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Abstract

CD4+ effector lymphocytes (Teff) are traditionally classified by the cytokines they produce. To 

determine the states that Teff actually adopt in frontline tissues in vivo, we applied single-cell 

transcriptome and chromatin analysis on colonic Teff cells, in germ-free or conventional mice, or 

after challenge with a range of phenotypically biasing microbes. Subsets were marked by 

expression of interferon-signature or myeloid-specific transcripts, but transcriptome or chromatin 

structure could not resolve discrete clusters fitting classic TH subsets. At baseline or at different 

times of infection, transcripts encoding cytokines or proteins commonly used as TH markers 

distributed in a polarized continuum, which was also functionally validated. Clones derived from 

single progenitors gave rise to both IFN-γ and IL17-producing cells. Most transcriptional variance 

was tied to the infecting agent, independent of the cytokines produced, and chromatin variance 

primarily reflected activity of AP1 and IRF transcription factor families, not the canonical subset 

master regulators T-bet, GATA3, RORγ.
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INTRODUCTION

Effector CD4+ T lymphocytes (Teff) are key drivers of both humoral and cellular immune 

responses, orchestrating adaptive (antibodies, cytotoxic cells) and innate (macrophage, 

granulocytes) immune responses. This range of abilities has long raised the issue of 

functional diversity, which was documented by functional assays even before the molecular 

identification of MHC and TCR molecules, the central axis of T cell activation and 

differentiation1,2. A key advance was the demonstration that functional phenotypes of 

different T cell clones were keyed to the cytokines they produce3,4, coining the TH1/TH2 

nomenclature. TH1s secrete IFN-γ and mainly support inflammatory and cytotoxic 

responses; TH2s produce IL4, IL5 or IL13 and principally help B cells produce antibodies. 

This division has since been revised several times to add more subsets (IL17-secreting 

TH17s, IL9-secreting TH9s, follicular helpers (TFH)5–7), but the core notion that Teff belong 

to discrete and largely stable states defined by the cytokines they produce has endured8,9. 

Different types of infectious or allergic challenges elicit different Teff “flavors” (TH1 

generally associated with intracellular pathogens; TH2 with helminth parasites, TH17 with 

bacterial and fungal infections), and these TH distinctions also have implications for 

immune-mediated diseases10. Indeed, the TH paradigm has elicited parallel cosmologies in 

macrophages, γδ T cells or innate lymphoid cells (ILC)11.

However, this model was questioned almost since its inception12,13. First, because its 

attractive simplicity could lead to shoe-horning of immune functions (e.g., 1990s’ 

publications erroneously tagged immune diseases to either TH1 or TH2). Second, many 

reports documented that secretion of IFN-γ, IL4 or IL17 is not always mutually exclusive14. 

Plasticity between TH subtypes was demonstrated, suggesting that these cell states are not as 

stable and terminally differentiated as originally inferred from TH lines grown in supra-

physiological cytokine concentrations9,13. Further, while some cell-surface markers were 

proposed as indicators of differentiated TH types, they often proved non-exclusive. Thus, TH 

subsets have most precisely been defined in vitro, their in vivo counterparts remaining 

elusive.

Here, we aimed to assess the spectrum of phenotypic states that Teff can adopt in vivo, 

leveraging the unbiased potential of single-cell genomics15. In essence returning to the 

clonal analysis that founded the TH paradigm3,4, but now with the ability to evaluate the 

entirety of a cell’s transcriptome and chromatin structure, rather than only a few pre-selected 

cytokines or markers. We analysed T cells in the colonic lamina propria (LP), a front-line 

tissue under continuous and diverse challenge, comparing CD4+ T cells in mice under germ-

free conditions, carrying normal commensal microbiota, or infected with agents that elicit 

diversely biased Teff responses. The results indicate that Teffs form a continuum in the 

transcriptional space, but highlight some novel phenotypes. The production of key cytokines 

did show skewed distributions, but these did not identify the discrete cell clusters that might 

have been expected from the TH paradigm.
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RESULTS

A continuum of effector phenotypes in colonic CD4+ Teff cells

To probe the transcriptional landscape of CD4+ Teff cells in an unbiased manner, we 

performed scRNAseq on total CD4+ T cells from the colonic LP starting with 

conventionally-housed (SPF) C57BL/6 mice. Two experiments were performed with 

droplet-based scRNAseq (Extended Data Fig. 1a,b; Supplementary Table 1; datasets 

analyzed individually, replicates serving to confirm conclusions). It was straightforward to 

parse, with standard clustering, CD4+ T cells into the four main groups expected from flow 

cytometry (Fig. 1a): regulatory T cells (Treg; Foxp3+), and their Rorc+ and Ikzf2+ (Helios) 

subsets, naive T conventional cells (naive Tconv; Cd44–Ccr7+), and Teff cells (Cd44+Ccr7−). 

To assess the influence of the commensal microbiota on this distribution, we generated 

scRNAseq datasets of colonic CD4+ T cells from SPF and germ-free mice (Fig. 1b), 

revealing similar clusters, with fewer RORγ+ Tregs and Teff cells in germ-free as expected.

To assess what phenotypic states gut Teff cells can adopt, we reclustered the Teff population 

from SPF mice. Here, with the exception of cycling cells, we could not observe any clear 

partitioning of cells, but rather a quasi-continuous cloud (Fig. 1c, left). To search for 

distinctions corresponding to the major recognized Teff types, we manually curated from 

published signatures short but robust and highly specific genesets, which included the 

defining cytokines, driving transcription factors, and a few correlated transcripts, but left out 

generic activation-associated or poorly specific transcripts (Supplementary Table 2). The 

TH2 signature showed polarized expression, while cells expressing the TH17- and especially 

TH1-associated signatures were dispersed more widely across the continuum (Fig. 1c, right). 

To ensure that this continuum was not due to the high dropout rate of scRNAseq, we 

reanalyzed a published dataset from colonic Teff cells that included fewer cells, but 

sequenced to greater depths16. These also showed a continuous distribution and dispersion 

of the TH signatures (Extended Data Fig. 1c). If cytokines do not represent the main axes of 

variance in colonic T cells, what does? To this end, we used a simple clustering strategy, 

which showed that the driving variance lies in the degree of activation of Teff cells, 

represented by typical activation transcripts like Cd69 or Nr4a1 (Fig. 1d). Teff cells with a 

lower degree of activation over-expressed Klf2 and S1pr1, a combination shown to restrain 

CD4+ T cell differentiation17. Thus, the main heterogeneity of Teff in the colonic LP 

corresponds to a gradient of activation in response to commensal microbiota, but not 

predominantly to commitment to producing one cytokine or the other.

Different intestinal infections elicit divergent Teff phenotypes

It thus seemed difficult to identify discrete TH1 or TH17 cell populations in normal mice. We 

hypothesized that under baseline conditions Teffs were only partially polarized because of 

incomplete activation by commensals, with only “stubs” of more differentiated states that 

the cells could potentially reach. We thus polarized further the T cell pools by infecting mice 

with pathogens known to elicit biased immune responses: (i) AroA∆ Salmonella enterica 
(serovar Typhimurium), a non-invasive mutant that elicits IFN-γ-dominated responses; (ii) 

Citrobacter rodentium, a strong IL-17 inducer; (iii) Heligmosomoides polygyrus and 

Nippostrongylus brasiliensis, two helminths that provoke prototypic Type-2 responses (Fig. 
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2a). Infection times (11-13 days) allowed responses to develop and achieve full bias. Flow 

cytometry confirmed the production of the expected cytokines, including some IFN-γ/

IL17A double-producer cells, as expected (Fig. 2b). In a first experiment, Teffs from control 

or infected mice were tagged with DNA-coded antibodies (18, “hash-tagged”) and comingled 

for sorting, microfluidic bead capture and library construction, making for a robust intra-

batch comparison (Fig. 2a). As in uninfected mice, CD4+ T cells clustered into Tregs, naive 

T cells, and Teffs (Extended Data Fig. 2a).

Teffs were then considered on their own, with dimensionality reduction on tSNE (Fig. 2c) or 

UMAP (Extended Data Fig. 2b) plots, which revealed a dominant partitioning according to 

the infectious agent. Outside the main “blob”, some Teffs did break out into discrete 

populations but we could not detect well-demarcated cell clusters that expressed the 

characteristic TH genesets. These mapped to skewed but broad swaths (cells with high TH2 

geneset best demarcated, TH17 geneset biased but dispersed, cells with high TH1 geneset 

found almost throughout; Fig. 2c, Extended Data Fig. 2b). This lack of segregation was 

robust to the choice of genesets (if anything more diffuse using another curated signature set 

based on ref19 (Extended Data Fig. 2c). The expression of Ifng and Il17a transcripts also 

showed overlaps consistent with the double-producer cells detected by flow cytometry 

(Extended Data Fig. 2d). These conclusions were true also for a replicate set of colonic 

CD4+ Teff from mice infected with the same pathogens (Extended Data Fig. 2e). The 

dominant influence of the infectious microbe, over the TH phenotype marked by cytokine 

production, was objectivized by comparing the overall Euclidean distance between all cells 

expressing Il17a and Ifng transcripts from the different conditions: Teff expressing Ifng or 

Il17a transcripts from any infection were much closer than their cytokine-sharing 

counterparts in the other mice (Fig. 2d).

We applied a panel of clustering and biclustering algorithms in attempts to break up the cell 

cloud into clusters that coincided with expression of the TH signature sets, but none of the 

clusters thus generated were uniquely enriched for any one TH signature or cytokine 

(Extended Data Fig. 3a–c). To objectively verify the continuity in the distribution of 

transcriptomes of Teff cells, we used Hartigan’s Dip Test of multi-modality20, after applying 

a projection defined by minimum separation hyperplane21 to the expression of the most 

variable genes. The results showed that Teff, Treg and naive Tconv significantly segregate by 

Hartigan’s test (Fig. 2e, top), while there was no significant break in the distances within the 

Teff pools (Fig. 2e, middle and bottom). These results confirmed that Teffs occupy a 

continuum point cloud that is not easily separable into distinct clusters.

One explanation for this continuous Teff distribution was that they included different subsets 

of the canonical TH1/2/17 archetypes. However, projection of differentiating genes reported 

for the “pathogenesis subsets” within TH17 cells22,23 did not demarcate distinct subsets of 

IL17-producing cells, although showing skewed distribution more generally (Extended Data 

Fig. 3d). Similarly, a reported distinction between “homeostatic” and “inflammatory” TH17 

cells24, the latter elicited by C. rodentium infection, may have mostly resulted from infection 

rather than from distinct TH17 subsets, as the corresponding signature did not specifically 

demarcate IL-17-producing cells (Extended Data Fig. 3e).
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Deep machine learning tools can efficiently discover combinatorial and non-linear patterns 

that are difficult to discern conventionally. In another attempt to identify patterns that would 

uniquely identify IL-17 or IFN-γ producing cells, we optimized and trained a Deep Neural 

Network (DNN) to classify cells into IL-17 vs IFN-γ producing groups based on their 

single-cell transcriptomes. As a positive control, this architecture could be trained to 

recognize Teff and Treg cells from the held-back test set (Methods). The DNN did partially 

identify Ifng or Il17a positive cells in the test set (Extended Data Fig. 4a,b; 90.2% and 60.7 

% accuracy on Ifng and Il17a-positive cells, respectively). However, using the Integrated 

Gradients method to measure the importance of the transcripts used by the model to support 

this identification showed little reproducibility in independent training runs (Extended Data 

Fig. 4c). Beyond a few transcripts known to correlate with Il17a (Tmem176a, Capg); only 

Il22 had a strong and reproducible influence, an internal control given its known co-

regulation with Il17. Indeed, when Il22 was left out, prediction efficacy dropped to 28.7%. 

Hence, even with a pliable artificial intelligence tool, it seemed difficult to identify robust 

TH1 or TH17 transcriptome patterns.

Finally, we assessed the distribution of surface markers that have been associated with TH 

subsets and are commonly used for cell sorting (Ccr5 and Cxcr3 for TH1; Ccr6 and Il1r2 for 

TH17). Ccr6 and Il1r2 proved to be mutually exclusive, with only partial overlap with cells 

transcribing Il17a (Fig. 2f). Ccr5 and Cxcr3 transcripts were widely distributed across the 

cloud, with only partial overlap with the TH1 signature. Flow cytometric analysis of LP cells 

after Salmonella infection confirmed these results (Fig. 2f). Thus, not only were classic TH 

subsets not clearly identifiable in the transcriptional data, but the flow cytometry markers 

used to identify them had limited congruence in this context.

Teff phenotypes distinguished by infecting agents, not by TH type

Colonic Teff cells clustered according to the type of infection, rather than by the cytokine 

they expressed. Accordingly, analysis of variable transcripts present in Il17a- and Ifng-

expressing cells revealed divergent patterns, with blocs of co-expressed transcripts that 

largely aligned with the infection (Fig. 3a). To validate this result and exclude technical 

pitfalls in scRNAseq, we used an Il17a-gfp reporter mouse line and performed population 

RNA-seq on colonic GFP-positive cells, at baseline or after infection with Salmonella or 

Citrobacter (Fig. 3b). Echoing the single-cell data, Principal Components Analysis (PCA) 

showed that IL-17A+ cells from each condition clustered separately from each other (Fig. 

3c). The direct comparison of IL17A+ cells from Salmonella or Citrobacter-infected mice 

brought forth 277 differential transcripts (at FC>2, FDR <0.05; Fig. 3d). Among this set, 

transcripts with differential representation in the single-cell data showed similar biases. 

Thus, the majority of changes imparted by infection were unrelated to Il17 or Ifng 
expression, or membership in a TH class.

The primary determinants of Teff variability

Their expression patterns within the projection plots of Figs 1c/2c indicated that prototypic 

TH1 or TH17 signature sets did not mark discrete sets of cells. To turn the question to a 

gene-centric perspective, we asked what co-regulated modules of transcripts existed among 

these CD4+ Teff cells, and whether these might track with cytokine production. First, a PCA 
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showed that the genesets in the PCs with most variance contained few Th-associated 

signature genes (Extended Data Fig. 5a). Next we analyzed gene-gene correlation, 

leveraging co-expression across thousands of individual cells25. Some cytokines did show 

significant positive co-expression (Il4 or Il5 and Il13; Il17a and Il17f; Extended Data Fig. 

5b). We separated coregulated gene modules (Affinity Propagation) that defined independent 

transcriptional programs (Extended Data Fig. 5c). GeneOntology analysis showed that most 

related to generic functions (Supplementary Table 3), a few small modules (M7, M11, M13) 

including some elements of the prototypical TH signatures, e.g. cytokines and transcription 

factors (Ifng, Il13, Tbx21, Gata3). But when projected across the cell space, most showed 

broadly differential representation as a gradient across all cells, cutting across cells 

expressing Ifng or Il17a transcripts (Extended Data Fig. 5d, with the exception of cell cycle 

genes in M1/2, the MHC-II module in M9, or the TH2-like cluster in M7). Thus, the major 

components of variability among Teff highlighted a continuous cloud of phenotypic 

variance, rather than discrete cell sets.

Teff phenotypes across time

A possible explanation for the lack of discrete TH1 and TH17 identities was that the 13-day 

timepoint chosen for analysis might be off, and that polarized cells might have faded, or 

have yet appear. To test this possibility, we analyzed LP CD4+ cells at different times after 

Salmonella infection, again hash-tagged in a single batch. The CD4 response, denoted by 

total CD4+ T proportions and the effector/naïve ratio, was highest in the d10–17 window 

(Extended Data Fig. 6a, 6b). A marked shift in the overall Teff transcriptomes occurred from 

d10 onwards (Fig. 4a). Transcripts that distinguished these two super-clusters included many 

of the Salmonella-specific transcripts identified above, but no prototypical TH signature 

transcripts (Extended Data Fig. 6c). In these samples, IL17+ cells were better demarcated 

than in earlier experiments, IFN-γ+ cells again broadly spread out, with no indication of a 

time-dependent convergence (Fig. 4b). Both types of cytokine-producing cells were shifted 

during the “d10 transition”, again implicating the infectious agent as the dominant driver of 

Teff phenotypes at the height of infection.

Next, we asked whether one could identify distinct lineages of Il17 and Ifng expressing cells 

within CD4+ Teffs at different infection times, using the sequence of rearranged TCRα and 

TCRβ to lineage-trace cells originating from the same progenitor. A total of 579 repeated 

clonotypes were observed (defined by shared nucleotide sequences for both chains, and P/N 

nucleotide addition that ensured true clonal amplification; examples in Fig. 4c). These 

repeated clonotypes expanded with time in Teff, but not in naive Tconv or in Treg cells, 

consistent with infection-driven expansion (Extended Data Fig. 6d). Importantly, expanded 

Teff clones were not restricted to expression of one cytokine: most Il17-producing cells 

within a clonotype had cousins which produced Ifng, or both (Fig. 4d). That expanded 

clonotypes do not appear committed to produce a single cytokine could be explained by 

parallel differentiation of the initial precursor. However, the median Euclidean distance 

between members of a clonotype did not increase with time, if anything contracting beyond 

d10, whether computed from the TH signature genesets (Fig. 4e) or the most variable genes 

(Extended Data Fig. 6e), indicating that the cells were not diversifying. Thus, this lineage 

tracing revealed no parallel tracks of differentiation for Ifng and Il17-production, the 

Kiner et al. Page 6

Nat Immunol. Author manuscript; available in PMC 2021 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Salmonella-driven dominance of IFN-γ production extending across all amplified 

clonotypes.

Teff phenotypes at the chromatin level

Accessibility of enhancer elements in chromatin is a more proximal readout of a cell’s 

differentiated state than mRNA levels, which are affected by post-transcriptional events. To 

explore the relationship between Il17- and Ifng-expressing cells at the chromatin level, we 

performed single cell ATACseq26 on 4,671 LP CD4+ T cells from colons of Salmonella-

infected mice. As with scRNAseq, 3 distinct clusters could be distinguished by clustering 

and identification based on accessibility of typical indicator genes (Tregs, naive Tconv and a 

cloud of Teffs; Fig. 5a). We leveraged a framework of pan-immune OCRs (Open Chromatin 

Regions) and charts of those most likely to be associated with activity of a given gene27, 

extracting OCRs that best predict the expression of Tbx21 and Rorc and averaging their 

accessibility to calculate per-cell Tbx21 and Rorc “chromatin scores”. We validated these 

scores by showing that they clearly distinguished ATACseq profiles from in vitro-derived 

TH1 and TH17 cells (Fig. 5b, top). However, when projected on the UMAP plot of ex vivo 
Teff cells, the Tbx21 and Rorc scores were broadly distributed, with diffuse local maxima 

but no cell cluster displaying either exclusively (Fig. 5b, bottom). We also examined 

chromatin profiles across the Rorc and Tbx21 loci themselves, by collapsing the reads from 

cells selected as having high or low signals at Rorc- or Tbx21-controlling OCRs, and asking 

whether one would be anti-correlated to the other. Clearly, chromatin openness at one locus 

was independent of the state at the other (Fig. 5c). Thus, chromatin opening at master 

regulator loci did not split identifiable TH1 and TH17 subsets.

As an alternative to analyzing the Rorc and Tbx21 loci, we computationally mapped the 

differential activity of OCRs enriched in DNA motifs recognized by these transcription 

factors (TF) relative to background OCRs28. T-Bet and GATA3 motif scores were broadly 

distributed (Fig. 5d), with a more concentrated over-representation of RORγ motif scores 

(acknowledging the caveat that these motifs may be recognized by the related EOMES and 

RORα, respectively).

If RORγ and T-bet are not the main discriminators of chromatin accessibility of Teff cells, 

then what is? We broadened the analysis to all TF motifs in the Jaspar database, ranking 

them by their overall variability (null distribution from randomized data; Fig. 5e). This 

ranking was dominated by motifs for several factors, foremost those for the AP1 (Fos, Jun, 

etc.) and the IRF (Irf4, Irf2, Irf9) families, or for other factors related to T cell activation 

(BACH2), while the T-Box and Nuclear Receptor families (T-Bet, EOMES and RORC, 

RORA) figured less prominently. Correspondingly, scores for Fos and Irf4 segregated most 

distinctly (Fig. 5f). Thus, in line with mRNA which showed generic activation as the main 

driver of Teff diversity, activation drivers (AP1, Irf4, Bach2) seemed to have a more 

important contribution in parsing Teffs than the classic master regulators.

A functional continuum of CD4+ Teff cells

A continuum in which different functions are distributed along poles and gradients is more 

challenging to address experimentally than demarcated groups of cells. To validate the 
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notion of a continuum of Teff phenotypic states, we followed a strategy similar to one 

described recently29–31 wherein cell sorting was not steered to well-defined cell populations, 

but by integrating information in a multidimensional marker space (Fig. 6a). We first 

identified in the scRNAseq data transcripts that showed different gradients of expression 

through the Teff continuum and encoded cell-surface molecules detectable by flow 

cytometry (Klrg1, Cxcr6, Icos, Cd69, Ly6a (encodes Sca-1); Fig. 6b). Colon LP cells were 

resolved by flow cytometry with antibodies against these markers, combining results a 

multiparameter tSNE projection (Fig. 6c). In this proteomic space, no specific clusters of 

cells were identified by any one marker (perhaps with the exception of KLRG1), all 

distributing as quantitative gradients as the mRNA had. We then determined empirically 

gates useable to pilot a cell sorter to purify cells belonging to specific areas of the cell cloud 

(Fig. 6d), yielding three distinct cell populations. Such cells were sorted from colon LP of 

Salmonella-infected mice for phenotypic and functional testing.

Conventional RNA-seq on these sorted population showed a differential transcript 

representation, with enrichments that corresponded well to the signatures predicted from the 

scRNAseq data (Fig. 6e). Differentially expressed genes included, in population B, 

transcripts associated with a more resting state (Ccr7, Sell and Tcf7), while Il17-associated 

transcripts (Rorc, Il23r, Il17re) were over-represented in Population A. For a test of function, 

we stimulated these sorted cells, and measured cytokine secretion by ELISA (Fig. 6f). 

Distinctive patterns were observed, although as expected no single pool was associated with 

exclusive secretion of any one cytokine. Populations A and C secreted significantly more 

IFN-γ than did population B, whereas population A secreted more lL-17A and IL-22. But 

both encompassed all potentialities, only in quantitatively different amounts, confirming that 

the scRNAseq data captured true continuous Teff heterogeneity.

Novel Teff populations

As presented above, the Teff pool in SPF or infected mice included, beyond the main 

“cloud”, a few well distinguished populations (Fig. 2c).

(1) A small Teff population (ISG-T) was peculiar because it expressed high levels of IFN-

induced signature transcripts (ISGs) (Fig. 7a, left), and over-represented after Salmonella or 

Citrobacter infection. Comparison with profiles induced in T cells by Type-1 or Type-2 

interferons (IFN) indicated that ISG-T likely respond to Type-1 IFNs (Fig. 7a, right). Their 

existence suggested either a small subset uniquely responsive to IFN, or normal Teffs that 

happened to reside in a small anatomical compartment where IFN was particularly abundant. 

Similar subsets have been described in CD4+ T cells from House-dust-mite infected lungs, 

and kidneys from lupus nephritis patients32,33.

(2) Another population expressed high levels of the surface markers Cd160, Crtam and 

Lag3, the neural gene Nrgn and several chemokines (Fig. 7b). We sorted this CD4+CRTAM+ 

population for bulk RNA-Seq, confirming the particular signature (Fig. 7c). Pathway 

analysis showed enrichment of STAT3, prolactin and neuregulin signaling pathways, hinting 

at a possible origin.
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(3) The most intriguing population was MyT, which unexpectedly showed many myeloid 

cell transcripts, such as Apoe, Lyz2 or C1qa, and several MHC-II (Fig. 7d). This expression 

of myeloid transcripts was not wholesale: only a fraction of genes with strong T vs myeloid 

differential expression was represented in MyTs (Fig. 7e), several corresponding to innate 

antimicrobial receptors or defense mechanisms (Lyz2, C1qa, Cfp, Tyrobp). Correspondingly, 

a small MHC-II+ subset of TCRβ+CD4+CD44hi Teffs was detected by cytometry (Extended 

Data Fig. 7a), whose RNAseq transcriptome confirmed the single-cell data (Extended Data 

Fig. 7b). We applied “CITEseq” for protein detection with DNA-barcoded antibody34, 

revealing a good correspondence between mRNA and of surface H2-Ab and CD14 proteins 

(Fig. 7f) in MyTs, at protein levels that were only somewhat lower than those seen in true 

myeloid cells. In the experiments of Fig. 4, αβTCRs detected in MyTs were shared with 

other Teffs from the same mice, suggesting that the MyT phenotype is not acquired during 

thymic differentiation, but late in the periphery after antigen encounter. MyTs may 

correspond to the unusual CD3+CD14+ cells in human blood recently reported to also 

increase upon infection35, which was attributed to stable doublets. Several arguments 

suggested that MyT cells are not doublets, however (very few myeloid cells in the sorted 

CD4+TCRβ+ datasets, normal UMI/cell counts, partial myeloid gene representation). Other 

than doublet formation or cell fusions, explanations for MyTs included exosomal transfer of 

transcripts from myeloid to Teff cells, or the activation of unusual transcriptional modules. 

To formally resolve this issue, we created bone-marrow chimeras with a 50/50 mix of 

congenically marked stem cells from wild-type (WT) and MHC-II-deficient donors with an 

inactivating neo insertion in H2-Ab1, a mutation that results in altered Ab1 transcripts36 

(Fig. 7g)). After 10 weeks’ reconstitution, we sorted TCRβ+CD4+ cells of both donor 

origins for RNAseq, analyzing the sequence reads at H2-Ab1. Should MyT cells result from 

doublets or mRNA transfer, TCRβ+CD4+ of knockout origin would have picked up WT H2-
Ab1 transcripts. This was not the case (Fig. 7h), as those T cells expressed transcripts from 

their own H2-Ab1. Thus, MyT cells are bona fide TCRαβ+ T cells that activate a segment of 

the myeloid transcriptome. Their origin and significance remain to be established. However, 

there may be a precedent in the myeloid-like T cells that constitute the high-risk “Mixed 

Phenotype Acute Leukemia”37.

DISCUSSION

Our study set out to map the landscape of phenotypes that Teff cells in the gut can adopt 

when stressed by microbial infection, relating to the long-running question of Teff cell 

heterogeneity. Whether evaluated at the transcriptome or the chromatin levels, our results 

show that Teff cells are molded by the infections in a profound and specific manner, one that 

does not readily conform itself to TH stereotypes, and also bring out other intriguing new 

cell states.

From the realization over 40 years ago that distinct functions of helper T cells reside in 

different cells1, the field has strived to subdivide Teff cells into discrete subsets. Since the 

seminal discoveries of Mossman and Coffman3 and the coining of the TH1/2 semantic, these 

distinctions have been anchored by cytokine production, an anchor which has persisted 

despite repeated demonstrations of dual-expressing cells, TH sub-subsets22,23,38, and 

plasticity between TH states9,13,14. Our results suggest that Teff transcriptional identities 
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form a “polarized continuity” and cannot be parsed out into discrete TH cell-types, even in 

the context of infections expected to drive focused differentiation. Nor does progressing 

infection result in phenotypic divergence between clearly distinct states. This model does not 

imply homogeneity, however, as the different poles of the phenotypic cloud do show strong 

preference for production of one cytokine or the other (most marked for IL-4 or IL-5).

This view of Teff cell heterogeneity differs from previously proposed concepts of cell 

plasticity, in which cells of defined phenotypes can switch between states that are otherwise 

coherent and reproducible9,13,14. The plasticity concept implies that discrete states do exist, 

but are not irrevocable. We find that there are no defined states to inter-convert between. 

This view also diverges from the notion of sub-subsets [e.g. pathogenic TH1722,23,39,40], 

which also implied discrete cell sets that could be further subdivided. Such sub-subsets also 

seemed absent, and in hindsight may represent the spread of IL17-producing cells across 

different regions of the phenotypic cloud.

One might argue that the polarized continuity represents transient intermediates between cell 

states. But, then, most cells would be intermediates. Velocity testing of differentiation within 

the Teff continuum41 gave no indication of directional progression, and the time course 

study showed no particular convergence towards more distinct Teff phenotypes, overall or 

for amplified progeny of the same precursor. Importantly, chromatin analysis revealed that 

key controlling loci, Rorc and Tbx21, opened largely independently of each other.

Several studies are also consistent with this view of “polarized continuity” within Teff cells 

that is dominantly molded by microbes. Cloned human memory CD4+ T cells showed 

phenotypic divergence related to the initiating microbe42. Proteomic analysis by mass 

cytometry revealed a wide phenotypic range in CD4+ Teff unleashed by Ctla4 deficiency43. 

In tumor infiltrating cells, scRNAseq studies also found gradients of transcriptional 

phenotypes44,45, as in other broad “landscape” studies where T cells have been notoriously 

difficult to parse finely46,47. A recent analysis of airway-resident T cells also reported a 

continuous disposition of Teffs in house-dust-mite infection32, showing that our results are 

not gut-specific. A continuous phenotypic spectrum has been described for ILCs48, 

contrasting with commonly used categorization11. Rather, ILC phenotypes can be described 

by a series of “topics”48, conceptually similar to, and partially overlapping with, the 

modules reported here. While this work was under review, Cano-Gamez et al also proposed 

a model of human T cell activation in vitro dominated by “continuous effectorness”49.

In conclusion, this study sheds light on the T cell response to infectious challenges: broad 

responses that adapt to each microbe, dominant co-regulated gene modules that are not 

anchored by cytokines, different leading transcriptional drivers, and intriguing new cell 

subsets.

METHODS

Mice

Male C57BL/6 mice were purchased from Jackson Laboratories. IL17AGFP/+ mice 

(Jax:C57BL/6-Il17atm1Bcgen/J) were a gift from Dr. Jun Huh. OT-II TCR-transgenic mice 
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were obtained from Jackson Laboratories (B6.Cg-Tg(TcraTcrb)425Cbn/J). H2-Ab1-

deficient mice were previously described36. To construct bone marrow chimeras, bone 

marrow cells were harvested from both femurs and tibias, and treated with ACK buffer 

(Lonza) to remove red blood cells. CD45.1+/CD45.2+ mice were irradiated (10 Gy) and 

reconstituted with equal proportions (~5 million cells each) of CD45.1 and CD45.2 (Ab KO) 

bone marrow cells. All mice were bred and maintained in our specific-pathogen-free 

facilities at Harvard Medical School (IACUC protocols IS1257, IS187-3, IS2221).

Flow cytometry

Cells from colon LP were prepared as previously described51. Briefly, Intestinal tissues were 

treated with RPMI containing 1 mM DTT, 20 mM EDTA and 2% FBS at 37°C for 15 min to 

remove epithelial cells, minced and dissociated in collagenase solution (1.5mg/ml 

collagenase II (Gibco), 0.5mg/ml Dispase (Gibco) and 1%FBS in RPMI) with constant 

stirring at 37°C for 45min. Single cell suspensions were then filtered and washed with 4% 

RPMI solution. For cytokine analysis, cells were treated with 10ng/ml phorbol 12-myristate 

13-acetate (Sigma), 1μM Ionomycin (Sigma) and 1X protein transport inhibitor cocktail 

(eBioscience cat. #00-4980-03) for 3.5 hours in 10% FBS RPMI. For intracellular staining 

of cytokines and transcription factors, cells were stained for surface markers and fixed in 

eBioscience Foxp3 buffer overnight, followed by permeabilization in eBioscience (both cat. 

#00-5523-00) buffer for 45 min in the presence of antibodies. Fluorescence profiles were 

acquired on a BD Symphony and analysis was performed with FlowJo (Tree Star) software.

Antibodies used in the study included anti-mCD45 (30-F11), anti-mCD19 (6D5), anti-

mCD4 (RM4-5), anti-mTCRβ (H57-597), anti-mCD44 (IM7), anti-mCD25 (PC61), anti-

mFOXP3 (FJK-16s), anti-mIFN-γ (XMG1.2), anti-mIL-17A (TC-11-18H10.1), anti-mIL-5 

(TRFK5), anti-mIL-13 (W17010B), anti-mCCR6 (29-2L17), anti-mIL1R2 (4E2), anti-

mKLRG1 (2F1/KLRG1), anti-mICOS (C398.4A), anti-mCXCR6 (SA051D1), anti-mCD69 

(H1.2F3), anti-SCA1 (D7), anti-mCRTAM (11-5/CRTAM), anti-I/A I-E(M5/114.15.2), , 

anti-mCD45.1 (A20), and anti-mCD45.2 (104). All antibodies were diluted 1:100 with the 

exception of CD25 (1:50).

For the “tSNE sort”, the goal was to sort cells defined combinatorially by a panel of 

markers, even if they were not readily identifiable as well demarcated populations on 

conventional 2-parameter flow cytometry profiles. Flow cytometry tSNE plots were 

generated in FlowJo v10 from gated CD4+TCRβ+CD44+CD25− cells stained for markers 

found by manual inspection to have non-discrete and non-correlated expression in the 

scRNAseq data, and thus most appropriate to represent the phenotypic continuity within the 

Teff phenotypic cloud (KLRG1, ICOS, CD69, SCA1, and CXCR6). Selected regions that 

demarcated clusters on the tSNE continuum were then backgated onto normal 2-parameter 

plots, from which gating instructions interpretable by a cell-sorter were drawn (by a manual 

and iterative process). The gates were drawn such that more than 90% of the events in the 

selected region of would be within the sort gates. These combinatorial gates were then 

applied to sort colonic Teff cells.
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Multiplex ELISA

1000 to 10,000 cells were sorted (single sort) into 100 ul of T cell medium (RPMI 1640, 

10% FBS, 20mM HEPES, 1mM sodium pyruvate, 0.05mM 2-mercaptoethanol, 2mM L-

glutamine, 100 mg/ml streptomycin and 100 mg/ml penicillin). Cells were plated in round 

bottom 96-well plates with 1:1 ratio of anti-CD3/CD28 beads (Miltenyi) and were incubated 

at 37C for 24 hours. Supernatants were collected and analyzed with the LegendPlex™ T 

Helper Cytokine Version 2 and Proinflammatory Chemokine panel kits (Biolegend) per 

manufacturer’s instructions. Samples were acquired via the BD Symphony and analyzed 

with LegendPlex™ software. Paired student t-test was used for significance assessment.

Infections

For Salmonella infection, mice were gavaged with 100 μl of 200 mg/mL streptomycin in 

water, and 24 hours later, gavaged with 109 Salmonella enterica (Serovar Typhimurium) 

AroAΔ (52; gift of D. Littman). For Citrobacter infection, mice were gavaged with 5X108 

Citrobacter rodentium53. Unless noted otherwise, mice were sacrificed at day 13 after 

infection. For helminth infections54, mice were gavaged with 200 Heligmosomoides 
polygyrus L3 larvae in 200 μl H2O or subcutaneously injected with 500 L3 larvae of 

Nippostrongylus brasiliensis in 100 ul PBS, and sacrificed 11 days later.

Low Input RNA-Seq

All cells were double-sorted. For the final sort, 1,000 cells were collected directly into 5ul 

lysis buffer (TCLBuffer (Qiagen) with 1% 2-Mercaptoethanol), and the lysates frozen after 5 

min. Smart-seq2 libraries were prepared as previously described12. Reads were aligned to 

the mouse genome (GENCODE GRCm38/mm10 primary assembly and gene annotations 

vM16; https://www.gencodegenes.org/mouse_releases/16.html) or human genome 

(GENCODE Human Release 27; Reference genome sequence: GRCh38/hg38; annotation: 

GENCODE v27) with STAR 2.5.4a.The ribosomal RNA gene annotations were removed 

from the GTF (General Transfer Format) file. The gene-level quantification was calculated 

by featureCounts (http://subread.sourceforge.net/). Raw reads counts tables were normalized 

by median of ratios method with DESeq2 package from Bioconductor, and then converted to 

Gene Pattern GCT and CLS format. Samples with less than 3 million uniquely mapped reads 

were automatically excluded from normalization to mitigate the effect of poor quality 

samples on normalized counts. Normalized read counts were filtered for robust expression 

(>10) to avoid confounders from low-level noise, and processed in the Multiplot suite and 

Morpheus (https://software.broadinstitute.org/morpheus/), or with custom code in R. PCA 

was done using the prcomp function in R on all genes that had expression higher than 0 in 

any sample.

Single-cell RNA-seq

Intestinal tissues were treated with RPMI containing 1 mM DTT, 20 mM EDTA and 2% 

FBS at 37°C for 15 min to remove epithelial cells, minced and dissociated in 1 mg/ml 

collagenase VIII (Sigma), 1 μg/ml DNAse and 1%FCS in RPMI with constant stirring at 

37°C for 20min. Single cell suspensions were then filtered and washed with 4% FCS in 

RPMI medium. Single-cell suspensions were stained on ice for 30 min with antibodies 
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against CD4, TCRβ, CD19 and CD45 (Biolegend) with 20 ng/ml Dapi (Biolegend) as a 

viability dye. T cells were then sorted on an Astrios MoFlo (Beckman Coulter), as Dapi
−CD45+CD4+TCRβ+CD19−. For single sample processing, cells were sorted directly into 

PBS to 0.04% BSA final concentration. For cell hash-tagging, TotalSeq-A™ hashtag 

antibodies (SPF: Hashtag1, C. rodentium: Hashtag2, S. Enterica: Hashtag3, N. brasiliensis: 

Hashtag4, H. polygyrus: Hashtag5) were added to each sample individually at the same time 

as other antibodies: All samples were sorted together directly into RPMI with 2% FCS and 

subsequently spun down and reconstituted in 33 ul of PBS with 0.04% BSA. All samples 

were loaded on the 10x Chromium Controller (10x Genomics) within 30 minutes of sorting. 

Libraries were prepared using Chromium Single Cell 3′ Reagent Kits v2 according to the 

manufacturer’s protocol. HTO libraries were prepared as described in18. Libraries were 

sequenced together on Illumina HiSeq 4000.

Single-Cell RNA-seq Data analysis

Gene counts were obtained by aligning reads to the mm10 genome using CellRanger 

software (v1.3) (10X Genomics). HTO counts were obtained by using Cite-Seq-Count 

package34. Single cell data were initially analyzed using the Seurat package55. HTOs were 

assigned to cells using the HTODemux function and doublets were eliminated from analysis. 

Cells with less than 1000 UMIs or 400 genes and more than 4000 UMIs or 0.05% reads 

mapped to mitochondrial genes were also left out of the analysis. Tregs and naive CD4+ 

cells were removed from analysis by using the SubsetData function. Data were normalized 

using the NormalizeData function and scaled using the ScaleData function, regressing out 

number of UMIs and percentage of expressed mitochondrial genes. Variable genes were 

found by FindVariableGenes function, using genes with mean expression over 0.0125 and 4 

UMIs per cell. Dispersion cutoff was calculated based on the fano factor distribution per 

gene. This way, 550-950 variable genes were selected in different Teff datasets. PCs were 

calculated using the RunPCA function and significant PCs were selected using the 

JackStraw function. tSNE and KNN clusters were computed on significant PCs using the 

RunTSNE and FindClusters functions, respectively. UMAP dimensionality reduction was 

calculated on significant PCs using the RunUMAP function. TH signatures scores were 

computed by the mean expression of signature genes per cell.

Diffusion maps are useful for identifying differentiation trajectories, as they allow for 

pseudotemporal ordering of single cells in a high-dimensional gene expression space56. 

Diffusion maps were generated using the Seurat package RunDiffusion function with default 

settings.

Imputation can denoise the cell count matrix and fill in missing transcripts by data 

diffusion57 Imputation was performed using the built-in Seurat AddImputedScore function 

with default parameters on all variable genes. PCs and tSNE were then r-recomputed based 

on the imputed values.

Principal Components were identified and plotted using the Seurat PCHeatmap function 

using default parameters.
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Correlation Coefficient Analysis (CCA)55 was performed by running RunMultiCCA 

function on 500 variable genes between the 4 samples. 20 significant Correlation 

Coefficients (CC) were selected for alignment using the AlignSubSpace function. tSNE and 

KNN clustering were run as previously, based on 20 CCs.

To compute Euclidean distances within groups of cytokine expressing cells, cytokine 

positive cells were identified as expressing one or more normalized UMIs. Distances 

between each selected cell to other cells were calculated for 1000 top variable genes using 

the dist function in R. P values were computed using the Mann-Whitney test. For 

Dendrogram analysis, cytokine expressing cells were identified as above, and distances 

between different samples expressing different cytokines were computed by the dist function 

in R with default settings on top 1000 variable genes. Hierarchical clustering (hclust 

function in R) was then employed to generate the dendrogram.

Highly Th-specific genesets (Supplementary Table 2) were generated by manual curation, 

starting mainly from published signatures as well as other scRNAseq datasets19,32,58–61 and 

selecting genes that were reproducibly present in these signatures. We removed transcripts 

that overlapped between resulting TH genesets, often simple markers of cell activation 

frequent in such signatures, as well as some non-T transcripts which are not infrequently 

found to contaminate published signatures (e.g. Cd19, Cd79a, Cd8a). We also added several 

transcripts known to correlate with Ifng, Il17a or Il4/il13 (Cxcr3, Tmem176a, Areg). The 

gene signature average for these genes was then calculated via the AddModuleScore 

function in Seurat V3. Expression of cell cycle genes was calculated based on 

CellCycleScoring function in Seurat V3 (cc.genes based on62)

Gene Module Generation

After filtering transcripts for robust expression (those that appear in more than 10 cells in 

any one of the infected or SPF samples), gene-gene correlation (Pearson, cor function in R) 

was calculated within each dataset. The ten matrices (one for each replicate and condition) 

of pairwise gene-gene correlations were then averaged for Extended Data Fig. 5c.

To select the genes with the highest correlations, a threshold correlation score in the 98% 

percentile was calculated for each gene, and 588 genes with correlation scores higher than 

0.05 were selected for further analysis. Gene modules were then identified by Affinity 

Propagation63 using the APcluster R package with negative distance similarity function and 

number of input similarities (q) set to 0. Gene modules were overlayed on the tSNE by 

computing the mean expression of module genes per each cell.

Clustering approaches

BackSPIN: The data was normalized with Seurat parameters and then subset to the top 588 

most variable genes according to the Seurat pipeline. In order to know if significant clusters 

would emerge from more elaborate clustering methods, we used BackSPIN, an unsupervised 

biclustering method that sorts both genes and cells into clusters64. The motivation behind 

backSPIN was that by iterative partitioning, the algorithm would be able to cluster true cell 

subsets and gene subsets together. One important parameter for BackSPIN involves defining 
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the partitioning ‘rate’ (i.e., how much to subset the groups at each iterative process). This 

was set at the default of 0.1. Other parameters specified were the number of levels 

(numLevels) to partition by, set at 2, the number of top variable genes to cluster, set at 596, 

the initial number of iterations (first_run_iters), set to 10, and subsequent number of 

iterations (runs_iters) set to 8. The default initial decrease rate of 0.1 (first_run_iters) and the 

default subsequent decrease rate (runs_step) of 0.3 were used. The decrease rates helped 

determine the precision of clusters. Finally, threshold values were set at the default value of 

2 for both minimum number of cells (split_limit_c) and genes (split_limit_g). A threshold 

score of 1.15 was used to determine when to stop partitioning the data (stop_const), and the 

default threshold for determining which group a gene would fall into was kept at 0.015.

BISCUIT: BISCUIT iteratively learns to identify features in each cluster and create clusters 

with these specific features by imputing and normalizing the data45. The motivation behind 

BISCUIT is that by imputing the data, it catches variation provided by genes that may have 

dropped out. The major parameter for BISCUIT is the dispersion parameter (alpha) which 

allows the algorithm to sort cells into more clusters or less clusters, which was set to 1. The 

following parameters were used for running BISCUIT: The default setting of 20 genes/

batch, the default number of 20 iterations, and 100 as the number of cells in each batch. 

Once complete, the final clusters were projected onto the tSNE plot of Fig. 2c computed by 

Seurat. Cell cluster outputs from BISCUIT were projected onto the tSNE computed by 

Seurat.

Dip test

Data were normalized with standard Seurat parameters as described before55. The same 

number of variable genes, defined by Seurat, was used in the continuity analysis. In order to 

test for “discontinuity” in transcriptomic-based representation of a set of cells, we used the 

Hartigan’s Dip Test of multi-modality20. The Dip Test asks whether the pairwise distances 

between all pairs of cells can be best supported by a unimodal or a multi-modal distribution. 

The intuition behind this test comes from the fact that if there are two or more clear sub-

populations of cells that cluster together with clear boundaries, then given a high-

dimensional representation of these cells (i.e., vectors of length g consisting of gene 

expression levels for g genes), then there would one more regions of low density in between 

highly dense regions in this space. These low-density regions would thus create a “dip” in 

the distribution of pairwise distances between all cells in this space. One important 

parameter here is the representation of gene expression data used in computing the pairwise 

distances between the cells. To support the ability of the Dip Test to identify regions of low 

density, we first applied a projection defined by minimum separation hyperplane21 to gene 

expression data from variable genes (defined by Seurat) and then applied the Dip Test on the 

distances computed on the projected data.

Binary classification IL17 or IFN-γ producing cells

We trained a deep neural network run on the Keras platform (www.keras.io). The input 

geneset was the 500 most variable genes across the entire scRNAseq dataset of Fig. 2 

(naturally leaving out Il17 and Ifng transcripts), and the network was trained to classify Ifng- 

or Il17a-producing cells (randomly assigned to 80% training set, 20% test set). The data 
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matrix was normalized by the mean of the expression of each gene across the 2,885 cells 

(otherwise the transcripts with highest expression levels dominate the output). The DNN was 

composed of 3 hidden layers with the following features: size of the hidden layers: 

512-128-64 with random weights initialization; activation function: Sigmoid; optimizer for 

backward propagation: ADAM optimizer; number of epochs: 50; training and testing on 

CPU; Batch size: 100. We added downstream a decision function with the possibility of 

NoCall (for non-producing cells), the classification as Il17-producing was accepted if the 

output softmax score of the cell was above 0.95 (and below 0.05 for Ifng-producing cells), 

otherwise NoCall. We voluntarily over-fitted the model to fit the distribution of the output 

softmax score with the decision function constraints. We used a Keras-based (version 2.2.4) 

neural network (www.keras.io) on Python2. The Integrated Gradients library was used to 

compute the overall contribution score of each gene as the mean of its contribution scores 

across the whole data set. To test the reproducibility of the Integrated Gradients we split 

randomly the data set in two sub datasets on which we independently trained models, 

repeating the operation 100 times on each dataset and taking the mean of these 100 scores. 

As a positive control, the same architecture was used to distinguish Teff from Treg cells, 

which it could do with 98.8% (Teff) and 89.7 % (Treg) accuracy on average, per below).

  Accuracy: 97.58 - 98.05%   Actual Tregs   Actual Teff

  Prediction Treg (in 10 independent runs)   1120-1170   42-64

  Prediction Teff (in 10 independent runs)   78-128   5700-5722

  1248   5764 nCells=7012

Clonotype analysis and CITE-Seq

Mice were infected with Salmonella, as above and colon single-cell suspensions prepared as 

above Antibody staining (cell hashing and CITE-Seq) was performed simultaneously by 

adding TotalSeq-C™ hashtags 1-7 (Day0: hashtag7, Day3: hashtag6, Day5: hashtag 5, 

Day7: hashtag 4, Day10: hashtag 3, Day17: hashtag 1), anti-CD14 (C0424) and anti-I-A/I-E 

(C0117) (Biolegend) to the cells at a ratio of 1:100 in RPMI 2% FCS and incubating on ice 

for 15 minutes. Cells were then washed twice with RPMI 2% FCS and sorted as described 

above before encapsulation (10X Genomics). Gene expression, Feature and TCR V(D)J 

libraries were prepared using the 5’ V(D)J v1 kit (10x Genomics). Rearranged TCRs were 

identified by running Cellranger vdj 3.0, and. TCR chains and N, P nucleotides per 

clonotypes were determined with the help of the IMGT database (http://imgt.org/

imgt_vquest). Repeated clonotypes were defined by shared TCR alpha and beta with 

identical CDR3s at the nucleotide level. For UMAP and clonotype analysis, cells in cycle 

were taken out. Ifng/Il17a expressing cells were defined as cells that had reads for either 

transcript. Euclidean distances between cells expressing the same repeated TCR clonotype 

were measured using the dist() function on either the TH geneset (Supplementary Table 2) or 

the 1000 most variable genes.
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Single-cell ATAC-seq

Total CD4+ T cells were isolated from the colon of Salmonella-infected mice as described 

for scRNAseq, with the exception of using Collagenase II and Dispase instead of 

Collagenase VIII. 25K Cells were sorted directly into 2% FCS RPMI and subsequently spun 

down and reconstituted in 0.04% PBS. Nuclei isolation, GEM generation and library 

preparation were performed as described in the Chromium Single Cell ATAC (10X 

Genomics) manual (https://support.10xgenomics.com/single-cell-atac). Libraries were 

sequenced on Illumina NextSeq. OCR counts were obtained by aligning reads to the mm10 

genome using CellRanger ATAC software (v1.1) (10X Genomics). scATAC-seq was 

analyzed using the Seurat/Signac pipeline (https://satijalab.org/signac/index.html). For QC, 

cells with less than 5000 peak calls and less than 20 percent reads mapped to peaks were 

filtered out. For normalization of peak counts used to drive the UMAP representation, we 

used the RunTFIDF function to calculate the Term Frequency Inverse Document Frequency 

(TFIDF). For dimensionality reduction data structure was learned via latent semantic 

indexing (LSI, RunLSI function) and Single Value Decomposition (SVD, RunSVD 

function). Contaminating non-T cells were taken out, and UMAP and cell clusters were then 

recalculated. Naïve T, Treg and Teff clusters were identified and attributed based on the 

Gene Activity matrix, constructed using the FeatureMatrix function and the Gencode v18 

annotation; peaks that were found within the gene body and up to 2 kb upstream of TSS 

were assigned to the corresponding genes.

To calculate the Tbx21 and Rorc scores shown in Fig. 5b, we counted the raw reads falling 

into 300 bp intervals centered on OCRs that were highly correlated to expression of 

corresponding genes in the Immgen compendium (per Supplementary Tables 3F and 2 of27). 

For the Rorc locus, signals at three OCRs with TSS Gene-OCR correlation score >10 were 

used; for the Tbx21 locus 11 OCRs with TSS Gene-OCR scores >15 (Fig. 5C). Read counts 

were then summed and averaged into a score per cell using the AddModuleScore function. 

Cells were assigned as Rorc+ or Tbx21+ if the average OCR score for these loci was greater 

than 0. Coverage maps were then generated using the CoveragePlot function, only applied to 

Teff cells.

Raw bulk ATACseq data from in vitro differentiated Th0, TH1 and TH17 cells were 

generously provided by P. Thakore and A. Schnell65. The Tbx21 and Rorc chromatin scores 

were computed as above from read counts (normalized to the total read number for each 

biological replicate).

TF deviation and variability scores were calculated using the chromVAR package (v1.8)28 

with motifs from the JASPAR2018 database. The filtered Teff-only scATAC-seq counts 

matrix was used as input, with peaks overlapping motifs determined using the motifmatchr 

matchMotifs function. The chromVAR computeDeviations function was used to calculate 

the bias-corrected deviation scores for each TF motif. Briefly, this method computes the 

difference between observed fragments within peaks containing a given motif and the total 

expected number of fragments using the average of all cells. These ‘raw deviation’ scores 

are then normalized for technical biases using a set of background peaks matched for GC 

content and accessibility to yield the ‘bias-corrected deviation scores.’ Variability of TF 

motifs across the Teff data was calculated using the chromVAR computeVariability function.
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DATA AVAILABILITY

The data reported in this paper have been deposited in the Gene Expression Omnibus (GEO) 

database under accession no. GSE 160055).

Extended Data

Extended Data Fig. 1. scRNAseq of Teff under normal conditions
a) Quality control plots (per-cell number of unique reads vs number of transcripts detected) 

for the scRNAseq data from total colonic CD4+ T cells (data from Fig. 1a).

b) Same plots as (a), for CD4+ QC of scRNAseq data from total colonic CD4+ T cells of 

germ-free and SPF mice.

c) SMART-SEQ2 single-cell data from colon T memory cells (from Miragaia et al.{11059}).

Aggregate expression of Th-specific genesets (defined as for Fig. 1) are overlayed on the 

tSNE.
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Extended Data Fig. 2. scRNAseq of Teff under infectious conditions.
a) tSNE representation of all CD4+ T cells in the scRNAseq data from the parallel infection 

experiment of Fig. 2. Left panel: each color represents cells from a different infection 

condition. Tregs, naive Tconvs, cycling cells and Teffs are circled; right panel: expression of 

key genes.

b) UMAP representation of Teff cells from the same experiment, colored by condition; Right 

panels: Overlay of TH genesets (per Fig. 2).
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c) Data from the same parallel-infection experiment as Fig. 2c and displayed using the same 

tSNE coordinates, highlighted with aggregate expression of TH signature genes from 

ref{9203}.

d) Expression of key cytokines and transcription factors in the same scRNAseq data as Fig. 

2c.

e) Independent parallel infection experiment. Samples were not hash-tagged, and processed 

in parallel encapsulations, and cell data were aligned by canonical correlation analysis 

(CCA) for tSNE representation, color-coded by sample. Right: expression of Th-specific 

genesets, defined as for Fig. 2c.
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Extended Data Fig. 3. Different clustering approaches and signatures do not parse out the data 
into TH subsets.
a) KNN clusters shown on hash-tagged tSNE. Percentages of cells corresponding to each 

signature in each KNN cluster are shown in the table.

b) Biscuit clusters shown on hash-tagged tSNE. Percentages of cells corresponding to each 

signature in each Biscuit cluster are shown in the table.

c) Backspin clusters shown on hash-tagged tSNE. Percentages of cells corresponding to each 

signature in each Backspin cluster are shown in the table.

Kiner et al. Page 21

Nat Immunol. Author manuscript; available in PMC 2021 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



d) Overlay of pathogenic TH17 signatures from{9915, 8270}. Left panel: all Teff; right 

panel: only Il17a+ Teff.

e) Overlay of Citrobacter TH17 signature from{11132} on the tSNE plot.

Extended Data Fig. 4. Neural Network prediction of IFN-γ and Il17-producing phenotypes
a) A Keras neural network was trained to use as input the expression of 500 most variable 

genes in Teff single-cell RNAseq data to predict Ifng or Il17a expression in each cell. Loss 

as a function of training epochs plotted here. Note the overfitting beyond 10 epochs 

(representative of >50 independent training runs with random 80/20 training/test).

b) Accuracy of DNN-predicted cytokine expression by individual Teff cells, relative to their 

actual expression in the test scRNAseq data (non-expressing cells were not included as 

input, since there is uncertainty as to their real nature given drop-out frequencies in 

scRNAseq data). Numbers shown represent the range observed in 10 independent training 

runs (with different training/test sets).

c) Contribution of each transcript to the prediction of Il17a or Ifng expression, as score in 

the Integrated Gradients, comparing the model learned in two independent runs. A positive 

score indicates influence on predicting Il17a expression, a negative score influence in 

predicting Ifng expression.
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Extended Data Fig. 5. Th-associated genes are not the main drivers of Teff heterogeneity.
a) Distribution of Top 6 PCs of Teffs from all hash-tagged samples, with cell cycle genes 

regressed out. Genes that are Th-associated are highlighted.

b) Co-expression of key cytokines across all samples. Mean Pearson gene:gene correlation 

of cytokine genes across all samples. Only significantly correlated cytokines are colored 

(p<0.05, χ2 test). Significant P values: Il4/Il13 6.3X10−3, Il4/Il5 1.8X10−98, Il5/Il13 
5.5X10−129, Il17a/Il17f 1.3X10−4.
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c) Coregulated gene modules in Teff single-cells. Gene:gene correlation between 588 most 

variable genes was calculated independently within each condition/infection of the single-

cell datasets, then averaged between conditions. 16 gene modules were determined by 

Affinity Propagation within this matrix, annotated at right.

d) Overlay of average expression of these gene modules on Teff tSNE (per 2c) with barplots 

showing genes with highest mean correlation (full list in Supplementary Table 3).

Extended Data Fig. 6. Unique clonotypes are not restricted to a TH type and do not diversify 
over time.
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a) Quantification of flow cytometry data on cells from mouse LP at different timepoints of 

infection; Left: Proportion of CD4+ T cells within total CD45+; Middle: Proportion of Teff 

(CD44hi Foxp3−) within total CD4+ T; Right: Proportion of IFN-γ+ cells within total CD4 T.

b) Cell numbers per scRNAseq clustering by day post infection. Treg clusters were 

identified as Foxp3+, naive cluster as Foxp3- Ccr7+ and Teff clusters as Foxp3- Cd44+.

c) Left: UMAP as in 5a, showing two groups of cell clusters: cells taken from mice after day 

10 are colored in red, and cells taken prior to day 7 are colored in blue. Right: DEG analysis 

on top 20 differentially expressed genes between the two cluster groups. Asterisks represent 

genes that overlap with genes that are higher in Teff after Salmonella infection in Fig. 3a.

d) Bar graph representing proportions of cells belonging to singlet clones (clones that appear 

only once) or expanded clones (clones that appear more than once) in each of the clusters 

defined in S6b, grouped by day post infection.

e) Median Euclidean distances between cells within the same clonotype across the top 10 

clonotypes for each timepoint. Euclidean distance was calculated based on the top 1000 

variable genes. Each color dot represents a unique clonotype, and the size of the dot signifies 

the number of cells within each clonotype.

Extended Data Fig. 7. The unexpected MyT subset.
a) Flow cytometric analysis (gated CD4+TCRβ+FOXP3− Teff) cells from colonic LP of 

Salmonella infected mice.

b) Volcano plot of bulk RNAseq from colonic Teff sorted as in C (LP of Salmonella infected 

mice). Genes highlighted in red belong to the myeloid genes listed in B.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: The transcriptional landscape of CD4+ T cells in the colon
a) scRNAseq analysis of total colonic LP CD4+ T cells of SPF mouse (computed from 658 

most variable genes). Top: tSNE representation, color-coded by KNN cell clusters, identified 

based on expression of prototypic transcripts (bottom).

b) scRNAseq analysis of total colonic LP CD4+ T cells of Germ-free and SPF mice. Top: 

tSNE representation, color-coded by cell of origin. Marked clusters are identified based on 

expression of prototypic transcripts (bottom).

c) tSNE representation, restricted to CD4+ Teff selected in Fig. 1A (tSNE computed from 

584 most variable genes). Right: overlay of combined expression of prototypic TH genesets 

(Supplementary Table 2).

d) Heatmap of Teff divided into two clusters by KNN clustering. Representative genes 

overexpressed in each cluster are shown.
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Figure 2: Variation in Teff transcriptomes shows continuous distribution that is not dictated by 
“TH subsets”
a) Schematic of hash-tagging experiment. Mice were infected with different pathogens, their 

colonic LP cells extracted, labeled with hash-tagging antibodies, sorted as CD4+ T cells and 

processed as a single batch on the 10X chromium controller. Sample demultiplexing was 

done computationally.

b) Flow cytometric confirmation of the intestinal infections after intracellular staining for the 

cytokines shown (gated on CD4+TCRβ+FOXP3−CD44hi cells).
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c) tSNE representation of Teff scRNAseq data from mice under different infection 

conditions (computed from 930 variable genes). Left: color-coded by condition/infection; 

right: overlay of combined expression of prototypic TH genesets.

d) Dendrogram of Euclidean distances between cells in the scRNAseq dataset of Fig. 2c, 

splitting cells that express Ifng or Il17a in each of the infection conditions.

e) Hartigan’s Dip test applied to whole colonic CD4+ T cells from SPF mouse (top), or only 

to Teff from Salmonella-infected (middle) or Citrobacter-infected mice (bottom). MyT and 

cycling cells were taken out for this analysis.

f) Expression of commonly-used markers of TH subsets. Top: RNA expression in the 

scRNAseq data (overlaid on the tSNE from 2c). Bottom: Protein expression by flow 

cytometry in CD4+ Teff (gated CD4+TCRβ+FOXP3−CD44hi cells) from Salmonella-

infected mice.
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Figure 3: Teff phenotypes are distinguishable by infection rather than by TH type
a) Heatmap of transcripts most differentially expressed within Ifng+ (top) or Il17a+ (bottom) 

Teff from Citrobacter or Salmonella infected mice.

b) Sort of IL17a-expressing CD4+ CD44+ Teff cells from Il17a-IRES-gfp reporter mice 

(infected or not with Salmonella or Citrobacter) for expression profiling by ultra-low input 

RNAseq.

c) PCA analysis of datasets from b.

d) Volcano plot of bulk RNAseq data from C, comparing IL-17A+ Teff from Salmonella or 

Citrobacter infected mice.

Red and blue highlights: transcripts found differentially expressed by scRNAseq.

Kiner et al. Page 32

Nat Immunol. Author manuscript; available in PMC 2021 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: Repeated clonotypes can adopt different phenotypes, and do not diverge over time
a) UMAP representation of Teff from mouse LP at different timepoints post-infection with 

Salmonella. MyT cells are circled.

b) Cells from different time points, cytokine-producing cells highlighted as shown

c) Representative examples of clonotypes with unique CDR3 identified by scTCR 

sequencing (non-germline N and P nucleotides shown).

d) Numbers of Il17a-, Ifng-, or both (DP) -expressing cells within the 10 most frequent 

clonotypes identified in each individual timepoint.

e) Median Euclidean distances between cells within the same clonotype across the top 10 

clonotypes for each timepoint. Euclidean distance was calculated based on TH genes from 
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Supplementary Table 2. Clonotypes are color-coded, and the size denotes the number of 

cells that express each clonotype.
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Figure 5: The chromatin states of Teffs are found on a continuum
a) scATACseq of total LP CD4+ T cells from Salmonella-infected mice. Top: UMAP 

representation, with Tregs and naive Tconv identified based on gene activity at prototypic 

loci (bottom).

b) Cell chromatin scores for Rorc and Tbx21 loci, computed from accessibility of 

expression-correlated OCRs. Top: score in in vitro differentiated Th0, TH1 and TH17 cells. 

N=4 biological replicates for each condition. Centre, median; box limits, first and third 
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percentiles; whiskers, 1.5× interquartile range (IQR). Bottom: scores for each cell in the 

scATACseq data from (a) (Teff only) in a UMAP plot.

c) Aggregated coverage maps around Rorc and Tbx21 loci in Teffs split based according to 

their chromatin score at each locus (shown at left); arrows: location of the best expression-

correlated OCRs used to compute the scores.

d) Over-representation in each Teff cell (data from a) of TF-binding motifs in accessible 

chromatin (chromVAR bias-corrected TF motif deviation scores28) for classic master 

regulators (UMAP framework from b)

e) Combined variability across the Teff scATACseq data for OCRs that contain motifs for 

different TFs (blue: null distribution for permuted dataset). TF families across the ranking 

shown at right.

f) TF motif deviation scores per Teff cell (as in d) for FOS and IRF4 motifs.
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Figure 6: Transcriptional and functional validation of Teff continuity
a) Experiment schematic. Surface markers with continuous distribution in the scRNAseq are 

selected, and cells stained with corresponding antibodies for flow cytometry. tSNE plots are 

computed from the cytometry data, from which sorting gates are set to prepare cells for 

transcriptional and functional analysis.

b) Gene expression of selected surface markers in colonic Teffs from Salmonella infected 

mice (scRNAseq plot from 2c).
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c) Flow cytometry tSNE generated from fluorescence intensities of CD4+ Teffs stained for 

these markers.

d) Sorting strategy, corresponding to the poles of the flow tSNE from C. The tSNE positions 

of the sorted cells are shown at right.

e) Heatmap comparing differentially expressed genes in the bulk RNAseq profiling of 

populations A, B and C, sorted in D. Hierarchically clustered and row-mean normalized.

f) Multiplex ELISA comparing secretion of cytokines and chemokines from populations A, 

B and C, where each bar is an independent biological replicate. *: cytokines with significant 

differences (at p <0.05) between any two populations per paired student t-test (IL-17A: A vs 

B p=4.0 X10−4, IL-22: A vs B p=1.3 X10−2 and A vs B p=3.6X10−2, IFN-γ: A vs B 

p=1.5X10−2, CCL-5: A vs C p=2.7X10−2).
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Figure 7: Novel Teff populations
a) The ISG-T subset. Left: Interferon-type-I signature50 overlayed on the Teff tSNE. Right: 

Genes overexpressed in cluster ISG-T overlayed on top of genes upregulated in CD4+ T 

cells upon IFN-α or IFN-γ administration50.

b) scRNAseq expression data of genes in Crtam+ cluster.

c) Volcano plot from RNA-seq of sorted CRTAM+ vs CRTAM− colon Teff cells; over/under-

expressed genes in the Crtam+ T cluster in scRNAseq data are shown in red and blue, with 

significance of overlap.
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d) Expression in MyT cells of genes overlayed on the general tSNE plot of Fig. 2c. top 

panels: typical myeloid cell transcripts; bottom: typical T cell transcripts.

e) FoldChange histograms of myeloid-specific genes. Left, in myeloid vs CD4+ T cells 

(ImmGen RNAseq data); right: in MyT vs other colon Teff (Salmonella-infected, data from 

Fig. 2c). X axis on logarithmic scale.

f) Contour plot representing RNA and protein expression in the single-cell data from Fig. 5 

(x-axis: normalized scRNAseq; y-axis; raw CITE-seq counts) for MHCII (top) or CD14 

(bottom). Individual cells are represented by dots, and are colored by their classification 

based on unsupervised clustering.

g) Experiment schematic. Bone marrow from WT CD45.1 and CD45.2 H2-Ab1−/− was 

mixed and transferred to irradiated CD45.1/CD45.2 hosts. After 8 weeks mice were infected 

with Salmonella and 13 days later the WT or KO LP CD4+ T cells were sorted for RNAseq.

h) Top: schematic representation of the WT or KO H2-Ab1 loci [neomycin resistance gene 

inserted into the second exon36]. Bottom: position of RNAseq reads in colonic CD4+ Teff 

stemming from WT or H2-Ab1 KO stem cells in mixed bone marrow chimeras infected with 

Salmonella.
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