMTs [44, 51, 52]. Teriflunomide 
prevents viral replication, so it is believed that it may play a 
potential therapeutic role with COVID-19, by blocking de 
novo pyrimidine synthesis and exerting an antiviral effect. 
[3, 51–53]. In general, in patients who are treated with teri-
flunomide, diseases of the upper respiratory tract are more 
common [37]. A study conducted by Luetic et al., 2021, 
in 18 pwMS concluded that COVID-19 is mild in patients 
treated with teriflunomide and the continuation of this ther-
apy during infection is safe and recommended [49]. A clini-
cal case published by Yetkin et al., 2021, reported on pwMS 
being treated with teriflunomide and who was infected with 
SARS-CoV-2. Treatment was not interrupted during infec-
tion, which followed a mild course [53]. Another study car-
ried out by Capone et al., 2021, in which they reported a 
clinical case of pwMS, treated with teriflunomide and that 
was infected by SARS-CoV-2, presented a self-limited infec-
tion and without relapse of MS. Patient continued treatment 
during infection [54]. The three reports cited agree that teri-
flunomide could have a beneficial effect against COVID-19, 
since it can prevent an excessive host immune response [53, 
54]. Therefore, currently, the activities carried out by terif-
lunomide are under consideration to prevent the morbidity 
and mortality of COVID-19 [50].

Dimethyl fumarate (DMF) is a methyl ester of fumaric 
acid with anti-inflammatory and antioxidant properties, 
being a powerful activator of Nrf2 [55]. Likewise, DMF 
blocks the production of pro-inflammatory cytokines and 
can inhibit the action of macrophages [37, 44]. Thanks to 
these functions, DMF was proposed as a viable treatment 
option for the course of COVID-19, and can be rapidly 
implemented in the clinic to calm the cytokine storm that 
causes this disease [55]. However, it has been reported that 
DMF can cause severe prolonged lymphopenia in a small 
proportion of pwMS [3]. This lymphopenia can be grade 3 in 
5–7% of patients [44]. Despite this, a few serious opportun-
istic infections have been reported in DMF-treated pwMS, 
so these patients would not have an increased risk of SARS-
CoV-2 infection or suffer a more severe course of disease 
[3, 37, 44, 56]. Of 27 pwMS with positive PCR for SARS-
CoV-2, reported in the review by Zrzavy et al. 2021, one of 
them passed away [45]. Similarly, Sharifian-Dorche et al., 
2021 reported that of 314 pwMS infected by SARS-CoV-2, 
one (0.3%) died [32, 44]. Due to the activity of DMF, it has 
been proposed that this therapy could have a protective role 
against SARS-CoV-2, although the available data are insuf-
ficient to draw definitive conclusions [57].

With regard to second-line DMTs, it is known that Natal-
izumab can promote opportunistic infections [44, 56], as 
well as Fingolimod, which is associated with an increased 
risk of mild infections [44], but it is unknown if this is 
significant in SARS-CoV-2 infection [3]. Natalizumab is 
a humanized monoclonal antibody that recognizes the α4 
chain of the VLA4 antigen, a component of the α4β1 integ-
rin, an adhesion molecule expressed on the surface of lym-
phocytes and involved in transmigration across endothelia 
into the CNS [58, 59]. Inhibition of α4β1 causes reduced 
migration of lymphocytes through the BBB [3, 39]. Fin-
golimod is a sphingosine-1-phosphate receptor modula-
tor that sequesters lymphocytes in lymph nodes, prevent-
ing them from contributing to an autoimmune reaction by 
blocking trafficking to the target organ. It reduces the total 
mean circulating lymphocyte count by 73% from baseline 
and preferentially sequesters the naive and central memory 
lymphocytes rather than effector memory T cells [37, 39, 
44, 59]. Natalizumab decreases immunosurveillance of the 
CNS and could increase the risk of encephalitis during a 
SARS-CoV-2 infection [60]. In the systematic review car-
ried out by Sharifian-Dorche et al., 2021, they obtained that 
of 257 pwMS treated with Fingolimod, one (0.3%) died and 
of 233 pwMS treated with Natalizumab, 3 (1.2%) died [44, 
61]. Likewise, Zrzavy et al. 2021 reported that of 24 and 10 
patients with confirmed COVID-19, treated with Fingolimod 
and Natalizumab, respectively, one patient died with each 
treatment [45]. However, a study conducted by Mallucci 
et al., 2021 reported that, of 104 pwMS with COVID-19 and 
treatment with Natalizumab or Fingolimod, none required 
hospitalization, or had serious complications from the virus. 
Therefore, it could be assumed that these two treatments are 
safe, being a good therapeutic option for pwMS with active 
disease, during the pandemic [62].

Alemtuzumab is an anti-CD52 monoclonal antibody, 
which markedly depletes T and B lymphocytes [56], being 
one of the most widely used immunosuppressive drugs in 
MS [63] and Cladribine selectively depletes peripheral lym-
phocytes, being able to induce long-term memory B-cell 
depletion [56, 64, 65]. In relation to both treatments, it was 
reported that their use could suppose an increased risk of 
SARS-CoV-2 infection [66, 67]. This increased risk of 
infection was confirmed in the European prospective cohort 
study, RADAR-CNS, which compared the use of Alemtu-
zumab and Cladribine with injectable drugs [66]. Regard-
ing the course of infection during the use of these drugs, 
a clinical case conducted by Iovino et al., 2021 reported 
on a 24-year-old woman with MS and COVID-19 treated 
with Alemtuzumab. Infection occurred 4 months after the 
last administration of the first cycle of Alemtuzumab. The 
course of the disease was mild, presenting only mild asthenia 
and low-grade fever [63]. Another study conducted by Jack 
et al., 2021, in which they evaluated a cohort of 261 pwMS 
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treated with Cladribine (160 had PCR-confirmed COVID-
19 and 101 were suspected of COVID-19), concluded that 
patients treated with this drug, generally, do not have an 
increased risk of severe illness and/or a severe COVID-19 
outcome compared to the general population [68]. Regard-
ing the mortality rate, no fatal cases have been identified in 
patients treated with Alemtuzumab or Cladribine [44, 45].

Anti-CD20 treatments are one of the therapies that gen-
erate the most concern in the COVID-19 era. These thera-
pies selectively deplete CD20 + B cells, which can cause 
hypogammaglobulinemia, if CD20 depletion occurs every 
6 months [3]. The use of these agents has been associated 
with an increased risk of SARS-CoV-2 infection and with 
a more severe course of the disease in pwMS, compared 
to those patients who received other DMTs [3, 32, 36, 69]. 
Due to the mechanism of action of these therapies, different 
studies have been carried out to analyze the risk of suffering 
from COVID-19 in pwMS treated with them. In the obser-
vational study carried out by Wallach and Picone (2021), 
a higher incidence of SARS-CoV-2 infection was found in 
patients receiving treatment with anti-CD20 monoclonal 
antibodies [70].

Rituximab is a chimeric monoclonal antibody considered 
a selective immunosuppressant [71], widely used for the 
treatment of various diseases [72]. There are some discrep-
ancies on whether the use of Rituximab is harmful or not, 
during the pandemic. There are studies which report that the 
use of this therapy causes an increased risk of SARS-CoV-2 
infection, compared to other DMTs [73]. Rituximab may 
also decrease CD3 + and CD4 + T lymphocytes, which could 
justify this increased risk of viral infections, in patients 
treated with it [71, 74]. This is confirmed by the study con-
ducted by Esmaeili et al., 2021, which further concludes that 
there is a greater possibility of severe disease and mortality 
in pwMS treated with Rituximab. To reduce this risk, the 
possibility of adopting a prolonged dosing interval of the 
treatment has been considered [75, 76]. However, other stud-
ies suggest that this agent does not cause an increased risk of 
infection and motivate its use [77, 78]. A study by Langer-
Gould et al., 2021 in pwMS treated with Rituximab reports 
that these people are at higher risk of being hospitalized but 
not dying from COVID-19 [79]. These results coincide with 
those reported by Simpson-Yap et al., 2020, who state that 
with Rituximab, there is a significantly higher risk of hos-
pitalization, ICU admission, and ventilation [80]. A clinical 
case published by Bose and Galetta 2021 reported a reacti-
vation of SARS-CoV-2 in a 32-year-old woman with very 
active MS. She was positive for COVID-19 during Rituxi-
mab treatment and recovered. She was symptom free for 
21 days before receiving Rituximab again, and 3 days after 
being treated, she developed respiratory symptoms again and 
required admission [81]. This could be because immunosup-
pression is a risk factor for recurrence in the appearance 

of symptoms, since it can decrease the ability to eliminate 
the virus [82]. Yarahmadi et al. 2021, in their review, they 
suggest the use of Rituximab with caution, since, although 
it seems that this therapy does not increase morbidity and 
mortality, more controlled studies are needed to reach a bet-
ter conclusion [72].

Ocrelizumab is a humanized anti-CD20 antibody [33] 
that, like all other anti-CD20 therapies, has been associ-
ated with an increased risk of severe COVID-19 infection 
[83]. However, Fernandez-Diaz et al., 2021 evaluated the 
safety profile and effectiveness of Ocrelizumab treatment 
in 228 people with MS. Of these, only 3 get SARS-CoV-2 
(1.3%). All 3 were men in an age range of 32 to 49 years 
and with scores on the Expanded Disability Status Scale 
(EDSS) of 0.6 and 7.5. Only the oldest and most disabled 
patient needed hospitalization and assisted ventilation 
[84]. Similarly, Louapre et al., 2020 in their cohort study, 
in which they used records of 347 pwMS, were able to 
verify that age, EDSS score, and obesity were independ-
ent risk factors for severe COVID-19, and there was no 
association between Ocrelizumab exposure and COVID-19 
severity [84, 85]. The review carried out by Hughes et al., 
2021 reported that people treated with Ocrelizumab and 
with SARS-CoV-2 infection, present a mild or moderate 
severity of the disease and most do not require hospitali-
zation [86]. The mortality rate for pwMS with this treat-
ment remains within the published ranges for the general 
population and other MS cohorts [61, 86]. On the other 
hand, there are authors who report a serious course of 
COVID-19, even being fatal in cases of Relapsing–Remit-
ting Multiple Sclerosis (RRMS) treated with Ocrelizumab 
[69, 87–89]. Therefore, the possibility of prolonging the 
dosing intervals of Ocrelizumab was raised as a possible 
risk mitigation strategy in times of pandemic [89]. Studies 
that have investigated this possibility conclude that there 
are no clinical consequences for pwMS, by delaying the 
use of this drug [89, 90].

Likewise, the routes of administration of DMTs have 
been related to a different risk of SARS-CoV-2 infections. 
In this sense, DMTs administered by infusion have been 
associated with a higher risk of contagion, since, to receive 
this type of treatment, patients must go to the hospital, 
where they are more exposed to the virus. On the contrary, 
injectable and oral therapies are related to a lower risk of 
contagion, since they can be administered at home. For 
this reason, perhaps, alternative routes of administration 
should be investigated for some medications that currently 
require more frequent hospital care [91].

Despite everything described, most of the results 
obtained in relation to DMTs are contradictory, possi-
bly explained by the different populations used and the 
bias in their selection [89] (Table 1). However, one thing 
most studies do agree on is that the risk of further MS 
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progression due to treatment interruption possibly out-
weighs the risk of SARS-CoV-2 infection [33, 92]. In 
addition, it has been reported that the highest rates of hos-
pitalization and mortality occur in pwMS that were not 
receiving any DMT [83]. Although this could be due to the 
fact that pwMS that do not receive treatment are elderly 
or are in terminal stages of the disease [93]. Therefore, 
there is a growing need for personalized medicine, which 
could play a key role in elucidating individual susceptibil-
ity to infection, as well as interindividual variability in the 
clinical course of the disease, prognosis, and response to 
treatment [94].

SARS‑COV‑2 infection in patients with multiple sclerosis

As described in the previous section, MS alone is not a risk 
factor for symptomatic SARS-CoV-2 infection [3]. How-
ever, there is a lack of information about the consequences 
that SARS-CoV-2 can have on pWMS, when the infection 
occurs [95]. Infections, in general, cause significant morbid-
ity and contribute to exacerbation of the disease, in the form 
of relapses and/or worsening of neurological manifestations 
[34, 96]. Upper respiratory viral infection (URVi) are known 
to increase the risk of relapse in pwMS [95, 97]. 10–30% 
of these infections are caused by coronavirus [95, 98]. For 
these viruses, the host's aberrant immune response is respon-
sible for severe respiratory failure, which can lead to 21% of 
pwMS to be hospitalized and 3.5% to die [83, 85, 99].

The effect of COVID-19 on the risk of MS exacerbation is 
still unknown, but some studies are already investigating it. 
Di Stadio et al., 2020 comment that a long-term neurologic 

sequela arising from COVID-19 infection in pwMS could be 
related both to the increase of cytokines and the activation of 
NLRP3 inflammasome by the SARS-CoV-2, which would 
cause a worsening of MS [100]. They also speculate that the 
intense immune stimulation and systemic stress produced 
by COVID-19 could be responsible for a higher frequency 
of relapses of pwMS [100, 101]. Barzegar et  al., 2021 
suggest that COVID-19 may trigger relapse in MS [95]. 
They support that there could be an association between 
COVID-19 and MS, due to the expression of pro-inflam-
matory mediators (IL-6, IL-7, IL-17, IFN-γ, and TNF-α) 
that causes SARS-CoV-2 infection. These mediators would 
cause an even greater dysfunction of the BBB and facilitate 
the migration of monocytes, macrophages and CD4 + and 
CD8 + T cells to the CNS, causing a neurological worsen-
ing and exacerbation of MS [95, 102, 103] (Fig. 5). In the 
prospective cohort study carried out by Garjani et al., 2021, 
in pwMS and SARS-CoV-2 infection, it was found that, of 
404 participants, 57% had an exacerbation of MS. Of these, 
207 experienced a worsening of pre-existing symptoms, 82 
developed new MS symptoms, and 59 reported both events. 
They concluded that those with a higher EDSS score and 
a longer duration of MS were more likely to experience a 
worsening of their MS symptoms during COVID-19 [104]. 
In contrast, in the retrospective cohort study conducted by 
Etemadifar et al., 2021, they observed that the exacerbation 
rate was lower in RRMS patients who get SARS-CoV-2 than 
in patients who were not infected by the virus. They specu-
late that the lymphopenia associated with COVID-19 could, 
in part, prevent autoreactive memory cells from expanding 
and initiating relapses through the so-called “bystander 

Fig. 5  Influence of SARS-CoV-2 viral infection in pwMS. IFN-γ interferon-γ, TNF tumor necrosis factor, IL-17 interleukin 17, IL-22 interleu-
kin-22, BBB blood–brain barrier, MMP-9 matrix metalloproteinase-9, CNS central nervous system, MS multiple sclerosis
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effect of SARS-CoV-2 infection” [105]. Similarly, Nowak-
Kiczmer et al., 2021 conclude in their study that SARS-
CoV-2 infection was not related to worsening MS in most 
patients [15].

Immunity against SARS‑CoV‑2 in patients 
with multiple sclerosis

Generation of immunity after infection

After recovery from SARS-CoV-2 infection, the next ques-
tion posed about pwMS is whether they will be able to 
generate a detectable neutralizing antibody titer, which can 
prevent reinfection [106]. There are already some reports, 
although limited, on certain DMTs affecting seroconver-
sion after SARS-CoV-2 infection, in pwMS [106, 107]. In 
general, the administration of IFN-β has been significantly 
associated with the presence of antibodies against SARS-
CoV-2, after infection with the virus [108]. In this sense, 
Bigaut et al. (2021) found that pwMS treated with IFN-β1a 
or Glatiramer Acetate had an anti-SARS-CoV-2 IgG index 
higher than that of patients treated with Fingolimod or anti-
CD20 therapies [109]. Those patients who receive therapies 
that produce a reduction in B cells will present lower anti-
body titers and of short duration [108]. Thus, in the study by 
Bsteh et al. (2021), observed seropositivity rates were equal 
to or greater than 80% in pwMS treated with Dimethyl fuma-
rate (80%), Teriflunomide (83%), IFN-β (88.9%), Glatiramer 
acetate (88.9%), or Natalizumab (90.9%). On the contrary, 
they obtain lower seropositivity rates in those pwMS treated 
with Ocrelizumab (50%), Alemtuzumab (50%), Rituximab 
(60%), Fingolimod (68.8%), and Cladribine (75%). Regard-
ing anti-SARS-CoV-2 antibody titers, they were significantly 
lower with immunosuppressive treatments (84 BAU/ml) 
compared to immunomodulators (354 BAU/ml) [110]. Conte 
2021 analyzed the probabilities of developing antibodies 
against SARS-CoV-2 in pwMS treated with Ocrelizumab 
compared to other DMTs. He concluded that those patients 
who had received Ocrelizumab were less likely to gener-
ate antibodies [111]. A clinical case published by this same 
author reported on the case of a 48-year-old woman under 
treatment with Ocrelizumab, with hypogammaglobulinemia 
and who had no detectable antibodies after recovery from 
COVID-19 [112]. Similarly, Lucchini et al., 2020 reported 
on a 60-year-old woman on Ocrelizumab treatment who 
developed COVID-19. After recovering from the disease, 
she underwent a serological test for SARS-CoV-2, dem-
onstrating the presence of IgA while IgG was not detected 
[113]. Thornton and Harel 2020, reported 2 cases of pwMS 
treated with Ocrelizumab that developed COVID-19 and 
exhibited negative serology for specific antibodies against 
SARS-CoV-2 [114]. Another study carried out in 5 pwMS, 
who received treatment with Ocrelizumab for at least 1 year 

and who had recovered from COVID-19, reported that they 
did not present anti-SARS-CoV-2 antibodies or they pre-
sented them in very low concentration [115]. Therefore, 
they postulate that Ocrelizumab plays a role in reducing 
antibodies, damaging the humoral response of the immune 
system [114]. However, they were able to detect a T-cell 
response in these 5 patients [115]. This could suggest that 
the T-cell response is also involved in the recovery process 
from COVID-19 [115, 116]. Perhaps, a functional innate 
immune response, along with an antigen-specific T-cell 
response, could be sufficient to eliminate the virus, as most 
pwMS have a mild disease course and recover, even without 
evidence positive serological test [114].

A clinical case by Gelibter et al., 2021 reported a pwMS 
treated with Cladribine that, 1 month after recovering from 
COVID-19, had a negative result in the quantitative chemi-
luminescence immunoassay for IgM and IgG anti-SARS-
CoV-2. This finding could indicate that patients recently 
treated with Cladribine have a reduced immunization [117]. 
A multicenter case–control study conducted by Habek et al., 
2021, in which 64 pwMS diagnosed with COVID-19 and 
treated with different DMTs (Natalizumab, Fingolimod, 
Alemtuzumab, Ocrelizumab, Cladribina, and Ublituximab) 
participated, concluded that those patients taking B-cell 
depletion therapy, had a significantly higher chance of not 
developing seroconversion, compared to pwMS taking other 
DMTs or healthy controls [118]. They also highlight that 
2 patients taking Fingolimob and another 2 with Cladrib-
ine, did not develop IgG antibodies against SARS-CoV-2 
[118]. On the contrary, Flores-Gonzalez et al., 2021 reported 
a clinical case, about a pwMS with Ofatumumab that was 
infected by SARS-CoV-2 and that presented B-cell deple-
tion. Despite this, he developed IgG antibodies and they 
remained positive after 3 months of recovery from COVID-
19. They suggest that patients treated with this therapy could 
develop an effective humoral response against SARS-CoV-2 
infection [119].

Generation of immunity after vaccination

Vaccination is the most efficient and cost-effective means to 
prevent and control the COVID-19 pandemic [7, 120]. Six 
vaccines have been approved by WHO against COVID-19, 
Pfizer/BioNTech, Moderna, AstraZeneca, Janssen, Sinop-
harm and Sinovac’s CoronaVac. Of these, Pfizer/BioNTech 
(BNT162b2) and Moderna (mRNA-1273) are nucleoside-
modified mRNA vaccines that encode the spike glycoprotein 
of SARS-CoV-2 [121]. With them, the genetic information 
of the antigen is administered, and subsequently, the antigen 
is expressed in the cells of the vaccinated individual [120]. 
AstraZeneca (ChAdOx1 nCoV-19) and Janssen (Ad26. 
COV2-S) are viral vector vaccines, using a chimpanzee and 
human adenovirus vector, respectively, designed to express 
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the spike protein of SARS-CoV-2 [120, 121]. Finally, Sin-
opharm (BB1BP-CorV) and Sinovac’s CoronaVac are inac-
tivated virus vaccines, where all the virus is presented to the 
immune system [120, 122].

Currently, 4.717.584.168 people (60.5% of the world 
population) have received the complete vaccination schedule 
against COVID-19 [123]. However, following the approval 
of these vaccines, concerns have been raised regarding their 
efficacy in pwMS [124], as the use of vaccines in these 
patients has been a controversial topic for decades, due 
in part to concerns about possible exacerbation of the ill-
ness [3, 120]. The responses to vaccination depend on the 
type of vaccine, the type of immune response they generate 
(humoral or cellular), and the impact of DMTs on immu-
nity [120]. To date, there are limited data in large cohorts 
regarding the efficacy and safety of these vaccines in pwMS 
(Table 2) and new knowledge about it is urgently needed 
[120, 125]. An article published in April 2021 by Achiron 
et al., 2021 evaluated the safety of the BNT162b2 vaccine 
in adult pwMS. The results of this investigation showed that 
the relapse rate of the patients was 2.1% after the first dose 
and 1.6% after the second dose, being like the rate of unvac-
cinated patients. Therefore, they conclude that the Pfizer 
vaccine is safe in pwMS [126]. Another study carried out 
by this group investigated the humoral immune response to 
the BNT162b2 vaccine in pwMS treated with high-efficacy 
DMTs [127]. They found that 100% of the patients treated 
with Cladribine had protective humoral immunity. However, 
only 22.7% and 3.8% of patients treated with Ocrelizumab 
and Fingolimod, respectively, developed IgG antibodies. 
Therefore, they conclude that it is advisable to postpone 
treatment with Ocrelizumab in patients who are going to be 
vaccinated and not to vaccinate those people treated with 
Fingolimod, since they are not expected to develop a protec-
tive humoral response [127]. Drulovic et al., 2021 also inves-
tigated the immune response to vaccines in pwMS. Eleven 
pwMS treated with Cladribine participated in their study, of 
which 4 were vaccinated with the Pfizer vaccine and 7 with 
the Sinopharm vaccine and 4 pwMS treated with Alemtu-
zumab, of which 3 were vaccinated with Pfizer and 1 with 
Sinopharm. They found that 100% of the patients treated 
with Cladribine and vaccinated with Pfizer, as well as those 
treated with Alemtuzumab-developed antibodies. On the 
other hand, 42.9% of the patients treated with Cladribine and 
vaccinated with Sinopharm developed seroprotection [65]. 
In the study carried out by Maniscalco et al. (2022), they 
report that the humoral response to the BNT162b2 mRNA 
vaccine was increased in IFN-β-treated pwMS. In addition, 
they found a direct correlation between the IgG titer and the 
B-cell count in pwMS treated with Dimethyl fumarate and 
between the IgG titer and the lymphocyte count in pwMS 
treated with Glatiramer Acetate, both therapies maintaining 
an efficient humoral response [125]. Similarly, Mariottini 

et al. (2022) obtained that 100% of the patients who were 
receiving first-line treatments or Natalizumab developed 
detectable antibody levels after vaccination [128]. In the 
study by Disanto et al. (2021) in which 120 pwMS partici-
pated, obtained that, after vaccination against SARS-CoV-2, 
all patients treated with Teriflunomide were seropositive. In 
contrast, the humoral immunity of patients treated with fin-
golimod or anti-CD20 therapy was markedly reduced, with 
33% and 48.2% remaining seronegative, respectively [129]. 
Likewise, Jakimovski et al. (2022) conducted a study that 
included 757 pwMS and other neuroinflammatory disorders, 
obtaining a significant difference in seroconversion accord-
ing to the DMT used at the time of vaccination. Successful 
seroconversion was observed in 85% of patients treated with 
IFN-β, 88.9% with Glatiramer Acetate, 87% with fumarates, 
73.7% with Teriflunomide, 98.3% with Natalizumab, and 
61.5% with Cladribine. Again, lower seroconversion rates 
were seen in fingolimod and anti-CD20 patients (30.8% and 
23.2%, respectively) [130]. Even after administration of the 
third dose in pwMS, the immune response to the vaccine 
was weak in patients treated with anti-CD20 therapy or Fin-
golimod [131].

Regarding the possibility of relapse, only one case of 
acute relapse has been described in a woman after vaccina-
tion [125]. The patient developed paresthesia and weakness 
in the left extremities 48 h after receiving the BNT162b2 
vaccine. In addition, after conducting an Magnetic Reso-
nance Imaging (MRI), 3 new lesions could be observed 
[125]. It is important to keep in mind that any vaccine can 
cause side effects, among which fever stands out. Fever can 
make MS symptoms temporarily worse, but they return 
to previous levels when the fever goes away [132]. Stud-
ies carried out to date have reported that the side effects 
caused by vaccines against SARS-CoV-2 in pwMS are the 
same as in the general population, regardless of the clinical 
course of MS and the DMT used, characterizing, in mostly 
because they are mild and short-lived [133]. In the study 
by Mariottini et al. (2022), they find that approximately 
one-third of patients reported common adverse events, such 
as injection site pain, fever, and asthenia [128]. Similarly, 
Capone et al. (2021) obtained that the side effects reported 
by pwMS after vaccination were pain at the injection site 
(57.1%), fatigue (37.9%), myalgia (27.1%), fever (23.6%), 
and headache (15.7%) [134]. Likewise, Briggs et al. 2022 
that of 719 pwMS, 64% reported experiencing a reaction 
after the first dose of the vaccine. As in the other reports 
described above, the most common reactions were injec-
tion site pain (54%), fatigue (34%), headache (28%), and 
malaise (21%). Lower odds of reactions were seen in pwMS 
treated with an alpha4 integrin blocker (Natalizumab) or a 
sphingosine-1-phosphate receptor modulator (Fingolimod). 
After the second dose of the vaccine of 442 pwMS, 74% 
experienced an adverse reaction [135].
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To date, there are not much data about the possible inter-
ference of DMTs on the immune response to COVID-19 
vaccines and many of the vaccination strategies that are 
being followed are based on previous evidence with other 
vaccines, such as the seasonal influenza vaccine. Since the 
administration times of these must be adjusted to guarantee 
security and optimize responses [136], the National Multiple 
Sclerosis Society (NMSS) published specific guidelines for 
the timing of the vaccine, in relation to the dosage of DMTs 
[121]. The main guidelines recommend full vaccination 
2–4 weeks before starting anti-CD20 therapy, S1P modula-
tors, and Cladribine and 4 weeks before starting Alemtu-
zumab therapy. For those patients already receiving a DMT, 
they recommend vaccinating 24 weeks or more, after the 
last dose of Alemtuzumab, 12 weeks after the last dose of 
Ocrelizumab or Rituximab [41, 137], and between 3 and 
6 months after the last administration of Cladribine, at which 
time the absolute lymphocyte count is reconstituted [124, 
138]. Likewise, there is evidence, although very limited, of 
the possible protective effect of some drugs for MS against 
immune-mediated adverse events generated by vaccines, but 
more studies are needed in this regard [132].

In general, more immunological studies are needed to 
monitor responses, both humoral and cellular to COVID-19 
vaccines in pwMS [47], since, although these are likely to 
be safe and effective, mRNA and viral vector vaccines are 
the first of its kind in clinical use, so it is essential to have 
representative data on its application in these patients [67]. 
Likewise, it would also be necessary to evaluate the effect 
of the booster dose of the vaccines, recently approved, in 
pwMS that have presented an insufficient immune response 
after receiving the complete vaccination schedule [47].

Role of adjuvant therapies in SARS‑CoV‑2 in pwMS

The use of adjuvant therapies, such as vitamin D or mela-
tonin, can be an effective strategy to treat those pwMS who 
have contracted SARS-CoV-2 infection. However, although 
there are already studies on the effect that both therapies 
could have on COVID-19 in the general population, we 
found a lack of studies evaluating the effect of vitamin D or 
melatonin in pwMS infected with SAR-CoV-2.

Vitamin D

For the treatment of COVID-19, different active therapies 
are used, but nutritional supplements with antimicrobial 
and immunomodulatory activities are postulated as promis-
ing therapeutic adjuvants in the fight against SARS-CoV-2 
[139].

Vitamin D (VD) is a steroid hormone that has a multi-
tude of regulatory effects [140]. It is a powerful modulator 
of the immune system [141], with antimicrobial functions 

[139, 142]. VD exerts its functions through interaction with 
a nuclear vitamin D receptor (VDR) [143], in the VD/VDR 
signaling pathway [144]. This receptor is expressed in a 
wide variety of immune cells, influencing the secretion of 
cytokines and the function of different populations of lym-
phocytes [139, 145].

Vitamin D deficiency is a risk factor for MS and has been 
inversely correlated with disease severity [146]. Further-
more, serum concentrations of 25-hydroxyvitamin D (25 
(OH) D) or calcifediol are lower during relapse phases than 
during remissions in pwMS [140, 147–149]. Specific micro-
nutrient deficiencies have been shown to manifest adverse 
effects in immunity and thereby cause poor prognosis in 
viral infections [150, 151]. Some studies have shown that 
there is an association between VD deficiency and SARS-
CoV-2 infection (Table 3) [151, 152]. Low levels of 25(OH)
D at the time of hospital admission have been shown to be 
associated with the severity and mortality of COVID-19 
[152–154]. Based on this, it has been proposed that VD 
supplementation could be a safe and beneficial treatment 
for treating COVID-19 patients [144, 155].

One of the most serious symptoms produced by SARS-
CoV-2 infection is ARDS, which involves two main patho-
physiological mechanisms: cytokine storm and aberrant acti-
vation of the Renin–Angiotensin System (RAS) [144, 156]. 
VD acts as a RAS inhibitor [151, 157, 158] and reduces 
the production of immunoglobulins, as well as the Th1 and 
Th17 response, decreasing the release of pro-inflammatory 
cytokines and promoting the proliferation of Treg cells and 
the development of a Th2 response [139, 159, 160]. It also 
produces antimicrobial peptides such as cathelicidins and 
defensins [139, 161, 162], and improves endothelial dys-
function by reducing oxidative stress and suppressing the 
NF-κB pathway [162].

A randomized clinical trial, conducted by Elamir et al., 
2021 reported that the administration of 0.5 µg of calcitriol, 
improved oxygenation and reduced hospital stay in patients 
with COVID-19, compared to the group that received no 
treatment [163]. Castillo et al., 2020 conducted a pilot clini-
cal trial in which they used calcifediol, to treat hospital-
ized patients with SARS-CoV-2 infection. They found that 
the need for admission to the ICU was much lower in the 
group treated with VD (2%) compared to standard treatment 
(50%) [164]. The retrospective study carried out by Loucera 
et al., 2021, which concluded that patients who had adjusted 
their serum levels of 25(OH)D, for other health objectives, 
within the 15–30 days prior to hospitalization, presented 
better response to COVID-19 and increased survival [165]. 
Another cross-sectional study in 508 patients, conducted 
by Vasheghani et al., 2021, reported that mortality from 
COVID-19 had a negative correlation with the serum level 
of 25(OH)D and in those patients who were hospitalized, 
low levels of 25(OH)D, were associated with more severe 
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disease and increased ICU admissions [162]. However, the 
results obtained by Murai et al., 2021 show that a single dose 
of cholecalciferol does not cause any clinical benefit [166].

There is more and more research, stating that VD sup-
plementation, especially an analog of this vitamin approved 
by the Food and Drug Administration (FDA), paricalcitol, 
has beneficial effects during SARS-CoV-2 infection [144]. 
However, the evidence regarding VD and the preventive or 
curative mechanisms against SARS-CoV-2 is limited and 
presents some controversies [151, 167–169]. In fact, a Lan-
cet editorial is skeptical of the findings of the benefits of VD 
supplementation in COVID-19 patients, until more robust 
data are available [151, 170].

Melatonin

Melatonin (MLT) is an indolamide produced and secreted 
by the pineal gland in a circadian rhythm [171, 172]. It can 
also be secreted by extrapineal sources, such as cells of the 
immune system, brain, skin, and gastrointestinal tract [171]. 
It is a multifunctional molecule, which acts on the immune 
responses, oxidative process, apoptosis, and mitochondrial 
homeostasis [171, 173], exerting its effects through recep-
tor-dependent and receptor-independent pathways [174]. In 
pwMS, it has been proven that there is a decrease in mela-
tonin levels, a fact that has been correlated with the severity 
of the disease and some of the symptoms such as fatigue, 
insomnia, or depression [175].

MLT has been shown to have a great antioxidant and 
anti-inflammatory capacity [172]. These properties are of 
great importance in the preservation of bodily functions 
and homeostasis [176]. The combination of both properties 
has caused MLT to attract attention as a possible adjunctive 
treatment during SARS-CoV-2 infection [176].

Thanks to its anti-inflammatory and immunomodulatory 
effect, MLT regulates the levels of effector and regulatory 
T cells [177] and pro-inflammatory cytokines [172]. MLT 
has been shown to decrease Th1 and Th17 responses and 
improve levels of Tr1 regulatory cells [177]. It also has 
the ability to reduce the production of pro-inflammatory 
cytokines, especially TNF, IL-1β, and IFN [175, 177–180], 
as well as to increase the levels of anti-inflammatory 
cytokines, such as IL-10 and IL-4. This effect would make 
it possible to combat the cytokine storm caused by SARS-
CoV-2. Likewise, MLT has the capacity to inhibit the inflam-
masomes activated by SARS-CoV-2, which are responsible 
for the triggering of the cytokine storm [181].

The SARS-CoV-2 infection induces, like MS, an increase 
in oxidative stress, with the consequent increase in ROS 
[100]. MLT could also combat this effect of COVID-19 
since this hormone is characterized by having a powerful 
antioxidant function. It has the ability to reduce oxidative 
stress, being able to eliminate toxic free radicals [172] and 

reduce the toxicity induced by lipid peroxidation [182]. 
It also reduces the main biomarkers of oxidative stress 
[carbonylated proteins (CP), lipid peroxidation products 
(LPO), nitric oxide (NO), and malondialdehyde (MDA)] 
[17, 183–188] and oxidative damage to nuclear DNA both 
in vivo and in vitro [183], and has the ability to enhance 
sirtuins [189].

In addition to these properties, MLT has also been shown 
to have an antiviral effect, being able to decrease the viral 
titer and reduce the production of new progeny by inhibiting 
the replication of the virus [189–191]. Likewise, it has neu-
roprotective actions, reducing the damage to the CNS that 
SARS-CoV-2 infection can produce, restoring BBB homeo-
stasis through the activation of its MT2 receptor [189, 192] 
and attenuating the activation of astrocytes and microglia 
[193].

For all that has been described, MLT could be a beneficial 
adjuvant treatment against COVID-19, both in pwMS and 
in the general population [194]. It is a hormone with a high 
safety profile, which has been shown to be a good adjuvant 
in respiratory diseases, while improving cardiac function in 
pulmonary arterial hypertension [176, 194, 195]. However, 
despite this, its efficacy against SARS-CoV-2 has not been 
demonstrated in clinical trials [176].

Chronic neurological consequences 
after infection by SARS‑CoV‑2

It is speculated that SARS-CoV-2, like other human coro-
naviruses, presents neurotropism, being able to invade the 
CNS and cause neurological symptoms and signs [53, 96]. 
On some occasions, neurological symptoms may precede 
the typical symptoms of the disease [196]. These symp-
toms have been termed NEURO-COVID [197], and can be 
divided into CNS manifestations, including headache, dizzi-
ness, stroke, altered consciousness, encephalitis, meningitis, 
and seizures, and Peripheral Nervous System (PNS) mani-
festations, including hyposmia, hypogeusia, Guillen-Barré 
syndrome, and myalgia [198]. Of all these symptoms, the 
most prevalent in European patients are hyposmia, detected 
in 85.6% of patients, and hypogeusia, detected in 88% of 
patients [199–201]. However, the mechanism through 
which SARS-CoV-2 accesses the CNS is not fully under-
stood [53]. It has been proposed that SARS-CoV-2 can take 
a direct transynaptic route through the olfactory bulb [7, 
202], only part of the CNS that is not protected by the dura 
mater [60], and invade neural tissue. After this, the virus can 
cause reactive astrogliosis and activation of the microglia, 
and produce a systemic inflammation that compromises the 
BBB and induces an alteration of homeostasis and death of 
neuronal cells [7, 202]. Another possibility is that SARS-
CoV-2 can cross the BBB through vascular endothelial cells 
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and directly access the brain [198, 203]. However, other 
authors state that the mechanism responsible for the devel-
opment of NEURO-COVID is an immunological mecha-
nism rather than a direct neuroinvasion [107, 204]. We have 
already described that SARS-CoV-2 can interfere with the 
clinical course of MS, also exhibiting a long-term latency 
potential [96, 205], which could trigger disease exacerba-
tions in pwMS that have recovered from COVID-19 [96]. 
However, there is another concern about the consequences 
that SARS-CoV-2 can have, due to its neurotropic charac-
teristics. Although it is not known for sure what triggers 
MS, the pathology of this disease implies a possible viral 
etiology [206]. Thanks to experimental evidence, certain 
viruses are known to be associated with MS [206, 207]. 
The Epstein–Barr virus is one of the most important risk 
factors for this disease [208], but also infection by Human 
Herpesvirus 6 [180, 209] and by certain members of the 
coronavirus family [210]. With regard to human coronavi-
ruses (HCoV), it has been proven that there is an associa-
tion with the pathogenesis of MS [206]. Murray et al., 1992 
revealed that murine coronavirus infection, in susceptible 
mice, led to an inflammatory demyelination similar to MS 
and detected coronavirus RNA and its antigens in demyeli-
nating lesions [211]. One of the four endemic coronaviruses, 
OC43-CoV, has been detected in human brain samples from 
patients with neurological diseases such as Alzheimer's, Par-
kinson's and MS [210]. In addition, HCoV RNA has been 
found in the cerebrospinal fluid (CSF) of MS patients [212]. 
In relation to SARS-CoV-2, so far, 2 cases of MS have been 
described after recovery from COVID-19. Palao et al., 2020, 
reported the case of a 29-year-old woman who was infected 
by SARS-CoV-2 after which she experienced a reduction in 
visual acuity [1]. Laboratory results showed the presence 
of oligoclonal bands in the CSF, as well as periventricular 
lesions, making the diagnosis compatible with MS. They 
conclude that in this case, the virus could act as a precipi-
tating factor, rather than MS being a direct consequence of 
the infection [1]. Another case, published by Fragoso et al., 
2021, reported on a 27-year-old woman who suffered from 
COVID-19 and 6 months after virus infection, she devel-
oped dysesthesia, hypoesthesia, and hyperreflexia. Her MRI 
showed demyelinating lesions, of which 2 were enhanced by 
gadolinium and her CSF was positive for oligoclonal bands. 
They speculate that SARS-CoV-2, in this case, caused an 
autoimmune disease through a neuroimmunopathological 
condition induced by it [213].

In general, the proportion of patients with severe neuro-
logical symptoms is small compared to respiratory symp-
toms [60]. Although more research is needed to evaluate 
and monitor these symptoms, since their prevalence var-
ies from one study to another [197]. This would be of 
great importance, given that there is concern about the 
possible increase in the worldwide incidence of MS and 

other autoimmune neurological disorders as a consequence 
of SARS-CoV-2, in the next 10 years [206]. In addition, 
another aspect that is going to be a major study objec-
tive is the so-called Long COVID, which causes seque-
lae and persistent symptoms [214]. A recently published 
systematic review estimated that 80% of SARS-CoV-2 
infected patients developed one or more long-term symp-
toms [215]. Long COVID does not have a fixed pattern in 
all patients [216], although the most common symptoms 
are usually fatigue (58%), headache (44%), attention dis-
order (27%), hair loss (25%), and dyspnea (24%) [215]. 
Although this alteration is reported mainly in people who 
have had a severe course of the disease, it can also occur 
in individuals with a mild infection, who have not required 
hospitalization [215, 217]. Therefore, more studies are 
needed to define Long COVID [215] and identify the pos-
sible factors associated with these sequelae, which could 
be useful to optimize preventive follow-up strategies in 
primary care [214].

Conclusions

Since the beginning of the pandemic, it was thought that 
pwMS had a higher risk of SARS-CoV-2 infection than the 
general population, due in part, to the type of DMT they 
were using, especially if it was an anti-CD20 therapy. In 
general, the results on DMTs, reported to date, are contradic-
tory. However, stopping treatment poses an even greater risk 
than SARS-CoV-2 infection, as it could lead to further pro-
gression of MS. Once infection has occurred, it is suspected 
that COVID-19 could cause a worsening of MS symptoms, 
as URVi are known to increase the risk of relapse in pwMS. 
Nevertheless, although studies are beginning on this topic, a 
definitive conclusion has not yet been reached and the effect 
of COVID-19 on the risk of exacerbation of MS is unknown.

In relation to the generation of immunity, it seems that 
those patients who have overcome COVID-19 and who 
are being treated with a B-cell depletion therapy and more 
specifically, with Ocrelizumab, are less likely to generate 
a detectable neutralizing antibody titer, which can pre-
vent reinfection. Regarding vaccines, those that have been 
approved so far, seem to be safe in terms of the possibility 
of causing a relapse of MS. However, the humoral immune 
response can be affected by DMTs; therefore, the NMSS 
published specific guidelines for the time of the vaccine, 
in relation to the dosage of DMTs. In general, more immu-
nological studies are needed to monitor responses, both 
humoral and cellular, to infection and to COVID-19 vac-
cines in pwMS.

To combat this disease, different active therapies are 
being used, but nutritional supplements with antioxidant, 
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antimicrobial, and immunomodulatory activities, such as 
vitamin D and melatonin, are postulated as promising thera-
peutic adjuvants. Both have properties that could be benefi-
cial, both for pwMS and for the general population. Even 
so, more studies are needed to confirm its clinical efficacy 
against SARS-CoV-2.

Finally, it has been found that SARS-CoV-2 causes a 
series of neurological symptoms that affect a significant 
part of infected people, confirming the neurotropism of the 
virus. For this reason, it is of special importance to study 
the prevalence and to follow up those people who have pre-
sented these symptoms, since it is thought that this could 
cause an increase in neurological diseases in the coming 
years, including MS.
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