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ABSTRACT Parkinson’s disease (PD) is known to be associated with altered gastro-
intestinal function and microbiota composition. To date, the effect of PD medication
on the gastrointestinal function and microbiota, at the site of drug absorption, the
small intestine, has not been studied, although it may represent an important con-
founder in reported microbiota alterations observed in PD patients. To this end,
healthy (non-PD) wild-type Groningen rats were employed and treated with dopa-
mine, pramipexole (in combination with levodopa-carbidopa), or ropinirole (in com-
bination with levodopa-carbidopa) for 14 sequential days. Rats treated with dopa-
mine agonists showed a significant reduction in small intestinal motility and an
increase in bacterial overgrowth in the distal small intestine. Notably, significant
alterations in microbial taxa were observed between the treated and vehicle groups;
analogous to the changes previously reported in human PD versus healthy control
microbiota studies. These microbial changes included an increase in Lactobacillus
and Bifidobacterium and a decrease in Lachnospiraceae and Prevotellaceae. Markedly,
certain Lactobacillus species correlated negatively with levodopa levels in the sys-
temic circulation, potentially affecting the bioavailability of levodopa. Overall, the
study highlights a significant effect of PD medication intrinsically on disease-associ-
ated comorbidities, including gastrointestinal dysfunction and small intestinal bacte-
rial overgrowth, as well as the gut microbiota composition. The results urge future
studies to take into account the influence of PD medication per se when seeking to
identify microbiota-related biomarkers for PD.

IMPORTANCE Parkinson’s disease (PD) is the second most common neurodegenera-
tive disorder and is known to be associated with altered gastrointestinal function
and microbiota composition. We previously showed that the gut bacteria harboring
tyrosine decarboxylase enzymes interfere with levodopa, the main treatment for PD
(S. P. van Kessel, A. K. Frye, A. O. El-Gendy, M. Castejon, A. Keshavarzian, G. van Dijk,
and S. El Aidy, Nat Commun 10:310, 2019). Although PD medication could be an im-
portant confounder in the reported alterations, its effect, apart from the disease
itself, on the microbiota composition or the gastrointestinal function at the site of
drug absorption, the small intestine, has not been studied. The findings presented
here show a significant impact of commonly prescribed PD medication on the small
intestinal motility, small intestinal bacterial overgrowth, and microbiota composition,
irrespective of the PD. Remarkably, we observed negative associations between bac-
terial species harboring tyrosine decarboxylase activity and levodopa levels in the
systemic circulation, potentially affecting the bioavailability of levodopa. Overall, this
study shows that PD medication is an important factor in determining gastrointesti-
nal motility and, in turn, microbiota composition and may, partly, explain the differ-
ential abundant taxa previously reported in the cross-sectional PD microbiota human
studies. The results urge future studies to take into account the influence of PD
medication on gut motility and microbiota composition when seeking to identify
microbiota-related biomarkers for PD.
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The microbiota composition of patients with Parkinson’s disease (PD) has been com-
pared to that of healthy controls (HC) in an extensive amount of studies (mainly

cross-sectional) (1–16). Nevertheless, there is low consensus among the findings in
these reports, making it nearly impossible to determine whether the changes in micro-
biota composition are causally linked to the disease or due to confounding factors
such as PD medication, which tends to vary between individuals (17). Indeed, PD medi-
cation is a major differentiating factor between PD patients and HC subjects and only a
few studies (1, 3, 6, 8, 14) investigated or reported the effect of medication on the
microbiota profiles of fecal samples from PD patients.

The large surface area of the small intestine results in complete absorption and
delivery of the majority of ingested drugs, including PD medication, occurring at that
site of the intestine (18, 19). In fact, Maier et al. estimated that 17% of the investigated
drugs is excreted in feces (20), implying that the remaining 83% is likely to be absorbed
in the small intestine and plausibly affect the residing microbiota in situ.

However, to date, no studies have been performed in HC subjects to determine
whether the PD medication intrinsically affects the microbiota composition, irrespec-
tive of the disease itself, at the site of drug absorption, the small intestine.

Most PD medications work through their effect on the dopaminergic system in the
brain. Additionally, PD medication exerts influence on the peripheral dopaminergic
pathways in the enteric nervous system (ENS) (21, 22) and the immune system (23, 24).
Dopamine and/or dopamine agonists are known to affect gut motility in rodents, dogs,
and humans (25–39). Gut motility is usually inferred by Bristol stool score, which is
known to be a major contributor to the variation in the fecal microbiota composition
(40). Many PD patients experience nonmotor symptoms, including gastrointestinal (GI)
dysfunction, which is typically displayed as reduced small intestinal motility (41, 42).
Notably, decreased small intestinal motility is one of the causes of small intestinal bac-
terial overgrowth (SIBO) (43)—a condition that is significantly more prevalent in PD
patients (up to 54.5%) (44–46).

Recently, PD medication has also been associated with the development of GI
symptoms (47) or slow GI transit (48) in PD patients. Analogously, we showed that the
unabsorbed residues of levodopa that reach the distal small intestine is converted to a
bioactive molecule, which reduces ileal contractility in mice ex vivo (49). Nonetheless,
whether PD medication per se is also associated with alterations in microbiota compo-
sition, small intestinal gut motility, and SIBO remains unknown.

In this study, using healthy rats, we showed that pramipexole and ropinirole, two
commonly prescribed PD medications, have profound effects on the gut microbiota
and small intestinal motility, irrespective of any PD symptoms.

RESULTS
Parkinson’s disease medication reduces small intestinal motility in wild-type

Groningen rats. To test whether commonly prescribed PD medication affects the mo-
tility in the small intestine, the main site of PD drug absorption (50), wild-type
Groningen (WTG) rats were employed and were treated for 14 sequential days with do-
pamine (D), pramipexole (P, in combination with levodopa-carbidopa), ropinirole (R, in
combination with levodopa-carbidopa), or vehicle (VH) (Fig. 1A). Pramipexole and ropi-
nirole were combined with levodopa-carbidopa, as these medications are often copre-
scribed in PD treatment (51). Although dopamine is not used as a treatment for PD, it
was included in the study for two reasons: (i) it acted as a control for the dopamine
agonist groups, and (ii) PD patients usually have a higher exposure (2.5- to 40-fold) to
dopamine—a metabolite of the levodopa treatment—than HC subjects (52–54). On
the last treatment day, animals were sacrificed 18.5 6 0.68 min after the administration
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of the PD medication in combination with carmine red. No significant differences (one-
way analysis of variance [ANOVA]: F = 0.4977, P = 0.6865) at the time of sacrifice (i.e.,
time after last treatment) were observed between the studied groups (see Fig. S1A in
the supplemental material). The small intestine was sectioned into a total of 7 parts,
and their contents were assessed for carmine red spectrophotometrically. Carmine red
detection was scored in a binary fashion per segment (detection was scored as 1; no
detection was scored as 0), and the geometric center, a sensitive and reliable measure
of intestinal transit (55), was determined (Fig. 1B). Pramipexole- and ropinirole-treated
groups showed significant mean decreases of 21.8-fold and 21.4-fold in the geomet-
ric center, respectively, resulting in an ;30% reduced small intestinal motility com-
pared to the vehicle-treated group (Fig. 1C). In contrast, the dopamine-treated group
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FIG 1 Small intestinal motility is affected by PD medication treatment. (A) Setup of the animal experiments. The experiment was performed with two
independent batches of 2 to 4 animals per cage. After training with 10% sucrose (2 to 3 weeks), animals were treated with PD medication for 14 days. On
the last treatment day, all animals received their treatment with the addition of 1.2% (wt/vol) carmine red (the vehicle and dopamine groups received
levodopa-carbidopa with carmine red). All animals were sacrificed after on average at 18.5 min. (B) Schematic representation of the small intestine. Each
rectangle represents a different section assessed, where carmine red distribution in the small intestine is depicted in red. Each segment was scored in a
binary fashion and multiplied by the segment number, resulting in the geometric center. duo, duodenum; jej, jejunum; ile, ileum. (C) Geometric center per
treated group. D, dopamine; P, pramipexole; R, ropinirole; VH, vehicle (10% sucrose). Boxes represent medians with interquartile ranges, and whiskers
represent the maxima and minima. Significance compared to VH (asterisks) was tested with one-way ANOVA followed by Fisher’s LSD test with FDR
correction.
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did not show a significant effect (21.2-fold mean decrease) on the small intestinal mo-
tility, although 8/10 (up to the 3rd quartile) of the points were below the median for
the vehicle group. These findings suggest that PD medication intrinsically affects small
intestinal motility, which may, in turn, influence the bacterial composition, potentially
increasing the risk of developing SIBO at the site of drug absorption, namely, the small
intestine.

SIBO is defined as an overgrowth of more than 105 CFU/mL in the human proximal
bowel (43). In rats, it was shown that the migrating motor complex (MMC) correlated
strongly with the bacterial counts in the small intestine (56). Therefore, we quantita-
tively determined the CFU in the proximal small intestinal (duodenum and jejunum)
and ileal content (Table 1). In the proximal small intestine, no significant differences
were observed between the treated and vehicle groups (Table 1). In contrast, there
was a significant increase in bacterial counts in the ileal content of the treated groups
compared to the vehicle (Table 1). Only the ropinirole-treated animals had significantly
higher bacterial counts on both the aerobically (2.7-fold mean increase; P = 0.024,
q = 0.073) and anaerobically (3.6-fold mean increase; P = 0.020, q = 0.061) incubated
plates, while the pramipexole-treated animals showed a borderline nonsignificant
increase in the anaerobic (3.1-fold mean increase; P = 0.054, q = 0.080) and strictly an-
aerobic (6.8-fold mean increase; P = 0.046, q = 0.138) counts (Table 1). Collectively, the
results imply that the reduction in gut motility caused by PD medication is plausibly
associated with the observed increase in bacterial counts in the ileum of the treated
groups.

Parkinson’s disease medication alters the microbiota composition. Next, we
investigated whether the PD medication resulted in changes in the small intestinal
microbiota composition directly or indirectly through altered small intestinal motility
(Fig. 1B). To this end, we performed amplicon metagenomic sequencing on the V3 and
V4 regions of the bacterial 16S genes. Interestingly, the richness (i.e., the number of dif-
ferent species observed) in the proximal small intestine, but not in the ileum, was sig-
nificantly different in the pramipexole- and ropinirole-treated groups compared to the
vehicle group (Fig. 2A). To determine whether the treatments affected the proximal small
intestinal or ileal microbiota compositions, b-diversity analyses using distance-based re-
dundancy analysis (dbRDA) with UniFrac distance constraining for treatment was per-
formed. The analysis showed that the treatment had a significant effect on the microbiota
composition in both proximal small intestine (Fig. 2B) and ileum (Fig. 2C) and that the
samples were distanced further from the vehicle in the proximal small intestine than in
the ileum. Muribaculaceae and Lactobacillus contributed most strongly to the observed
variation (Fig. 2B and C) in both the proximal small intestine and ileum.

Because the gut motility was significantly affected in the dopamine agonist-treated
groups (Fig. 1B), the geometric center (i.e., the small intestinal transit time) was also
tested for its association with the observed changes in the microbiota composition.
Indeed, the geometric center significantly contributed to the altered microbiota com-
position caused by the different treatments in the proximal small intestine (R2 = 0.19,
P = 0.0307) and ileum (R2 = 0.29, P = 0.0041). Overall, the results indicate that the PD
medication and dopamine-agonist treatments affected the small intestinal bacterial
composition, seemingly due to the treatment-associated alteration in gut motility.

To further identify which bacterial genera are most significantly altered by the treat-
ment, differential abundance analysis was performed focusing on the 10 most abun-
dant taxa in all groups. In the proximal small intestine, only Romboutsia spp. were sig-
nificantly decreased (Dunnett’s test, P = 0.022) in the pramipexole-treated group
compared to the vehicle (Fig. 2D). In the ileum, Lachnospiraceae spp. were decreased
in both dopamine- and pramipexole-treated groups (Dunnett’s test, P = 0.033 and
0.034, respectively), while Enterorhabdus spp. were decreased in the dopamine-treated
group and Allobaculum spp. increased in the pramipexole-treated group (Dunnett’s
test, P = 0.011 and 0.002, respectively) compared to the vehicle group (Fig. 2E).
Analogous to the dbRDA analysis (Fig. 2C), Lactobacillus spp. were significantly
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increased in the dopamine-, pramipexole-, and ropinirole-treated groups compared to
the vehicle group (Dunnett’s test, P = 0.001, 0.003, and 0.047, respectively) (Fig. 2E).

Next, we used linear discriminant analysis (LDA) effect size (LEfSe) (57) for differential
abundance analysis on the operational taxonomic unit (OTU) level (Table S1). Among
the top 10 (per group) OTU hits, the main discriminant feature separating the vehicle
from the other treatment groups was species from the familyMuribaculaceae in both the
proximal small intestine and ileum (Fig. 2F and G). Species belonging to the genus
Lactobacillus were the main discriminant feature separating the groups treated with do-
pamine or PD medication from the vehicle group; this finding is in accordance with the
results observed in Fig. 2B and C to E. Species from the families Prevotellaceae,
Lachnospiraceae, and Muribaculaceae in the proximal small intestine or ileum were signif-
icantly decreased in almost all treated groups compared to the vehicle group, while spe-
cies from the genus Lactobacillus were significantly increased in the ileum. Among the
other significantly increased differential taxa were Bifidobacterium in the ilea of the pra-
mipexole-treated group and Enterococcus in the proximal small intestines of the dopa-
mine-treated group. Overall, these findings are highly relevant, since Prevotellaceae and
Lachnospiraceae taxa are frequently reported to be decreased while Bifidobacterium and
Lactobacillus taxa are increased in PD patients compared to HC subjects (17).

Lactobacillus OTUs negatively associate with levodopa plasma availability. In
particular, the altered abundance of Enterococcus and Lactobacillus, which harbor a ty-
rosine decarboxylase enzyme, is crucial for possible gut bacterial interference with the
availability of levodopa in the small intestine, as we previously showed (50).
Subsequently, levodopa decarboxylase activity was measured in the proximal small in-
testinal and ileal samples, and the levodopa uptake was measured in blood samples.
Around 75% of the proximal small intestinal and ileal samples showed levodopa decar-
boxylase activity. Remarkably, of the 50 most abundant OTUs in the proximal small
intestine (1.2% of the total), there were significant negative correlations (Spearman
correlations) only between the genus Lactobacillus (Lactobacillus sp. OTU_168
remained significant after false discovery rate [FDR] correction) and the plasma levels
of levodopa-carbidopa when all treatment groups were combined (Fig. 3; also, see
Table S2), while no significant differences were observed in levodopa uptake between
the tested groups (Fig. S2A). Collectively, these results imply an interference of levo-
dopa uptake by Lactobacillus species, as we previously reported (50).

DISCUSSION

This study unraveled the effect of dopamine and the PD medications pramipexole
and ropinirole in combination with levodopa-carbidopa on small intestinal motility
and the associated alteration in the microbiota composition in healthy rats. Decreased
small intestinal motility is a determining factor in the development of SIBO (43) and is
prevalent in PD patients (44–46). Additionally, PD medication has been shown to be
associated with GI symptoms (47) and increased transit times (48). Dopamine is not
used as a PD treatment, as dopamine alone cannot pass the blood-brain barrier.
However, dopamine can still be produced from levodopa endogenously by the human
dopa decarboxylase (DDC) or exogenously via bacterial tyrosine decarboxylases (TDC)
in the periphery (50). Despite the substantial number of reports describing an effect of

FIG 2 Legend (Continued)
and minima. Significance compared to VH (asterisks) was tested with one-way ANOVA followed by Fisher’s LSD test with FDR correction. (B
and C) dbRDA using unweighted UniFrac distances at the genus level using CSS-scaled data of the proximal small intestine (B) and ileum (C)
constrained for treatment. D, dopamine; P, pramipexole; R, ropinirole; VH, vehicle (10% sucrose). Significant contribution of the constrained
variable to the variance of the dbRDA was tested with an ANOVA-like permutation test (anova.cca function in the R package vegan).
Environmental vector (geometric center) fitting was performed using the envfit function in the R package vegan. (D and E) Stacked-bar plots
with mean genus levels using CSS-scaled data from the top 10 taxa are from the proximal small intestine (D) and ileum (E). The asterisks
indicate statistical significance compared to VH group tested using one-way ANOVA followed by Dunnett’s test. (G and H) Heat maps
representing the extracted features for the LEfSe analysis (top 10) of the different treated groups of the proximal small intestine (G) and
ileum (H). Significance was tested using one-way ANOVA followed by a Kruskal-Wallis (KW) test and LDA. A feature was considered significant
when the KW P value was ,0.01 and log(LDA score) was .2. For all the significant features, see Table S1. Heat map dendrograms represent
Euclidian distance.

Parkinson's Medication Alters Gut Function

January/February 2022 Volume 7 Issue 1 e01191-21 msystems.asm.org 7

https://msystems.asm.org


dopamine on gut motility (26–39), dopamine did not exert a significant effect on the
gut motility in our study (Fig. 1). This could be due to the metabolism of the drug dur-
ing the absorption process. For example, in dogs, the first-pass metabolism of dopa-
mine predominantly occurs in the small intestine, with an estimated bioavailability of
only 3% and a half-life of 10.8 min (58). In contrast to dopamine, pramipexole and ropi-
nirole, both of which showed a significant effect on the small intestinal motility (Fig. 1),
have a much higher bioavailability with a longer half-life. Pramipexole has an oral bioa-
vailability of;90%, a long half-life (between 11.6 and 14.1 h), and minimal metabolism
(70 to 78% excreted unchanged in urine) and is primarily eliminated via the kidney
(59). Ropinirole has an oral bioavailability of ;50% and a shorter half-life of approxi-
mately 6 h (ranging from 2 to 10 h), and only 10% is excreted unchanged in urine and
cleared by hepatic metabolism (60). The observation that 8/10 of the points (up to the
3rd quartile) in the dopamine group are below the median of the VH group (Fig. 1) still
implies that dopamine could affect gut motility, but to a lesser extent than dopamine
agonists.

Importantly, gut motility contributed significantly to the variation observed in the
microbiota profiles, while the faster transit times (higher geometric center) associated
closely with the vehicle group (Fig. 2B and C). Moreover, both dopamine and its agonists-
treated groups shared similar distinct abundant taxa compared to the vehicle group
(Fig. 2 and Table S1), implying that dopamine, pramipexole, and ropinirole act through
similar mechanisms, likely by altering gut motility and consequently the microbiota
composition.

Although the microbial profiles were altered in both the proximal small intestine
and ileum, a clear separation was observed between the treated and untreated groups
in the proximal small intestine compared to the ileum (Fig. 2). This increased alteration
in the proximal small intestinal microbiota composition upon exposure to PD medica-
tion implies that the medication has a stronger effect on the proximal small intestinal
motility. This effect could be due to the rapid absorption of the drugs in the proximal
small intestine (58, 60, 61), resulting in the highest local drug concentration in the
proximal small intestine. Plausibly, these drugs could also elicit a direct effect on the
microbiota, which warrants further elucidation.

The increase in Lactobacillus and Bifidobacterium and the decrease in Lachnospiraceae
and Prevotellaceae observed in our healthy rat model have been reported as a common
finding among several studies investigating the fecal gut microbiota composition
between PD patients and HC subjects (17). Although the comparison between rat small
intestinal content and human feces should be made with caution, in rats, 85.9% of the
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taxa in the small intestine have been detected in feces (Spearman’s R = 0.69, R2 = 0.48,
and P , 2.2E216 on log-transformed data, calculated from Table S3 in reference 62) and
are ultimately washed out through the large intestine. Additionally, analysis of microbiota
composition in fecal samples from rats reported that they share higher levels of relative
abundances with the human core fecal microbiota than those from mice (63). This sug-
gests that the observed changes in microbiota composition in PD patients are, at least
partly, due to the PD medication and not the disease per se. Intriguingly, Lactobacillus
spp. were found to be the discriminating factor between all treated groups and the vehi-
cle in the ileum (Fig. 2E and G). This is in agreement with the study by Romano et al. (17),
where this genus was also the most strongly enriched in PD patients in the sequence
data collected from various studies comparing the microbiota profile between PD
patients and HC subjects. Remarkably, a significant negative correlation was observed
between species from the genus Lactobacillus and levodopa uptake (Fig. 3). Several
Lactobacillus species harbor the tyrosine decarboxylase enzymes, which can reduce levo-
dopa (50). Thus, the observed association implies that the higher abundance of
Lactobacillus species observed could have reduced the levodopa levels in the systemic cir-
culation, potentially affecting the levodopa bioavailability.

Overall, this study shows the impact of commonly prescribed PD medications and
dopamine on small intestinal motility, SIBO, and microbiota composition, irrespective
of the PD. Importantly, the microbial alterations observed in our healthy rat model are
consistent with the microbial alterations observed in human PD cross-sectional studies.
Taken together, our findings highlight the urgency of taking PD medication into con-
sideration when assessing alterations in the PD-associated microbiota.

MATERIALS ANDMETHODS
Rat experiments. All animal procedures were approved by the Groningen University Committee of

Animal experiments (approval number AVD1050020197786) and were performed in adherence to the
NIH Guide for the Care and Use of Laboratory Animals (64).

Thirty-six adult male WTG rats (ages, 22 to 27 weeks) housed 2 to 4 animals/cage had ad libitum
access to water and food (Altromin 1414) in a temperature (21 6 1°C)- and humidity (;60% relative hu-
midity)-controlled room, with a 12-h light/dark cycle.

The rats were trained to drink 10% (wt/vol) sucrose solution from a burette with spout as follows. On
9 to 13 occasions over a period of 2 to 3 weeks, rats were taken from their social housing cage in the be-
ginning (within 1 h) of the dark-phase cycle and placed in an individual training cage (length � width �
height = 25 � 25 � 40 cm), without bedding, food, or water. Ten minutes after transfer to the training
cages, rats were given a drinking burette with a 2.5-mL sucrose solution (10% [wt/vol]). On 2 to 4 train-
ing occasions, 1.2% carmine red (C1022; Sigma) was added to the sucrose solution. Over the course of
training, all rats were trained to drink the sucrose solution avidly.

After 2 to 3 weeks, when the training was complete, animals were assigned at random to four dif-
ferent treatments groups, dopamine (D; n = 10), pramipexole-levodopa-carbidopa (P; n = 10), ropinir-
ole-levodopa-carbidopa (R; n = 10), and vehicle (VH; n = 6). For each treatment group, the animals
were in 2 or 3 different cages but were treated per cage to avoid cage bias as well as any effect of cop-
rophagy. Rats in the designated groups were treated for 14 consecutive days as follows: (i) an average
of 1.5 mg/kg dopamine (H8502; Sigma), (ii) an average of 0.0625 mg/kg pramipexole (A1237; Sigma)
with 7.5/1.875 mg/kg levodopa-carbidopa (D9628/C1335; Sigma), (iii) an average of 0.15 mg/kg ropi-
nirole (R2530; Sigma) with 7.5/1.875 mg/kg levodopa-carbidopa, or (iv) 10% sucrose (wt/vol) solution
as vehicle only (VH). All treatments were dissolved in 2.5 mL 10% sucrose solution. Based on a person
weighing 80 kg, the dosages are equivalent to 600/150 mg/day levodopa-carbidopa, 5 mg/day prami-
pexole, 12 mg/day ropinirole, or 120 mg/day dopamine based on 10% of a high levodopa dose
(1,200 mg/day).

On the last treatment day, animals were sacrificed 18.5 6 0.68 min after they had started drinking
the PD medication (no differences in time of sacrifice were observed between groups: D, 18.55 6 0.69
min; P, 18.68 6 0.80 min; R, 18.4 6 0.67 min; VH, 18.28 6 0.47 min; one-way ANOVA statistics:
F = 0.4977, P = 0.6865). All rats received their dose supplemented with 1.2% (wt/vol) carmine red to
determine their small intestinal motility, and rats in the D and VH groups received, instead of their origi-
nal dose, on average 7.5/1.875 mg/kg levodopa-carbidopa in order to determine the potential levodopa
uptake differences between treated groups. The rats were anesthetized (by isoflurane inhalation anes-
thesia), and a blood sample was taken (by heart puncture), on average 18.5 6 0.68 min after the rats
had start drinking continuously from the burette (2 to 3 min of drinking). No differences in time of heart
puncture were observed between groups (D, 18.55 6 0.69 min; P, 18.68 6 0.80 min; R, 18.4 6 0.67 min;
VH, 18.28 6 0.47 min; one-way ANOVA statistics: F = 0.4977, P = 0.6865). Blood withdrawn by heart
puncture was dispensed in tubes precoated with EDTA at a final concentration of 5 mM and stored on
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ice during the experiment. The collected blood samples were centrifuged at 1,500 � g for 10 min at 4°C,
and the plasma was stored at280°C prior to catecholamine extraction.

The rats were sacrificed by decapitation (using a rodent guillotine), and the small intestine—from the
stomach to the cecum—was removed from the abdominal cavity and subsequently dissected, with the
first 5 cm representing the duodenum. The remaining part of the small intestine was then dissected into 6
equal sections. The first 3 sections represented the proximal small intestine and the last 3 the ileum.
Luminal content was collected by moderate pressing and stored on ice thereafter. Luminal content sam-
ples were used for carmine red determination and CFU counting, as described below. Following process-
ing, the samples were snap-frozen in liquid N2 and stored at280°C.

Carmine red assay. Part of the luminal content of each small intestinal section was suspended in di-
methyl sulfoxide (DMSO; 20% [wt/vol]) and vortexed vigorously. Eight microliters was distributed in a
96-well plate, and the spectrum was measured from 450 to 800 nm (10 nm/step) (carmine red has peaks
at 530 and 570 nm). Because of high background differences, the spectrum was linearized between 510
and 590 nm using a fitted line [y = a � (x 1 b)]. The slope (a) and the intercept (b) were calculated using
the data points from 510 and 590 nm, and the calculated value (x) for 570 nm (y) was subtracted from
the measured value. Next, because the animals were not fasting before the treatment, the linearized val-
ues were scored in binary fashion; a score of 1 was given when the value was larger than the threshold
of 0.003. Finally, the geometric center, concluded to be the most sensitive and reliable measure of intes-
tinal transit (55), was calculated by multiplying the binary score by the segment number (1 to 7, from
the end of the stomach to the beginning of the cecum).

CFU assay. Contents from the proximal small intestinal segments and ileal segments were mixed
and suspended in GM17–17% glycerol medium to preserve bacterial viability after storage at 280°C.
The suspended proximal small intestinal and ileal contents were 10-fold serially diluted in phosphate-
buffered saline (PBS), and 10 mL was spotted in triplicate on chopped-meat-medium plates (CMM; beef
extract, 10 g/L; Casitone, 30 g/L; yeast extract, 5 g/L; K2HPO4, 5 g/L, menadione, 1 mg/mL, cysteine, 0.5 g/
L; hemin, 5 mg/mL, 15 g/L agar), which were incubated for 48 h aerobically and anaerobically (1.5% H2,
5% CO2, balance with N2) in a Coy Laboratory anaerobic chamber (neo-Lab Migge GmbH, Heidelberg,
Germany) at 37°C before CFU were counted.

Catecholamine extraction. Plasma samples were thawed on ice, and a spatula tip (;5 mg) of acti-
vated alumina powder (199966; Sigma) was added to each well of a 96-well AcroPrep filter plate with
0.2 mM water-wettable polytetrafluoroethylene (wwPTFE) membrane (514-1096; VWR). A 100-mL portion
of plasma sample, 1 mM DHBA (3,4-dihydroxybenzylamine hydrobromide) (858781; Sigma) as an internal
standard, and 800 mL of TE buffer (2.5% EDTA, 1.5 M Tris-HCl [pH 8.6]) were added sequentially to the
wells. Liquid was removed using a 96-well plate vacuum manifold, and the alumina was washed twice
with 800 mL of H2O. Catechols were eluted using 0.7% HClO4, which was incubated for 30 min at room
temperature (RT). Samples were injected in an HPLC-ED system (Ultimate 3000 SD high-performance liq-
uid chromatography [HPLC] system coupled to an Ultimate 3000 ECD-3000RS electrochemical detector
with a glassy carbon working electrode [DC amperometry at 800 mV]; Thermo Scientific). Samples were
analyzed on a C18 column (Kinetex; 5 mM, C18 100 Å, 250 by 4.6 mm; Phenomenex, Utrecht, The
Netherlands) using a gradient of water-methanol with 0.1% formic acid (0 to 3 min, 99% H2O; 3 to 7 min,
99 to 30% H2O; 7 to 10 min 30 to 5% H2O; 10 to 11 min, 5% H2O; 11 to 18 min, 99% H2O). A 2-fold serial
diluted standard curve ranging from 5 – 0.005 mM (R2 . 0.97) was used to quantify levodopa (retention
time, 4.8 min) and carbidopa (retention time, 8.2 min). Data recording and analysis were performed
using Chromeleon software (version 6.8 SR13). Potential intake differences of levodopa were corrected
by using carbidopa as an internal standard.

Levodopa decarboxylation activity test. Samples stored at 280°C in GM17–17% glycerol were
thawed on ice, and 300 mL of 10% (wt/vol) proximal small intestinal or ileal suspensions was washed
once with 1 mL of ice-cold PBS to remove levodopa (given during the treatment) and glycerol from the
storage medium. Pellets were resuspended in 600 mL enriched beef broth (as described before [50]) sup-
plemented with 20 mg/mL kanamycin (EBB/K), resulting in a 5% (wt/vol) suspension. A 100 mM concen-
tration of levodopa was added to the suspensions, and samples were incubated anaerobically (1.5% H2,
5% CO2; balance, N2) in a Coy Laboratory anaerobic chamber (neo-Lab Migge GmbH, Heidelberg,
Germany) at 37°C. Samples of 100mL were taken at 0 and 24 h and 400 mL of methanol was added. Cells
and protein precipitates were removed by centrifugation at 20,000 � g for 10 min at 4°C. Supernatant
was transferred to a new tube, and the methanol fraction was evaporated in a Savant speed-vacuum
dryer (SPD131, Fisher Scientific, Landsmeer, The Netherlands) at 60°C for 90 min. The aqueous fraction
was reconstituted to 0.5 mL with 0.7% HClO4. Samples were filtered, injected into the HPLC system, and
analyzed as described above. A 2-fold serially diluted standard curve ranging from 100 to 1.5625 mM (R2

. 0.97) was used to quantify levodopa (retention time, 4.8 min) and dopamine (retention time, 4.5 min).
Dopamine and levodopa concentrations were quantified from the 24-h samples, and the ratio of dopa-
mine to levodopa was calculated to determine levodopa decarboxylation activity. No dopamine was
detected in the baseline (0-h) samples.

DNA isolation and sequencing. DNA isolation was performed based on the repeated beat beating
(RBB) protocol described in references 65 and 66. Approximately 150 to 200 mg of proximal small intesti-
nal or ileal content was weighted in screw-cap tubes containing ;0.5 g 0.1-mm glass/silica beads and 3
large 3-mm glass beads. Bacterial cells were lysed by adding 750 mL lysis buffer (NaCl, 500 mM; Tris-HCl
[pH 8], 50 mM; EDTA, 50 mM; SDS, 4% [wt/vol]) with sequential bead beating three times for 1 min each
time with 1-min intervals on ice in a mini-bead-beater (Biospec, Bartlesville, OK, USA). Samples were
incubated for 15 min with regular mixing at 95°C, placed on ice for 5 min, and centrifuged at 20,000 � g
for 30 min at 4°C. Approximately 600 mL of the samples was recovered and centrifuged again for 5 min.
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Then, 550 mL was transferred to a new tube containing 200 mL 10 M ammonium acetate and mixed.
Samples were incubated on for 5 min ice before centrifugation at 20,000 � g for 30 min at 4°C.
Approximately 700 mL was transferred to a new tube and centrifuged again for 5 min. Next, 650 mL of
supernatant was transferred to a new tube containing 650 mL 2-propanol and mixed. Samples were
incubated on ice for 30 min and centrifuged at 20,000 � g for 15 min at 4°C. Pellets containing the DNA
were washed twice with 800 and 500 mL 70% (vol/vol) ethanol by centrifugation at 20,000 � g for
10 min at 4°C. The supernatant was discarded, and the pellet was air dried in a 37°C heat block for
30 min. After drying, the pellets were dissolved in 200 mL TE buffer (1 mM, EDTA, 10 mM Tris-HCl [pH 8])
by vortexing and incubating at 65°C for 10 min. DNA extracted samples were stored at280°C before fur-
ther cleanup with the Genomic DNA Clean & Concentrator (gDCC) kit (D4011; Zymo Research, BaseClear
Lab Products, The Netherlands). Samples were thawed at RT, and 0.1 mg/mL RNase A (EN0531; Thermo
Scientific) was added and incubated for 15 min at 37°C before cleanup with the gDCC kit. Next, chroma-
tin immunoprecipitation (ChIP) binding buffer was added to the RNase A-treated samples (2:1) and
mixed, and the mixture was transferred to the gDCC column and subsequently centrifuged at
14,000 � g for 30 s at RT. The DNA-bound column was washed twice at 14,000 � g for 60 s at RT with
wash buffer before being eluted in preheated (65°C) elution buffer which was incubated for 3 min on
the column. DNA integrity was checked on agarose gel before samples were sent for 16S (regions V3
and V4) amplicon metagenomic sequencing by Novogene Co., Ltd.

The 16S rRNA gene regions V3 and V4 were amplified with primers 314F (59-CCTAYGGGRBGCASCAG-
39) and 806R (59-GGACTACNNGGGTATCTAAT-39) and with Phusion high-fidelity PCR master mix (New
England Biolabs). Amplified products were verified using an Agilent 5400 fragment analyzer, and all
passed quality control. PCR products were equally mixed and purified with Qiagen gel extraction kit
before libraries for paired-end 250-bp Illumina sequencing were prepared with a NEBNext Ultra DNA
library prep kit (New England Biolabs).

Data analysis. Paired-end reads were assigned to their samples, and the barcodes and primer
sequence were truncated before merging using FLASH (V1.2.7) (67). Quality filtering was performed as
described previously (68) using QIIME (v1.7.0) (69). Chimera sequences were removed using the UCHIME
algorithm (with the Gold database) (70). Finally, OTU calling was performed using UPARSE (v7.0.1001)
(71), and sequences with $97% similarity were assigned to the same OTUs. mothur software (72) was
used for species annotation at each taxonomic rank (threshold, 0.8 to 1) against the SILVA database (73),
and the phylogenetic tree was constructed using MUSCLE (version 3.8.31) (74).

The OTU table and phylogenetic tree were imported in the R package phyloseq (v1.32.0) (75). Richness
and diversity were estimated on the raw OTU counts table using phyloseq. For further data analysis, the
OTU counts were normalized using the cumulative-sum scaling normalization (CSS) method using the R
package metagenomeSeq (v 1.30.0) (76), and taxa were agglomerated at the genus level using phyloseq.
Unweighted UniFrac (77) distances were calculated in phyloseq using the phylogenic tree rooted on the
longest branch using the root function from R package ape (v5.4-1) (78).

Statistical analyses. Data and statistical analyses were performed in GraphPad Prism (v7.0), IBM
SPSS Statistics (v 26) or R (v4.0.4) in RStudio (v 1.2.5042). One-way ANOVAs followed by Fisher’s least-sig-
nificant-difference (LSD) test with FDR correction in Fig. 1 and Table 1 were performed in GraphPad
Prism. For the CFU data outliers were determined with the ROUT method (Q = 0.1%) and removed using
GraphPad Prism. The one-way ANOVA followed by Dunnett’s test in Fig. 2D and E was performed in
SPSS. The distance-based redundancy analysis (dbRDA) was performed in phyloseq through the capscale
function from the R package vegan (v2.5-6) (79). Significant contributions of the constraints were tested
using the anova.cca function in vegan, and environmental vector fitting was performed using the envfit
function in vegan. For differential abundance analysis, LDA effect size (LEfSe) (57) analysis was per-
formed in the Galaxy web application (http://huttenhower.sph.harvard.edu/galaxy/). Specific tests and
significance are indicated in the figure legends.

Data availability. All data generated or analyzed during this study are included in this article and its
supplemental material. The 16S rRNA gene metagenomic sequence data were deposited in BioProject
under number PRJNA725395.
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