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CTCF and cellular heterogeneity
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Abstract 

Cellular heterogeneity, which was initially defined for tumor cells, is a fundamental property of all cellular systems, 
ranging from genetic diversity to cell-to-cell variation driven by stochastic molecular interactions involved all cellular 
processes. Different cells display substantial variation in gene expression and in response to environmental signaling 
even in an apparently homogeneous population of cells. Recent studies started to reveal the underlying mechanisms 
for cellular heterogeneity, particularly related to the states of chromatin. Accumulating evidence suggests that CTCF, 
an important factor regulating chromatin organization, plays a key role in the control of gene expression variation by 
stabilizing enhancer–promoter interaction.
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Background
Heterogeneity was initially defined for “tumor het-
erogeneity” by Heppner 35  years ago [1], referring the 
observation that different tumor cells can show distinct 
morphological and phenotypic profiles [2]. The tumor 
heterogeneity was observed occurring at two different 
levels: inter-tumor heterogeneity and intra-tumor het-
erogeneity. It is believed that the intra-tumor heteroge-
neity could introduce significant challenges in human 
treatment strategies [3, 4]. Actually, heterogeneity is 
a widely spread phenomenon in all life systems, from 
genetic diversity to cell-to-cell variation in all cellu-
lar processes. In particular, cell to cell heterogeneity (or 
sometimes called variation) in gene expression has been 
described and investigated from bacteria to humans, 
which may be a key link between upstream genetic diver-
sity and downstream phenotypic heterogeneity. Recent 
studies have indicated that cells even from an apparently 
homogeneous population show variation in expression 
and in response to environmental stimulations [5–7]. 
Transcription, a major step of gene expression control, 
is regulated by multiple factors in eukaryotic systems, 
including sequences of promoters and enhancers, nucle-
osome occupancy and position, epigenetic modifica-
tion and long-range chromatin interaction [8–20]. Thus, 
the variation in gene expression in eukaryotic cells may 

result from numerous mechanisms including fluctuations 
of upstream regulators, such as promoter, enhancer, and 
insulator, temporal variations of epigenetic modification 
states or long-range interactions [14] or stochastic bursts 
of transcription [21]. Recent studies with new single-cell 
epigenomics techniques have revealed new insights into 
the underlying mechanism of cellular heterogeneity [16, 
22–24]. In particular, enhancer–promoter interactions 
mediated by CCCTC-Binding Factor (CTCF) plays a 
critical role in the control of cell-to-cell variation in gene 
expression [14].

CTCF acts as chromatin barrier and enhancer blocker
CTCF gene encodes a transcriptional regulator protein 
with 11 highly conserved zinc finger (ZF) domains which 
exhibit almost identical amino acid sequences among 
vertebrates, and more divergent in N and C terminals 
[25]. It is required for normal embryonic development 
and cellular differentiation [26–28]. The using of differ-
ent combination of eleven ZF domains allows this pro-
tein to bind different DNA sequence and/or interact with 
various protein factors. Depending on the context, it can 
function as a transcriptional activator or repressor [25]. 
In early studies, CTCF was considered as a transcrip-
tional repressor using reporter gene assays for the regula-
tory regions of chicken and human c-Myc genes [29, 30]. 
Soon after, it was found that it could act as a transcrip-
tional activator at the Amyloid β-Protein Precursor TSS 
[31]. Later on, CTCF was found to have the enhancer 
blocking and/or barrier insulation activity at the chicken 
β-globin locus and at the imprinted control region (ICR) 
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of the mammalian H19/Igf2 locus [32–34]. This ability 
was defined by the capacity to block the communica-
tion between promoter and regulatory elements such as 
enhancers, and also the spread of repressive heterochro-
matin from adjacent genetic regions [35]. Consistent 
with this function, CTCF binding enriched at the bound-
ary regions demarcates active and repressive chromatin 
domains marked by H2AK5Ac and H3K27me3 in human 
cells [36].

CTCF contributes to higher‑order genome organization
The mammalian genomes are organized into megabase-
sized local chromatin interaction domains, the topo-
logically associating domains (TADs) defined from Hi-C 
interactions [9]. TADs tend to tally with epigenetic 
domains, contain co-regulated genes, and are highly con-
served across cell types and species [9, 15, 37, 38]. TADs 
can be divided into smaller domains with enhanced con-
tact frequency, named DNA loops or sub-TADs, which 
are more variable across different cell types [11, 15, 39]. 
TAD boundaries are often associated with CTCF binding 
to its motifs of convergent orientation [11]. Disruption 
of the CTCF binding sites at TAD boundaries causes the 
loss of TAD structure and dysregulation of transcription 
of genes within the TADs [40–43], suggesting a critical 
role of CTCF protein in maintaining the TADs structure 
in genome. CTCF and Cohesin-mediated loop forma-
tion results in insulated chromatin domains, which is 
critical for the proper expression or repression of local 
genes involved in pluripotency or lineage specification 
in mouse ES cells [44]. Deletion of the CTCF target sites 
leads to inappropriate interaction of enhancers inside the 
neighborhood with genes outside the neighborhood and 
thus improper expression of relevant genes [44]. Simi-
larly, the CTCF binding sites within the Hox gene clus-
ters function to insulate adjacent chromatin domains 
during embryonic stem cell differentiation into cervical 
motor neurons. Deletion of CTCF binding sites results 
in the expansion of active chromatin into the repressive 
domain, causing Hox genes’ dysregulation [45]. A loop 
exclusion model was proposed to explain the require-
ment of two convergent CTCF motifs for loop formation 
[46–48]. In this model, two convergently bound CTCFs 
act as extrusion barriers, Cohesin complex serves as 
extruding factors. When Cohesin is halted in both direc-
tions by bound CTCFs, the loop is formed [46, 47]. Sup-
porting this model, it was found that single nucleotide 
mutation of CTCF motif sequence or inversion of core 
motif DNA sequence of CTCF resulted in disruption of 
the TADs structure and dysregulation of nearby genes 
[49, 50]. The deletion or inversion of DNA sequence that 
disrupts a CTCF-associated boundary domain causes 
limb enhancer misplaced relative to TAD boundaries and 

drives ectopic limb expression in human limb malforma-
tions [20].

The contribution of CTCF to TADs structure was also 
shown by different strategies to control CTCF expres-
sion. Knocking down of CTCF expression using siRNAs 
not only reduced the intradomain interactions but also 
increased interactions between neighboring domains 
[51]. More recently, by acute and reversible depletion of 
CTCF using the auxin-inducible degron (AID) system in 
mESCs, Nora and colleagues elegantly demonstrated that 
CTCF is indispensable and dose-dependently required 
for looping between CTCF target sites and insulation of 
TADs. Depletion of CTCF eliminates CTCF-mediated 
DNA looping and TADs genome-wide [42].

CTCF facilitates enhancer–promoter interaction
Although CTCF binding is enriched in TAD boundaries 
and important for TAD structure, CTCF binding sites are 
widespread in the genome and actually the vast majority 
of them are located within TADs [10, 12, 14, 35, 51–53] 
structure. Furthermore, these intra-domain CTCF bind-
ing sites are in the vicinity of potential enhancers of tran-
scription, marked by P300 and H3K4me1, and thus may 
influence the activity of enhancers [14]. A chromosome 
conformation capture carbon copy (5C) study in human 
GM12878, K562 and HeLa-S3 cells found that a fraction 
of CTCF enriched distal elements significantly inter-
act with gene promoters, which suggests that one of the 
main roles of CTCF in genome function may be to facili-
tate the interaction between regulatory sequences and 
promoters [54]. Since distal enhancers must physically 
contact with their target promoters to carry out their 
activity, the nearby CTCF molecules may bring enhanc-
ers to the vicinity of their target promoters [14]. CTCF 
can mediate the enhancer–promoter contact through 
the interaction between CTCF bound nearby enhancers 
and Cohesin loaded nearby promoters [46, 55, 56]. Liu 
et  al. reported that regulatory elements-bound CTCF/
cohesin can recruit the core promoter factor TAF3 and 
mediate its contact with promoters through TAF3-
dependent loop formation in ES cells and depletion of 
CTCF reduces the efficient recruitment of TAF3 to distal 
regulatory elements, compromises endoderm differen-
tiation marker gene expression, such as Gata4, Afp, and 
Apoa1 [57]. CTCF interacts with the enzyme poly-ADP-
ribose (PARP1) itself to help establish inter-chromosomal 
contacts between active circadian loci and repressive 
chromatin at the lamina, thereby mediates circadian tran-
scriptional plasticity. Furthermore, knockdown of CTCF 
expression counteracts both recruitment to the repres-
sive lamina at envelope and circadian transcription [58]. 
Recently, we systematically profiled CTCF-mediated pro-
moter-enhancer interaction in mouse primary Th2 cells 
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by integrating CTCF ChIP-Seq and 3e Hi-C interaction 
data. We observed a positive correlation between CTCF 
binding and enhancer activities as indicated by H3K27ac, 
suggesting that CTCF binding influences enhancer activ-
ity. Furthermore, we found that active promoters exhibit 
significantly higher interaction with CTCF sites than 
silent promoters, and the enhancers that interacted with 
CTCF sites also exhibited significantly higher interaction 
with promoters, which confirmed that CTCF binding 
sites interact with their neighboring enhancers and facili-
tate the functional interaction between enhancers and 
promoters. Using shRNA knockdown of CTCF, we con-
firmed that CTCF contributes to the expression of line-
age-specific genes by mediating the interaction between 
their enhancers and promoters. We further found that 
CRISPR/CAS9-mediated deletion of intra-domain CTCF 
binding sites significantly compromised the interactions 
between CTCF binding sites, promoters, and enhancers 
at Thy1, Cd5 and Runx3 gene loci, which, however, did 
not disrupt the TAD structure. Together, these results 
indicate that one major role of intra-domain CTCF bind-
ing is to mediate the interaction between enhancers and 
their target promoters [14].

CTCF contributes to the control of cellular heterogeneity 
in gene expression
Although there is increasingly convincing evidence 
showing that CTCF critically contributes to the inter-
action between enhancers and promoters, depletion of 
CTCF protein in cells by either shRNA or AID leads to 
only modest expression changes of relatively small num-
ber genes at cell population level. Since the RNA-Seq and 
Western blotting assays measure the average gene expres-
sion level of a population of cells, the observed mod-
est changes in gene expression may reflect one of two 
ways of gene expression change: (1) modest but similar 
changes in every cell and (2) little change in the majority 
of cells but substantial change in a fraction of cells. While 
the former is consistent with the homogeneous property 
of all cells, the latter informs the heterogenous property 
of a cell population. Using quantitative single-cell assays 
including fluorescence-activated cell sorting (FACS) and 
single-cell RNA-FISH, we monitored gene expression in 
each single cell and found that CTCF-bound T cell-spe-
cific genes GATA3, CD90, CD28, CD5 displayed signifi-
cantly increased expression variation in CTCF depleted 
cells [14]. These results supported the cellular heteroge-
neous property of the cells and suggested an important 
role of CTCF in the control of gene expression hetero-
geneity. However, the increased cell-to-cell variation 
of expression by knocking down of CTCF could also be 
accounted for by the heterogeneous CTCF knockdown 
efficiency across different cells. Conclusive evidence 

came from the deletion of a specific CTCF binding site 
at Thy1 locus, nearby a distal enhancer, using CRISPR/
CAS9, which resulted in a significantly higher cell-to-
cell variation of gene expression in the CRISPR knockout 
cells [14].

CTCF contributes to cellular heterogeneity control 
by stabilizing enhancer–promoter interactions
Recent studies have demonstrated that sequences of pro-
moters, nucleosome occupancy, epigenetic modifications 
and three dimensional genome organization all contrib-
ute to the regulation of gene expression in eukaryotic 
systems [8–18]. Consequently, gene expression variation 
may result from any fluctuation of above-mentioned fac-
tors, especially for CTCF mediated promoter-enhancer 
interaction. Recent studies indicated that intra-domain 
CTCF binding sites are frequently found in enhancer 
regions [12, 14, 51]. CTCF binds and brings distal 
enhancers, via interaction with Cohesin, to the vicinity 
of their target promoters [14]. The increased heterogene-
ity in gene expression by deletion of CTCF binding site at 
Thy1 locus is correlated with decreased Thy1 promoter-
enhancer interaction but not changes in the TAD struc-
ture, strongly suggest a model that CTCF binding near 
the enhancer region stabilizes the interaction between 
the Thy1 promoter and its enhancers and thus reduces 
the cell-to-cell variation of Thy1 expression. More stud-
ies to visualize the enhancer–promoter interaction in sin-
gle-cells would be needed in future to prove this model. 
Next, we discuss other potential mechanisms that CTCF 
use to contribute to cellular heterogeneity.

The methylation status of CTCF binding motif could affect 
cellular heterogeneity
DNA methylation can block CTCF binding in genome 
[34, 59–61]. The H19  imprinted control region (ICR) is 
an enhancer-blocking element required for imprinting of 
the H19 and Igf2 genes [62]. The conserved CTCF sites in 
HS1 and HS2 of the ICR are essential for the enhancer-
blocking activity. The methylation of CTCF binding 
motifs of these sites abolishes CTCF binding and results 
in the loss of the epigenetic regulation of Igf2 [59]. These 
observations are consistent with the constitutively meth-
ylated status on both alleles in Wilms tumors with loss of 
Igf2 imprinting in humans [63]. Recently, Comparison of 
genome-wide occupancy patterns of CTCF with bisulfite 
sequencing data in 19 diverse human cell types, includ-
ing normal primary cells and immortal lines reveal that 
41% of variable CTCF binding is linked to differential 
DNA methylation, which is enriched at CTCF recogni-
tion sequence. Disruption of CTCF binding in immor-
tal cell lines is associated with increased methylation at 
promoter sites [60]. Furthermore, the binding of CTCF is 
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sufficient to effect a local demethylation state [64]. These 
data suggest that CTCF could contribute to expression 
variation via regulating dynamics of DNA methylation at 
regulatory regions. However, CTCF is not the originator 
of the unmethylated state at Igf2/H19 gene locus [65], and 
also it is unclear whether demethylation facilitates subse-
quent CTCF binding or whether bound CTCF maintains 
an unmethylated domain. To test this, Liu and collages 
employed dCas9-Dnmt3a to target de novo methylation 
of CTCF motifs in mES cells. Targeting of dCas9-Dnmt3a 
to the CTCF binding site bordering the miR290, Pou5f1 
gene loops blocked CTCF anchoring, resulted in signifi-
cantly increased interaction frequency between super-
enhancers and newly activated genes (Nlrp12, H2Q10) 
in the neighboring loop, and accompanied by increased 
expression of Nlrp12, H2Q10 [61]. In humans, IDH 
mutations, which mis-regulates genome methylation and 
compromise CTCF binding, promote gliomagenesis by 
disrupting chromosomal topology and allowing aberrant 
regulatory interactions that induce oncogene PDGFRA 
expression [66]. These data demonstrate that the de novo 
change of the methylation state of specific CTCF anchor 
sites could interfere its insulator/looping function, which 
may result in increased noise of transcription.

The mutation of CTCF binding motifs may increase 
expression heterogeneity
The mammalian cells have about 50,000 CTCF binding 
sites, with 10 to 20% located in TAD boundaries and 60 
to 70% located in intra-domain regions [11, 12, 36, 44, 
52, 67]. GWAS studies have identified numerous muta-
tions in CTCF binding sites [68, 69] and these mutations 
could affect gene regulation by TAD organization or 
enhancer–promoter interactions mediated by CTCF and 
thus increase the variability of gene expression. However, 
this notion needs more supporting evidence from single 
cell studies.

CTCF may contribute to cellular heterogeneity by effects 
on nucleosome positioning
Nucleosome positioning is an important chromatin fea-
ture that regulates gene expression [70–72]. The acces-
sibility of critical regulatory regions in chromatin to 
transcription factors can be heavily hindered by the 
nucleosome structure and thus remodeling or removal of 
the nucleosome structure is required for gene activation 
[73, 74]. Recently, we analyzed genome-wide nucleosome 
positioning in hundreds of single mammalian cells and 
found that the cell-to-cell variation in nucleosome posi-
tion is positively correlated with that in DNase hypersen-
sitivity and transcription of underlying genes [16]. This 
study suggests that any factor that influences nucleosome 
positioning may contribute to the cellular heterogeneity 

in gene expression. Analysis of data from this study indi-
cated that mutations of the CTCF motifs in the genome 
could result in decreased CTCF binding and nucleosome 
repositioning [16], which is consistent with the previous 
observation that CTCF could induces stable positioned 
arrays of nucleosome around its binding sites, and also 
significantly affects local chromatin accessibility during 
ES differentiation [75, 76]. Therefore, further investiga-
tion is needed to uncover the function of CTCF bind-
ing in nucleosome position variation in genome, which 
clearly, could also leads to expression heterogeneity.

CTCF may contribute to cellular heterogeneity 
by regulating transcriptional pausing and alternative 
mRNA splicing
Alternative mRNA splicing is another source of cellular 
heterogeneity in mammalian cells. It is estimated that 
about 90% of human genes undergo alternative splicing 
of pre-mRNA [77]. The rate of RNA polymerase II tran-
scription elongation influences splice site selection by the 
spliceosome, regardless the availability of splicing factors 
that detect cis regulatory elements [78]. It was reported 
that methylation of DNA sequence in the middle of a 
gene causes a decrease in Polymerase II elongation [79]. 
Further studies indicated that increased DNA methyla-
tion in exons is associated with increased splicing reten-
tion of alternative exons via MeCP2 pathways [80]. Other 
studies found that polymerase II tends to stall at CTCF/
Cohesin binding sites in living human cells [81], which 
may increase the efficiency of pre-RNA splicing. Later 
on, it was found that the genome-wide CTCF binding 
at promoter-proximal regions well correlated with high 
polymerase II pausing indexes, and therefore, the effect 
of CTCF on RNA Pol II elongation may be widespread 
[82]. For example, In the mouse Myb locus, CTCF inter-
feres with RNAPII elongation at its first intron, leading 
to low expression of the Myb [83]. Since CTCF binding 
affected by DNA methylation, the methylation status of 
CTCF binding motifs could regulate pre-RNA splicing. 
Indeed, Shukla et  al. found that CTCF binds to exon 5 
of CD45 gene, pauses polymerase II elongation, results 
in the inclusion of exon 5 in mRNA; and DNA methyla-
tion inhibits CTCF binding to the target site near exon 
5, consequently causes the exclusion of exon 5 in mature 
transcripts [84]. Therefore, it is highly likely that CTCF 
may also contribute to cellular heterogeneity by regulat-
ing transcriptional pausing and alternative mRNA splic-
ing in mammalian cells.

Cell cycle related dynamics of CTCF and CTCF DNA binding 
may contribute to cellular heterogeneity
Progression of cell cycle is associated with specific 
expression of a group of genes at distinct phases of the 
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cell cycle. For example, Cdh1 is expressed in G1 phase; 
histone genes are expressed in S phase; expression of the 
majority of genes is shut off in M phase. Thus, different 
phases of cell cycle create a kind of cellular heterogene-
ity within a population of cells. While it is not clear what 
is the role of CTCF in controlling the expression of the 
cell cycle specific genes, CTCF may be involved in the 
formation of globally distinct chromatin structure dur-
ing cell cycle progression. It is well established that there 
are dramatical changes of chromosome organization in 
mitotic phase [85–87]. Interestingly, TADs and A/B com-
partments are lost during prometaphase [37, 88]. How-
ever, whether the loss of the high order genome structure 
is due to the loss of CTCF binding at the prometaphase 
stage is unknown. Recent data indicated that cell cycle 
dependent dynamics of CTCF DNA binding results in 
dynamics of factor binding and nucleosome positioning 
[89, 90]. Based on live cell imaging and genomics tech-
niques, it was found that the dynamic changes of chro-
matin organization between interphase and mitotic 
phase, especially prometaphase, can be explained by loss 
and gain of genome wide CTCF binding, accompanied 
by the rearrangement of the nucleosomes flanking CTCF 
motifs [89]. The molecular mechanisms underlying this 
phenomenon may be related with the cell cycle associ-
ated CTCF protein level and phosphorylation status in 
cells [91–94]. Phosphorylation of CTCF greatly reduces 
its DNA binding capability, which could explain the 
observation that CTCF dissociates from chromatin dur-
ing mitosis [92, 93, 95]. Taken together, these data sug-
gest that cell cycle related CTCF abundance and its DNA 
binding dynamics may contribute to cellular heterogene-
ity during cell cycle progression.

Perspectives
The emerging theme from recent studies is that cellular 
heterogeneity could be the output of nucleotide muta-
tion, abnormal of histone modification, transcription 
factor binding, and also higher order chromosomal struc-
tures [2, 13, 41, 53, 83, 96]. CTCF is a well-studied chro-
matin protein, which may contribute to transcription 
regulation by a variety of different mechanisms includ-
ing facilitating enhancer–promoter interaction, main-
taining TAD structure, and influencing transcriptional 
elongation and splicing of pre-RNAs. Thus, any factor 
that modulates the CTCF activity in these processes may 
contribute to cellular heterogeneity. These include post-
translational modification of CTCF, point-mutations of 
CTCF protein itself, CTCF-interacting proteins, muta-
tion and methylation status of CTCF target motifs. In 
future, new/improved tools, particularly used for sin-
gle-cell analysis of genome organization, regulatory fac-
tors binding, transcription state, and also epigenome 

information, are required to investigate the contribution 
of CTCF to cellular heterogeneity and its relevance to 
normal development and human diseases.
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