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Summary

The Ndc80 complex is a key site of kinetochore-microtubule attachment during cell division. The 

human complex engages microtubules with a globular “head” formed by tandem calponin-

homology domains and an 80 amino-acid unstructured “tail” that contains sites of phospho-

regulation by the Aurora B kinase. Using biochemical, cell biological, and electron microscopy 

analyses, we have dissected the tail’s roles in microtubule binding and mediating cooperative 

interactions between Ndc80 complexes. Two segments of the tail that contain Aurora B sites 

become ordered at interfaces; one with tubulin and the second with an adjacent Ndc80 head on the 

microtubule surface, forming interactions which are disrupted by phosphorylation. We propose a 

model in which Ndc80’s interaction with either growing or shrinking microtubule ends can be 

tuned by the phosphorylation state of its tail.
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Introduction

The Ndc80 complex (Ndc80c), a member of the conserved KMN (Knl1 complex, Mis12 

complex, Ndc80 complex) network1, has been identified as a primary site of kinetochore-

microtubule attachment2–5 and a necessary factor for the proper operation of the spindle 

assembly checkpoint (SAC)6–8. The complex is a heterotetramer of Ndc80 (also known as 

HEC1 in humans9), Nuf2, Spc24, and Spc25, each of which features a globular head domain 

and a coiled-coil stalk that mediates dimerization into subcomplexes: Ndc80 with Nuf2 and 

Spc24 with Spc2510,11. The tetramerization interface is formed by the dimerized coiled-

coils, resulting in an elongated, dumbbell architecture10–12. The Ndc80–Nuf2 coiled-coil 

features a break halfway along its length that imparts flexibility by acting as a molecular 

hinge12, and which may also act as a binding site for other factors13. The Spc24–25 head, 

which has a unique fold14, mediates kinetochore association by direct interaction with the 

Mis12 linker complex15,16. The Ndc80-Nuf2 head is formed by the tandem association of 

calponin-homology (CH) domains contributed by each protein17,18 and mediates 

microtubule binding1,17,18.

In addition to the Ndc80–Nuf2 head, microtubule association in vitro and in vivo depends on 

the disordered N-terminal tail of the Ndc80 protein19,20. The tail can be phosphorylated on 

multiple residues by Aurora B kinase1,5,21, which reduces the affinity of the Ndc80c for 

microtubules in vitro1,18 and destabilizes improper kinetochore-microtubule attachments in 

vivo5,19,20,22. Although an unstructured, Aurora B-regulated tail is a conserved feature of the 

Ndc80 protein in all eukaryotes, the region is highly divergent in sequence and length, 

making functionally relevant features difficult to identify by bioinformatic methods.

We therefore set out to experimentally characterize in detail the role of this key 80 amino 

acid region in human Ndc80 complex function. We previously reported a sub-nanometer 

resolution cryo-EM reconstruction of an engineered version of the human Ndc80c (Ndc80 

bonsai18) bound to the microtubule23, revealing tail-dependent oligomerization of the 

complex on the microtubule surface and details of the interaction between the Ndc80 CH 

domain and tubulin’s globular domains. Here we extend our analysis of the tail, delineating 

in detail its interactions with tubulin and the Ndc80–Nuf2 globular head when bound to the 

microtubule. Using a combination of biochemical, structural, and cell biological methods we 

dissect the physiological role of specific Aurora B sites and provide support for a model in 

which dynamic Aurora B phosphorylation of the Ndc80c can support directed chromosome 

motions during mitosis24 in addition to promoting proper attachment.

Results

Dissection of Ndc80’s N-terminal tail

Examination of the primary sequence of the Ndc80 N-terminal tail (Fig. 1a) shows two 

distinct regions of Aurora B phosphorylation sites separated by a proline-rich linker. We 

refer to the cluster of sites found between amino acids 40–80 as “zone 1” and those found 

between amino acids 1–20 as “zone 2.” We previously found that the tail plays a role in the 

formation of phospho-regulated Ndc80c clusters along microtubule protofilaments in 

vitro23, suggesting that this segment mediates protein-protein interactions between Ndc80c 
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molecules in addition to contacting tubulin. In order to probe these two activities of the tail, 

we removed it from the context of the entire complex and fused it to GST for primary 

structure-function analysis. All GST tail peptides were well-expressed and soluble 

(Supplementary Fig. 1). Guided by the positions of the two Aurora B phosphorylation 

regions, we created a number of constructs to test microtubule binding and tail–Ndc80c 

interactions (Fig. 1a,b).

Identification of the microtubule-binding region

We first performed microtubule co-sedimentation assays as described previously18,23. When 

compared to the negative control of GST alone, which we found does not interact with 

microtubules (Fig. 1c,d), we found that the full-length tail (GST 1–80) showed significant 

interaction with microtubules independently of the CH domains of Ndc80 and Nuf2, as had 

been reported previously for HEC1 residues 1–80 in the absence of GST20. This activity is 

conferred by residues 40–80, as both GST 40–80 and GST 20–80 bound microtubules as 

well as the full-length tail in our assay, while GST 1–40, GST 1–20 and GST 20–40 showed 

negligible microtubule binding activity. GST 40–60 displayed weaker but still significant 

microtubule binding activity, while GST 60–80 did not, suggesting that residues from both 

of these regions are necessary for full binding.

We therefore made finer truncations of the 40–80 region in three amino-acid steps and 

identified residues 47–68 as the minimal tubulin-binding region of the tail (Supplementary 

Fig. 2A–D), corresponding very closely to zone 1 of Aurora B sites. This is the most 

conserved region of the tail, with residues 49–61 showing modest but detectable 

conservation in all eukaryotes except nematodes and insects and the Aurora B site at Ser55 

displaying the highest level of conservation (Supplementary Fig. 2e). Furthermore, most 

species feature prolines adjacent to this region (Fig. 1a, Supplementary Fig. 2e), suggesting 

that the architecture of the tail may be conserved although the sequence is not.

Phospho-regulated interaction between Ndc80 complexes

We next investigated the ability of the tail to interact with the Ndc80c in trans. Using GST 

pull-down assays we were unable to detect an interaction between the tail and the Ndc80c 

(Supplementary Fig. 3), in agreement with the observation that the Ndc80c does not form 

clusters in the absence of MTs23. We therefore turned to an indirect assay: we mixed 

microtubules with an Ndc80 complex lacking the tail (bonsai Δ1–80), which is deficient in 

microtubule binding18, in the presence and absence of our GST tail constructs, reasoning 

that constructs containing both microtubule-binding and Ndc80c-binding elements would 

increase the apparent affinity of the bonsai Δ1–80 for microtubules. Bonsai Δ1–80 showed a 

significant increase in binding only in the presence of GST 1–80 (Fig. 1c,e), suggesting the 

N-terminal half of the tail, particularly zone 2, containing the second cluster of Aurora B 

sites, is important for tail–Ndc80c interaction in trans in the context of the microtubule.

These results suggested an approximate functional segregation of the tail into two regions: a 

tubulin binding region and an Ndc80c binding region, each of which contains a cluster of 

Aurora B sites.
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We next investigated if the two zones of Aurora B sites differentially regulated tail–tubulin 

binding and tail–Ndc80c binding, and by extension Ndc80c–microtubule binding and cluster 

formation, respectively. Nine Aurora B phosphorylation sites (S4, S5, S8, S15, S44, T49, 

S55, S62, S69) have been reported in the tail19 (Fig. 1a, teal and red residues), but only 7 of 

the sites (S5, S8, S15, S44, S55, S62, S69) were unambiguously verified in an in vitro 

Aurora B phosphorylation assay using the wild-type bonsai as a substrate18 (Fig. 1a, red 

residues). In a recent study investigating HEC1 phosphorylation by Aurora B in vivo Ser4 

and Thr49 were not probed24. We therefore conservatively focused on the in vitro verified 

sites, although it is likely that Ser4 and Thr49 play a role in vivo. Importantly, both fall 

inside the two Aurora B zones we identified.

We made phosphomimetic serine to aspartic acid mutations in both zones individually and 

in combination. All phosphomimetic GST tail peptides showed significantly reduced 

microtubule binding relative to the wild-type control GST 1–80 (Fig. 2a,b). The tail 

phosphomimetic in zone 2 showed a modest (20%) reduction microtubule binding, while 

tails phosphomimetic in zone 1 (GST 4D) and both zone 1 and zone 2 (GST 7D) showed 

severe reductions (60% and 80%, respectively). These results demonstrate that 

phosphorylation of zone 1 has a stronger negative impact on microtubule binding than 

phosphorlyation of zone 2, consistent with our finding that residues in zone 1 form a direct 

interaction with tubulin and supporting a functional segregation between the two Aurora B 

zones.

Interplay between the N-terminal tail and CH domains

We next examined the same set of phosphomimetic constructs, but this time in the context 

of the Ndc80 bonsai complex (Fig. 2c,d). Again, all constructs showed a significant 

reduction in microtubule binding relative to the wild-type, although the effect of 

phosphomimetic mutations was more modest, presumably due to the contribution of the 

Ndc80–Nuf2 head domain to microtubule binding. Indeed, we found that the bonsai Δ1–80 

complex retained a tail-independent residual microtubule binding activity, as has been 

previously reported17,18.

As was the case with the GST tail peptides, phosphomimetic mutations in both zone 1 and 

zone 2 in combination produced the greatest reduction in MT binding (70%, Fig. 2c,d). 

However, in the context of the Ndc80 bonsai phosphomimetic mutations in zone 2 (bonsai 

3D) resulted in a slightly greater reduction in microtubule binding (35%) than mutations in 

zone 1 (bonsai 4D, 20%), the reverse of what we observed for the GST tail peptides. Since 

residues in zone 2 do not directly interact with tubulin, these results suggest that zone 2 

mediates interactions between Ndc80c molecules that dominate apparent microtubule 

binding. Consistent with this observation, an Ndc80 complex lacking the first 40 amino 

acids of the tail (bonsai Δ1–40) also showed significantly reduced binding compared to the 

wild-type (20%), even though these amino acids do not interact with tubulin. This construct 

nevertheless bound microtubules more robustly than the bonsai 3D construct, suggesting 

that phosphorylation of zone 2 negatively regulates the interaction between Ndc80c 

molecules.
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Although our co-sedimentation assays report on the relative contributions of elements of the 

Ndc80 complex to microtubule binding, they do not address the underlying mechanism. To 

directly investigate the effects of mutations on cooperative microtubule binding, we turned 

to electron tomography to visualize and quantify Ndc80c clusters along protofilaments23 

(Fig. 3). We found that both the bonsai 4D and bonsai 3D mutants were significantly 

impaired in clustering (Fig. 3b), with a most probable cluster size of 2 and 1, respectively, 

distributions that are statistically indistinguishable from each other but distinct from wild-

type bonsai23 (Fig. 3c, Supplementary Table 1). Both were capable of forming significantly 

larger clusters than the bonsai 7D mutant23, or a complex completely lacking the tail23 

(bonsai Δ1–80). These results suggest that the region of the tail that directly interacts with 

tubulin may also contribute to Ndc80c–Ndc80c binding in the context of a cluster. The 

bonsai Δ1–40 mutant was still capable of clustering robustly, showing a distribution of 

cluster sizes similar to the wild-type bonsai (Fig. 3b), consistent with our observation of 

higher microtubule-binding affinity for this mutant. This result further supports our model 

that phosphorlyation of zone 2 results in repulsion between Ndc80c molecules, even though 

this region is not strictly required for clustering.

In order to investigate the role of the two Aurora B phosphorylation zones in vivo, we used 

an RNAi knockdown and replacement protocol20,25 in HeLa cells to assay kinetochore 

function during the first mitosis in cells that contained mutated Ndc80 proteins featuring 

phosphomimetic tails (Fig. 4). As has previously been reported, we found that wild-type 

Ndc80 (WT Ndc80–GFP) rescued the RNAi phenotype, as indicated by a well-organized 

metaphase plate, while Ndc80 with a N-terminal tail phosphomimetic in both zone 1 and 

zone 2 (Ndc80 7D–GFP) resulted in a disorganized plate, consisting mostly of unaligned 

chromosomes. Phosphomimetic mutants in both zone 1 (Ndc80 4D–GFP) and zone 2 

(Ndc80 3D–GFP) individually produced intermediate phenotypes; most cells had 

chromosomes that were poorly aligned or unaligned in both cases. These results demonstrate 

that zone 1, which is involved in Ndc80c–tubulin interactions, and zone 2, which is involved 

in Ndc80c–Ndc80c interactions, are both critical for Ndc80c function in vivo.

Delineating the path of the N-terminal tail

In order to structurally characterize tail–tubulin and tail–Ndc80c interactions, we turned to 

cryo-electron microscopy analysis (Fig. 5). Using a novel multi-model refinement strategy 

(Supplementary Fig. 4a) we were able to generate an improved reconstruction of wild-type 

Ndc80 bonsai bound to the microtubule (Fig. 5a,c, Supplementary Movie 1) with a 

resolution of 7.9 Å (FSC 0.143 criterion, Supplementary Fig. 4b). In this reconstruction all 

secondary structural features, including most loops, are resolved in both the bonsai globular 

head and tubulin. At a high threshold, two prominent densities are visible which are not 

accounted for by the docked crystal structure of bonsai Δ1–80 and tubulin, which we 

designate densities 1 and 2 (Fig. 5a). Density 1 extends directly from the amino terminus of 

the docked crystal structure of bonsai Δ1–80 and thus very likely corresponds to the residues 

immediately preceding amino acid 80. Based on its length and assuming an extended 

polypeptide chain, this density would correspond approximately to residues 67–80, 

containing the first Aurora B site found in zone 1.
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We next generated cryo-EM reconstructions of the bonsai 4D and bonsai Δ1–40 mutants 

(Supplementary Fig. 5), to structurally interrogate the positions of zone 1 and zone 2, 

respectively. Difference map analysis (Fig. 5b) shows distinct peaks of density present in the 

wild-type complex that are absent from each of the two mutants. The bonsai Δ1–40 

difference density maps to the location of density 2 in the high-resolution wild-type 

reconstruction, suggesting that some of the residues in the 1–40 region, which contains zone 

2 of Aurora B sites, make a major contribution to this density. The bonsai 4D difference 

density largely maps to the area between densities 1 and 2 and the base of density 2, 

consistent with a localization of zone 1 residues (40–67) to this area.

The tubulin E hook interacts with both the Ndc80 tail and Nuf2

An examination of the high-resolution wild-type reconstruction at lower threshold (Fig. 5c, 

Supplementary Movie 2) shows additional density extending from the C-terminal end of the 

docked crystal structure of tubulin; by parsimony we attribute this density to an ordered 

portion of the tubulin C-terminus, or “E hook”26. This density connects to both density 2, 

and to the CH domain of Nuf2 within an Ndc80c molecule whose toe (the region of the 

Ndc80 CH domain which contacts the globular portion of tubulin27) is bound to a laterally 

adjacent protofilament.

The density is branched, which has three potential explanations. The first is that our map 

represents a mixture of states in this region, because the E hooks of α and β-tubulin, which 

are indistinguishable in our reconstruction and thus averaged together, actually adopt 

different conformations. The second possibility is that one of the two branches corresponds 

to a portion of the N-terminal tail engaging the E hook (part of density 2). The third and 

most intriguing explanation is that the branch corresponds to polyglutamylation of the E 

hook28 a post-translational modification which is enriched in brain29 (the source of the 

tubulin used in our experiments), and the mitotic spindle30. Assuming an extended poly-

peptide conformation, Glu254, the site of glutymalyation28, would be near the branch point. 

If Ndc80c binding to microtubules were sensitive to the glutamylation state of tubulin, it 

would allow for an additional mechanism to regulate the interaction between kinetochores 

and microtubules. This hypothesis could be tested by measuring the affinity of Ndc80c for 

de-glutamylated microtubules, an experiment currently rendered difficult by the lack of 

purified deglutamylating enzymes31.

The E hook contact site on the CH domain of Nuf2 corresponds to a positively charged 

patch (Fig. 5e) previously identified as being important for microtubule binding in vitro18. 

In vivo it was found that multiple charge-reversal substitutions in this patch were required to 

generate a deleterious phenotype32, consistent with an electrostatic interaction between 

Nuf2’s positive patch and the negatively charged E hook. The contact with density 2 

corresponds to a direct interaction between the Ndc80 tail and the E hook that had been 

previously suggested based on biochemical studies 19,20. Based on the difference map 

analysis of the bonsai Δ1–40 and our biochemical data with the GST peptides, we propose 

that the base of density 2 corresponds to residues in zone 1 that directly interact with the E 

hook, while the remainder of density 2 is composed of residues in the 1–40 region that 

become ordered upon Ndc80c clustering, potentially including zone 2 (Fig. 5d). In the 
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context of Ndc80c clusters, the tubulin-binding region of the tail is precisely positioned by 

the tail–Ndc80c interaction, suggesting that microtubule binding and cluster formation are 

intimately linked. We also find that under conditions of limiting microtubule binding sites, 

the tail is unable to effectively compete with the wild-type bonsai complex despite being in 

excess (2:1 GST tail:Ndc80 bonsai) (Supplementary Fig. 6). Collectively our results support 

a 3-way interaction between the tail, the Ndc80–Nuf2 globular head, and the microtubule 

that is significantly stronger than the binary tail–microtubule interaction. This model is also 

in agreement with our finding that the presence of the full-length tail increases binding of 

the bonsai Δ1–80 complex (Fig. 1c,e).

While these results provide a rich description of Ndc80c’s microtubule-binding inside a 

cluster, the mechanism by which the complex engages the microtubule prior to cluster 

formation or at the edge of a cluster remains unknown, and is an important area for future 

research.

Discussion

The existence of two different zones of Aurora B phosphorylation sites, one of which 

regulates both Ndc80c–tubulin and Ndc80c–Ndc80c interactions (zone 1), the other of 

which negatively regulates Ndc80c–Ndc80c interactions (zone 2), suggests that there are 

multiple mechanisms by which Aurora B can regulate the Ndc80c–microtubule interface. In 

our reconstruction of the wild-type Ndc80 bonsai bound to the microtubule, residues in zone 

2 are located on the periphery of the cluster and are more accessible, while residues in zone 

1 are buried within the cluster. Thus, we speculate that residues in zone 2 may still be 

susceptible to phosphorylation by Aurora B once a cluster has formed, while residues in 

zone 1 may be protected from re-phosphorylation. This model is consistent with the recent 

report that all Aurora B sites in the tail are highly phosphorylated in early stages of cell 

division, after which sites in zone 2 remain phosphorylated at an intermediate level while 

sites in zone 1 are dephosphorylated24. Our finding that phosphorylation in zone 2 

negatively regulates cluster formation suggests that the cell may dynamically regulate the 

degree of Ndc80c clustering throughout mitosis, even after microtubule attachment has 

occurred.

In our model the Ndc80 complex begins prometaphase with zones 1 and 2 maximally 

phosphorylated at an unattached kinetochore. We propose that once proper attachment is 

achieved the tail is de-phosphorylated and Ndc80c clusters are formed (Fig. 6a). Given the 

recent revised estimate that there are ~20 copies of the Ndc80 complex per kinetochore 

microtubule33, we believe that the high local concentration of the complex on the 

microtubule surface makes clustering likely in vivo. Zone 1 would become buried upon 

cluster formation and inaccessible for re-phosphorylation, while zone 2 would remain 

available as an Aurora B substrate, thereby acting as a cluster clutch. During metaphase, 

aligned chromosomes undergo oscillatory motions across the metaphase plate with a period 

of tens of seconds34,35. It was recently found that cells expressing a version of the Ndc80 

complex which could not be phosphorylated by Aurora B did not support chromosome 

oscillations24; we thus speculate that zone 2 may be dynamically phosphorylated and 

dephosphorylated during oscillations.
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If clusters were strongly disrupted, it is possible that zone 1 would also become re-accessible 

for phosphorylation by Aurora B, although this may not happen on a physiologically 

relevant time scale. Deluca et al. found that phospho-specific antibodies against Aurora B 

sites in the Ndc80 tail still reacted with the kinetochores of chromosomes that had not yet 

achieved biorientation upon nocodazole treatment to depolymerize microtubules24. 

Unexpectedly, however, antibodies against zone 1 did not react with the kinetochores of 

chromosomes that had achieved bi-orientation, even though kinetochore microtubules were 

no longer present and Aurora B activity was not down-regulated, while antibodies against 

zone 2 showed some reactivity. It is tempting to speculate that as a stable (bi-oriented) 

kinetochore–microtubule attachment matures, additional factors sequester zone 1 of the 

Ndc80 tail, either through direct interaction with this region or by stabilizing Ndc80c 

clusters independently from microtubules. Interestingly, it appears that zone 2 still remains 

somewhat accessible. The detailed kinetics of microtubule-bound Ndc80c phosphorylation 

by Aurora B is an important subject for future studies in vivo and in vitro, as is the potential 

role of the Ndc80 tail in mediating interactions between kinetochore complexes.

Our high-resolution cryo-EM reconstruction corresponds to the fully de-phosphorylated 

state (Fig. 6a). We previously found that the dephosporylated form of Ndc80c strongly 

enhanced microtubule stability against depolymerization by cold, promoting straight 

microtubule tubulin polymers23. Our improved cryo-EM reconstruction provides a richer 

mechanistic explanation for effect: in addition to promoting a straight tubulin conformation 

by wedging its toe into both intradimer and interdimer longitudinal interfaces, where 

protofilaments bend during microtubule depolymerization, and by oligomerizing along 

protofilaments, with the consequent stabilization of longitudinal contacts, the complex also 

engages a neighboring protofilament via the C-terminus of tubulin, stabilizing lateral 

contacts. Thus, the dephosphorylated complex is optimized, via a three-component 

mechanism, to promote microtubule stability and polymerization.

We envision zone 2 could be re-phosphorylated, loosening or disrupting Ndc80c clusters 

and making the complex more mobile on the microtubule surface and thus capable of 

tracking depolymerizing ends via a biased diffusion mechanism (Fig. 6b)36. The presence of 

other microtubule-binding outer kinetochore components, such as the Ska complex37–39, 

which cooperates with the KMN network40,41, kinesins, and plus-tip tracking proteins, are 

also likely to alter the architecture of the kinetochore–microtubule attachment site to 

promote microtubule growth under certain conditions and enable processive tracking along 

depolymerizing microtubule ends in others.

Online Methods

Expression cloning

All constructs were generated using standard molecular biology methods. The bonsai 4D 

and bonsai 3D constructs were generated as previously described for the bonsai 7D 

construct23. GST tail constructs were generated by Ligation Independent Cloning42 in the 

2BT vector, which 5′ to 3′ codes for a poly-histidine tag, Glutathione S-Transferase (GST), 

and a Toboccao Etch Virus (TEV) protease cleavage sequence, followed by the expression 

cassette.
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Protein purification

All constructs were expressed in BL21-CodonPlus-(DE3)-RIL cells. Ndc80 bonsai 

constructs were purified as described18. GST tail constructs were induced at OD 0.4–0.6 for 

4 hours at 37°C with 400 μM Isopropyl β-D-1-thiogalactopyranoside (IPTG) in Luria Broth. 

Cells were harvested by centrifugation, washed once with phosphate buffered saline (PBS), 

and flash frozen in liquid nitrogen. Cell pellets were resuspended in 50mM Tris-Cl pH 8, 1 

mM di-thiothreitol (DTT), 300 mM NaCl, 10 mM imidazole, augmented with protease 

inhibitor cocktail tablets (Roche) and lysed by sonic disruption. Lysates were clarified by 

centrifugation at 17640 RCF, then applied to His-Select Nickel Affinity resin (Sigma), 

followed by washing and elution with buffer supplemented with 20 mM and 250 mM 

imidazole, respectively. By using a limiting amount of affinity resin, a homogenous 

purification was achieved in a single step. Proteins were desalted into storage buffer (50mM 

Tris-Cl pH 7.5, 150 mM NaCl, 1 mM DTT, 1 mM EDTA), and flash frozen in liquid 

nitrogen.

Microtubule co-sedimentation assays

Microtubules and binding proteins were prepared as described23 in Binding Buffer (80mM 

PIPES pH 6.8, 1 mM EGTA, 1 mM MgCl2, 1 mM DTT, 5% sucrose), supplemented with 20 

μM taxol as appropriate. Co-sedimentation assays were performed as described18,23: briefly, 

binding proteins were mixed with microtubules in Binding Buffer supplemented with 20 μM 

taxol in a 50 μl reaction volume. After a 20 minute incubation at 25°C, the reactions were 

layered on to a 50% glycerol cushion in 80mM PIPES pH 6.8, 1 mM EGTA, 1 mM MgCl2, 

1 mM DTT, 20 μM taxol, and centrifuged in a TLA 100 rotor (Beckman) at 312,530 RCF 

for 10 minutes at 25°C. Supernatant and pellet fractions were collected, precipitated with 

90% ethanol, then analyzed by SDS-PAGE and densitometry. Statistical analyses were 

performed with Microsoft Excel.

Electron tomography

Negatively stained samples were prepared as described previously23 using 2.5 μM tubulin 

and a single application of 3.3 μM Ndc80 bonsai construct. Tilt series were collected from 

−65 to 65 degrees with a Tecnai F20 operating at 120kV using the Leginon software 

package43. Images were recorded on a Gatan Ultrascan 4K × 4K CCD camera at a nominal 

magnification of 49,000X and 1 micron underfocus. Images were filtered to 25 Å, prior to 

the first inversion of the Contrast Transfer Function, and binned by two prior to performing 

the reconstructions as described previously with the IMOD software package44.

RNAi rescue experiments

RNAi rescue experiments were performed as described previously25. HeLa cells grown in 

DMEM/10% FBS were plated at 95% confluency and transfected with pEGFP plasmids 

expressing siRNA-resistant WT Ndc80–GFP, Ndc80 3D–GFP, Ndc80 4D–GFP, Ndc80 7D–

GFP, or empty plasmid, using Lipofectamine2000 (Life Technologies). After 6 hours, cells 

were trypsinized and plated with thymidine at 25% confluency onto lysine-treated 

coverslips. After 18 hours, the cells were released from thymidine and treated with 75 nM 

siRNA against endogenous Ndc80 (GAGTAGAACTAGAATGTGATT) (Qiagen) using 
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Lipofectamine RNAiMAX (Life Technologies). After 12 hours, the cells were blocked in 

thymidine and treated with a second round of siRNA against Ndc80. The following 

morning, the cells were released from thymidine and incubated for 10 hours, at which point 

they were fixed in 2% paraformaldehyde and 0.5% TX-100. Fixed cells were processed for 

immunofluorescence using standard procedures using antibodies against Tubulin (Thermo 

Scientific, cat. no. MS-581-P1; 1:500), GFP (Abcam, cat. no. ab290; 1:5,000), and ACA 

(Antibodies Incorporated, cat. no. 15-234; 1:250). Images were collected using a 

DeltaVision microscope (Applied Precision) and 100X lens and processed using ImageJ 

(NIH).

Cryo-electron microscopy

The dataset used to generate the high-resolution reconstruction of the wild-type Ndc80 

bonsai bound to the microtubule corresponds to that used to generate the previously reported 

reconstruction23.

The four datasets used for difference map calculation were generated as follows: cryo-EM 

grids were prepared as previously reported23,45. Briefly, proteins and taxol-stabilized 

microtubules were prepared in EM Buffer (80mM PIPES pH 6.8, 1 mM EGTA, 1 mM 

MgCl2, 1 mM DTT, 0.05% Nonidet P-40) supplemented with 20 μM taxol. 2 μl of 2.5 μM 

microtubules were applied to C-Flat grids (Protochips) glow-discharged with an Edwards 

carbon coater and incubated for 30 seconds in the humidity chamber of a Vitrobot. 4 μl of 5 

μM Ndc80-bonsai was applied and incubated for 1 minute. Excess buffer was removed, then 

another 4 μl of Ndc80 bonsai was applied and incubated for 1 minute. Excess buffer was 

removed, then the sample was blotted and plunge-frozen in ethane slush. To ensure 

maximum stability and concentration of Ndc80 bonsai, the protein was stored on ice and 

was rapidly warmed to room temperature in a water bath seconds before preparing grids. 

Data was collected semi-automatically using the Leginon software package46 on a Tecnai 

F20 electron microscope operating at 120 kV. Images were collected on a Gatan Ultrascan 

4K × 4K CCD camera between 1.2 and 2.5 micron underfocus with a dose of 20 

electrons/Å2 at a nominal magnification of 80,000X.

Image processing

The power spectra of images were manually inspected for quality: those featuring obvious 

drift were excluded. The defocus of the images was estimated with CTFFIND347. 

Microtubule segments were selected using BOXER48, extracted, phase-flipped with 

EMAN48 and normalized with XMIPP49. The data were then subjected to reference-free 

classification using IMAGIC50 and a topology-representing network algorithm51 as 

described23,52; segments which contributed to averages that did not feature well-ordered 

Ndc80 decoration were excluded from further processing.

Remaining segments were then processed using a multi-reference implementation of the 

IHRSR method53 in the EMAN254 and SPARX55 processing packages, using naked 13- and 

14-protofilament microtubule reconstructions as starting references to avoid model bias. The 

refined 14-protofilament reconstructions, which generally incorporated more segments and 

were of higher resolution, were selected for further analysis. The 4 reconstructions for 
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difference map calculation featured between 1,600–2,700 segments, corresponding to 

67,200–113,400 asymmetric units.

Initial alignments for the high-resolution wild-type Ndc80 reconstruction were performed in 

this manner. The 14-protofilament reconstruction was further refined using FREALIGN56 

v8.9, which implements helical processing. Since the multi-reference approach was used to 

sort the different symmetry groups, rather than reference-free classification, a larger 

proportion of the dataset could be aligned and incorporated into the reconstruction (5,268 

segments, corresponding to approximately 220,000 asymmetric units). A negative B-factor 

of 1,000 Å2 was applied with a peak at 8.3 Å and high-resolution cutoff of 7.6 Å, which 

showed features that matched those of docked crystal structures well. All rigid-body docking 

of protein crystal structures (tubulin: 1JFF57, Ndc80 bonsai: 2VE718), and preparation of 

molecular graphics illustrations was performed with UCSF Chimera58.

Difference map analysis

In order to minimize artifacts caused by differences in data collection or image processing, 

all reconstructions used for difference map analysis were performed identically. When 

comparing reconstructions of the bonsai 4D and bonsai Δ1–40 reconstructions with the wild-

type bonsai reconstruction it was apparent that the mutants were decorating the microtubule 

sub-stoichiometrically (Supplementary Fig. 5). This interfered with the direct calculation of 

amplitude scaled difference maps, since the signal from the microtubule outweighed that of 

the bound Ndc80 bonsai in the mutants at low resolution, but was equivalent in the wild-

type, where stoichiometric binding is observed. Thus, we generated a reconstruction of a 

naked taxol-stabilized microtubule, which we pre-subtracted from the three Ndc80 bonsai 

reconstructions without amplitude scaling using the SPIDER software package59 after rigid-

body docking of the reconstructions using the wild-type as the reference in UCSF Chimera.

We subsequently calculated amplitude-scaled difference maps with DIFFMAP (http://

emlab.rose2.brandeis.edu/diffmap), which largely showed positive differences along the 

expected path of the Ndc80 tail and minimal artifacts when filtered to 12 Å resolution. A 

single minor peak was observed between microtubule protofilaments in the case of the wild-

type bonsai minus bonsai 4D difference map (Fig. 3B). We also found that applying a soft 

mask to the edges of the segmented volume and padding by two before difference map 

calculation with DIFFMAP reduced edge artifacts. No amplitude scaling was performed 

prior to difference map calculation, which we also found to introduce artifacts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The Ndc80 tail interacts with both the Ndc80c head and tubulin
(a) Structural model of the Ndc80c’s two-part microtubule binding module. The tail is 

modeled as an extended polypeptide colored in magenta. Aurora B sites are shown in space-

filling representation: red sites were investigated in this study, while teal sites were not (see 

text). Kinks correspond to the positions of prolines. Ndc80’s CH domain is colored in blue 

and Nuf2’s in yellow. (b) Cartoons outlining the experiments presented in panels c–e. GST 

is grey, Ndc80 tail, magenta, tubulin, green, tubulin C-terminus (E hook), red. The Ndc80 

head is colored and displayed in the same orientation as in A. (c) Left, legend of the 

constructs tested. Zones of Aurora B sites are indicated in red. Middle, quantification of d. 

Error bars represent s.d., n = 3. Double asterisk, P < 0.0015, single asterisk, P = 0.008, t-test 

vs. GST alone control. Right, quantification of e. Error bars represent s.d., n = 4. Single 

asterisk, P = 0.012, t-test vs. bonsai Δ1–80 alone control. For all co-sedimentation assays n 

represents technical replicates. (d) SDS-PAGE of microtubule co-sedimentation assays with 

GST tail constructs. Tubulin, 3 μM, GST tails, 1 μM. (e) SDS-PAGE of microtubule co-

sedimentation assays with bonsai Δ1–80 in the presence of GST tail constructs. Tubulin, 3 

μM, bonsai Δ1–80, 0.5 μM, GST tails, 1 μM.
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Figure 2. Aurora B zones regulate Ndc80c–Ndc80c and Ndc80c–tubulin interactions
(a) Left, legend of the constructs tested in A and B, colored as in Fig. 1. Asterisks represent 

phosphomimetic S to D mutations. Right, Quantification of b. Error bars represent s.d., n = 

3. All mutant constructs showed significantly reduced binding (P < 0.015, t-test) relative to 

GST 1–80. (b) SDS-PAGE of microtubule co-sedimentation assays with phosphomimetic 

GST tails. Tubulin, 1.5μM, GST tails, 1μM. (c) Left, legend of the constructs tested in c and 

d, colored as in a. Right, quantification of d. Error bars represent s.d., n = 3. All mutant 

constructs showed significantly reduced (P < 0.05, t-test) binding relative to WT bonsai. (d) 

SDS-PAGE of microtubule co-sedimentation assays with bonsai tail mutants. “Tub”, 

tubulin, “1”, Ndc80–Spc25, “2”, Nuf2–Spc24. Note that electrophoresis conditions varied 

between experiments and thus bands show different mobility. Tubulin, 2 μM, bonsai 

constructs, 0.5 μM.
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Figure 3. Zone 2 of Aurora B sites negatively regulates Ndc80c clustering
(a) Representative slices from tomographic reconstructions of microtubules decorated with 

sub-stoichiometric amounts of the indicated constructs. The positions of Ndc80c molecules 

are indicated by black lines; all reconstructions featured both clusters and single molecules. 

Tubulin, 2.5 μM, bonsai constructs, 3.3 μM. (b) Cluster quantification of A. (c) Summary of 

cluster distributions for all bonsai constructs tested. Dots indicate mode(s), lines indicate 

range. Asterisks indicate datasets from ref. 23. See Supplementary Table 1 for pair-wise 

statistical comparisons between these distributions.
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Figure 4. Both Aurora B zones regulate kinetochore–microtubule interactions in vivo
(a) Representative immunofluorescence images of prometaphase or metaphase HeLa cells 

depleted of endogenous Ndc80 and expressing GFP tagged rescue constructs stained for 

tubulin, GFP, and ACA. Note that non-rescued cells were not imaged for GFP. (b) 

Quantification of the chromosome alignment phenotypes for metaphase or prometaphase 

cells. “Aligned” indicates a tight metaphase plate, “Mostly aligned” indicates only 1–3 pairs 

of kinetochores off the metaphase plate, “Poorly aligned” indicates greater than 3 pairs of 

kinetochores off the metaphase plate, “Unaligned” indicates no visible metaphase plate.
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Figure 5. Structural analysis of the Ndc80c–microtubule interface
(a) Crystal structures of two bonsai Δ1–80 molecules (PDB 2VE7) and tubulin (PDB 1JFF) 

docked into the improved cryo-EM density map, colored as in Fig. 1a. Two densities not 

occupied by the crystal structures (magenta) were interpreted as corresponding to ordered 

regions of the N-terminal tail. (b) Positive difference density for reconstructions of wild-

type bonsai minus either bonsai Δ1–40 (orange), or bonsai 4D (light blue), contoured at 

3.5σ. The asterisk indicates a spurious density peak in the bonsai 4D difference map from 

the processing procedure (see Online Methods). (c) Same as a, but with the cryo-EM map 

displayed at a lower threshold, where the tubulin E hook (red) is visualized. (d) Same view 

as c, left panel, colored according to the locations of an ordered portion of residues 1–40 

(orange), and the tubulin-binding portion of zone 1 (light blue). (e) Same view as c, right 

panel, displaying an electrostatic surface potential map of the bonsai Δ1–80 crystal structure, 

contoured at +/− 10 kT/e. Asterisk indicates the positive patch on the Nuf2 CH domain that 

interacts with the E hook of tubulin.
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Figure 6. Models of Ndc80c interacting with dynamic microtubule ends
(a) Cartoon of fully de-phosphorylated Ndc80c molecules incorporated into a tight cluster 

on the surface of a dynamic microtubule, colored as in Fig. 1. The interactions formed by 

zones 1 and 2 of the Ndc80 tail are numbered, and tubulin E hook–Nuf2 CH interactions are 

depicted as red circles. For simplicity only interactions within the Ndc80c cluster are shown. 

In this configuration, the cluster can promote both tubulin longitudinal contacts along 

protofilaments, through its toe–tubulin interactions, and lateral contacts between 

protofilaments, by interacting with tubulin E hooks from a neighboring protofilament. This 
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network of interactions has a cumulative effect on microtubule stability. (b) Cartoon of 

Ndc80c phosphorylated in zone 2 but not zone 1. We envision that in this state the complex 

will remain attached to the MT surface but in the context of smaller and looser clusters. In 

some cases a weak interaction between Ndc80 complexes may still be maintained via zone 1 

(top panel, left), while in other cases all cooperative interactions may be absent (bottom 

panel). This intermediate phosphorylation state may enhance the mobility of the complex, 

enabling kinetochore tracking on depolymerizing microtubule ends by a biased diffusion 

mechanism.
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