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Abstract: Ultrafiltration (UF) is a low-pressure membrane that yields higher permeate flux and saves
significant operating costs compared to high-pressure membranes; however, studies addressing the
combined improvement of anti-organic and biofouling properties of UF membranes are lacking.
This study investigated the fouling resistance and antimicrobial property of a UF membrane via
silver phosphate nanoparticle (AgPNP) embedded polyelectrolyte (PE) functionalization. Negatively
charged polyacrylic acid (PAA) and positively charged polyallylamine hydrochloride (PAH) were
deposited on the membrane using a fluidic layer-by-layer assembly technique. AgPNPs were
immobilized within the crosslinked “bilayers” (BL) of PAH/PAA. The effectiveness of AgPNP
immobilization was confirmed by microprofile measurements on membrane surfaces using a solid
contact Ag micro-ion-selective electrode. Upon stable and uniform BL formation on the membrane
surface, the permeate flux was governed by a combined effect of PAH/PAA-derived hydrophilicity
and surface/pore coverage by the BLs “tightening” of the membrane. When fouled by a model organic
foulant (humic acid), the functionalized membrane exhibited a lower flux decline and a greater flux
recovery due to the electrostatic repulsion imparted by PAA when compared to the unmodified
membrane. The functionalization rendered antimicrobial property, as indicated by fewer attachments
of bacteria that initiate the formation of biofilms leading to biofouling.
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1. Introduction

Membrane fouling may result from an accumulation of filtered organic and inorganic materials
and biofilms on the membrane surface and within the pore walls, causing a loss of flux over time.
The fouling may be temporary if flux can be recovered by cleaning the surface or backwashing.
Otherwise, the membrane would be fouled “irreversibly”. Recently, considerable attention has
been given to surface modification of membranes to tackle the issue of fouling [1–7]. Considering
how the membrane surface serves as an “active layer” in the filtration process, the choice by
researchers to explore surface modifications to achieve antifouling membranes has become apparent.
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Recent studies aimed at modifying membrane surfaces using nanoparticles (NPs) [8–12], thin-film
nanocomposites (TFNs) [13,14], and biologically inspired membranes [15–17] have demonstrated
promising improvements in antifouling performance. Among various membrane modification
techniques, producing polyelectrolyte (PE) multilayers through layer-by-layer (LbL) molecular-level
adsorption of polymers is a well-established methodology that results in conformal thin-film coatings
with precisely tuned physical and chemical functionalities [18–25]. A sequential deposition of
materials during the LbL technique facilitates intermolecular interactions including electrostatic
interactions [26,27], hydrogen bondings [28–31], and metal complexation [32–34]. The LbL technique
is often chosen because of its ability to generate chemically stable ultra-thin films and flexibility
with respect to the coating thickness and surface charge [35,36]. These coatings have been shown
to be super-hydrophilic, which is the main reason for these being used to coat the surface of the
membrane [37,38].

The incorporation of engineered nanomaterials including carbon-based materials, metal oxides,
and metals in polymeric membranes has been demonstrated as a promising way to mitigate membrane
fouling [39–43]. Nanocomposite membranes embedded with silver nanoparticles (AgNPs) have
shown enhanced anti-adhesive properties, reduced bacterial cell density on membrane surfaces [44,45],
and improved anti-biofouling performance [44–46]. The antibacterial mechanism of AgNPs can be
explained mainly in two ways. The first is through the release of Ag ions that bind with chemicals
in the cell, which in turn disrupt vital metabolic processes, killing the bacterial cell. The second
mechanism involves damaging the microbial cell wall through the action of reactive oxygen species
(ROS) and subsequent osmotic collapse [45,47,48]. Nevertheless, the integration of AgNPs with
polymeric membranes and determining the stability of the integrated particles under pressure-driven
filtration remain challenging tasks.

When considering membrane functionalization aimed at fouling mitigation, most studies have
demonstrated the improvement of a specific membrane property, which might have been compromised
with the membrane’s solute retention capability. Very few studies [49,50] have addressed the
combined improvement of anti-organic and biofouling properties, and there is a lack of studies on
the altered mechanisms of fouling as a result of membrane modification, more specifically, in the
case of low-pressure polymeric membranes. Firouzjaei et al. [50] incorporated graphene oxide
and Ag-based nanomaterials into thin-film nanocomposite membranes to improve their antifouling
and anti-biofouling properties; however, the performance evaluation was conducted under forward
osmosis mode rather than under pressure-driven conditions. Accordingly, the stability of the embedded
nanoparticles was not demonstrated under pressure-driven conditions. Another attempt to improve
anti-biofouling and anti-organic fouling properties was focused on removing heavy metal ions by a
nanofiltration (NF) membrane that was fabricated in the laboratory through interfacial polymerization
(IP) between poly(piperazineamide) and trimesoyl chloride, followed by immobilization of AgNPs [49].
The approach of the current study was to functionalize an ultrafiltration (UF) membrane—a low-pressure
(40–1000 kPa) membrane that yields higher permeate flux and saves significant operating costs compared
to NF and reverse osmosis (RO) [51]—to equip it with enhanced anti-organic fouling and antimicrobial
properties. Unlike the previous research, this study performed LbL membrane coating following a
fluidic method using a cross-flow filtration setup to force the polyelectrolyte complex into the support
structure and to ensure better uniformity of surface coverage of the coating [52,53].

This study investigated the mechanisms of fouling resistance and antimicrobial property of a UF
membrane functionalized via polyelectrolyte (PE)-assisted silver phosphate nanoparticle (AgPNP)
immobilization. PE multilayer films were first deposited on the membrane using a fluidic LbL
technique and then crosslinked, followed by embedding of the AgPNPs within the PE coatings. It was
hypothesized that such a functionally engineered membrane would exhibit enhanced fouling resistance
due to the synergistic effects of surface charge enhancement, reduction of surface roughness, improved
hydrophilicity, as well as antimicrobial properties. The technical challenges that are addressed in
this study include the effectiveness of NP immobilization within the PE films (i.e., to ensure that the
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AgPNPs are not released from the membrane), the stability of the PE films with the integrated NPs,
and the trade-off between membrane flux loss due to the conformal coating and flux enhancement as a
result of hydrophilization of the membrane by the rich functional groups of PEs. For the first time
in such a functionalization approach, microprofile measurements using a customized solid contact
silver micro-ion-selective electrode on and near the PE modified membrane surfaces were conducted
to evaluate the effectiveness of nanoparticle (i.e., the AgPNPs) immobilization within the PE layers.

2. Materials and Methods

2.1. Materials and Reagents

Polyacrylic acid (PAA) (Acros OrganicsTM, Fair Lawn, NJ, USA), 25 wt.% solution in water,
and polyallylamine hydrochloride (PAH) (Alfa AesarTM Ward Hill, MA, USA), procured in solid
powder form, were used to form the PE coatings. 1-ethyl-3-(3-dimethylamionopropyl) carbodiimide
(EDAC) (Acros OrganicsTM, Fair Lawn, NJ, USA) was used as a crosslinking catalyst in the coating
process. Silver acetate (AgC2H3O2) (99% pure analyte from Acros OrganicsTM, Fair Lawn, NJ, USA)
and sodium hydrogen phosphate (Na2HPO4) (American Chemical Society (ACS) certified) were used
to form AgPNP in the coatings. Humic acid (HA) sodium salt (50–60% as humic acid, Alfa Aesar, Ward
Hill, MA, USA) was the model natural organic matter (NOM) [54] that was used in the fouling tests.
The antimicrobial property of the membrane was probed using E. coli (ATCC 15597). Tryptic soy broth
(TPB) and tryptic soy agar (TPA) (Becton & Dickinson, Sparks, Franklin Lakes, NJ, USA) were used to
grow the bacterial cultures and as the plating medium, respectively.

2.2. Membrane Functionalization

A commercially available UF membrane (UA60, Trisep) was used in this study. This is a
piperazine-based thin-film composite membrane that falls within the range between a “tight” UF and
a “loose” NF membrane with a pore size distribution in the range of 1000 Daltons [55]. The deposition
of negatively charged PAA and positively charged PAH coatings on membranes was performed by a
fluidic method that was carried out by alternately circulating 0.01 M solutions of each of PAA and PAH
through the cross-flow filtration cells for 2 min (loading time). This produced one PAH/PAA “bilayer”
(BL) and this procedure was repeated till the PAH/PAA coatings of target thickness were obtained
on the membrane. Deionized (DI) water was run for 30 s before changing solutions in order to flush
out any remaining PAH or PAA from the previous cycle. The solutions were maintained at pH 3.5
for the duration of the coating process [56]. Crosslinking of the PAH/PAA bilayers was carried out
by immersing the membrane in a 0.5% EDAC solution to improve the stability of the coatings [57].
This was followed by soaking of the membrane in a 5.0 mM silver acetate (AgC2H3O2) solution to
infuse Ag ions into the BLs and then immersing it into a 0.2 M sodium hydrogen phosphate (Na2HPO4)
solution to form stable AgPNPs (Figure 1). This resulted in PAH/PAA-assisted AgPNP immobilization
on the UF membrane substrate. The virgin and functionalized membranes used in this study are listed
in Table 1.

Table 1. UF membranes tested and functionalized for different experiments in this study.

Membrane
Tested/Functionalized Membrane Description No. of PAH/PAA

Bilayers (BL) Deposited AgPNP Immobilized?

Virgin UF Commercial unmodified UF membrane 0 No

PAH/PAA-UF UF membrane conformally coated with
bilayers (BL) of PAH and PAA 1, 3, 5, 7, 10 No

AgPNP-BL UF membrane functionalized by
embedding AgPNPs within PAH/PAA BLs 5 Yes
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(AgPNPs) by soaking in 0.2 M Na2HPO4 solution. 
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NanoScope IIIA instrument (Veeco Instruments, Inc., Town of Oyster Bay, NY, USA). A cantilever 
tip, running in contact mode, was used to determine the surface roughness of the membrane. To 
quantify the membrane surface charge, zeta potential (ZP) measurements were carried out using an 
Anton-Paar Electrokinetic Analyzer at a range of pH values using KCl solution (10−3 M) in DI water 
as a background electrolyte, following a streaming potential method as described by Luxbacher [59]. 
Contact angle measurements via the sessile drop technique were taken using a Rame-Hart 
goniometer to determine the hydrophobicity/hydrophilicity of the virgin and modified membrane 
samples. 

2.4. Silver Phosphate Nanoparticle (AgPNP) Stability Tests 

The effectiveness of AgPNP immobilization within the PAH/PAA films was evaluated by 
monitoring the leaching of silver ions (Ag+) under different flow conditions. Accordingly, membrane 
samples loaded with AgPNP within the PAH/PAA BLs were compared with those with Ag+ infused 
within the BLs but not converted to AgPNPs (i.e., the immersion of the samples in Na2HPO4 was 
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Figure 1. Schematic of the ultrafiltration (UF) membrane functionalization process sequence: (a) bilayer
coating of virgin UF membrane with polyallylamine hydrochloride (PAH) and polyacrylic acid (PAA);
(b) crosslinking of bilayers using 0.5% 1-ethyl-3-(3-dimethylamionopropyl) carbodiimide (EDAC);
(c) Ag+ loading within the bilayers by soaking in 5 mM AgC2H3O2 solution; (d) formation of stable
silver phosphate nanoparticle (AgPNPs) by soaking in 0.2 M Na2HPO4 solution.

2.3. Membrane Surface Characterization

The PAH/PAA and PAH/PAA/AgPNP layers on the membrane were examined using scanning
electron microscopy (SEM) (Zeiss ULTRA-55 FEG, Oberkochen, Germany). Energy dispersive
spectroscopy (EDS) was performed on the surface of the modified membrane to scan for the presence
of AgPNPs [58]. Atomic force microscopy (AFM) was conducted using a Multimode SPM, NanoScope
IIIA instrument (Veeco Instruments, Inc., Town of Oyster Bay, NY, USA). A cantilever tip, running
in contact mode, was used to determine the surface roughness of the membrane. To quantify the
membrane surface charge, zeta potential (ZP) measurements were carried out using an Anton-Paar
Electrokinetic Analyzer at a range of pH values using KCl solution (10−3 M) in DI water as a background
electrolyte, following a streaming potential method as described by Luxbacher [59]. Contact angle
measurements via the sessile drop technique were taken using a Rame-Hart goniometer to determine
the hydrophobicity/hydrophilicity of the virgin and modified membrane samples.

2.4. Silver Phosphate Nanoparticle (AgPNP) Stability Tests

The effectiveness of AgPNP immobilization within the PAH/PAA films was evaluated by
monitoring the leaching of silver ions (Ag+) under different flow conditions. Accordingly, membrane
samples loaded with AgPNP within the PAH/PAA BLs were compared with those with Ag+ infused
within the BLs but not converted to AgPNPs (i.e., the immersion of the samples in Na2HPO4 was
omitted). While PAA was deposited as the final layer during LbL deposition, one set of membrane
samples was prepared with PAH as the topmost layer to verify if the charge imparted by the final layer
had any impact on AgPNP stability.

Microprofiling of Ag+ concentrations on and near the membrane surface was conducted using
a solid contact silver micro-ion-selective electrode (Ag+ micro-ISE), developed following protocols
reported in recent studies [60–62]. The ion selective membrane composition responsible for Ag+

detection was prepared following another previous study [63]. The micro-ISE was calibrated using
standard AgNO3 solutions with concentrations ranging from 10−7 M to 10−2 M. A commercial Ag/AgCl
milli-electrode was used as an external reference electrode. The membrane samples were placed
in a flow chamber (Figure 2) with a flowrate of 2 mL min−1 and allowed to equilibrate for 30 min.
Microprofile measurements were taken from the bulk (2000 µm) to the membrane surface at 50 µm
increments every 20 s. Three different locations on each membrane sample were examined to ensure
uniformity, and duplicate profiles for each measurement were averaged to determine the concentrations.
The samples that did not leach any Ag during the microprofile measurements were used to filter
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DI water for 48 h using the membrane filtration setup. Feed and permeate water samples were
collected from the filtration run to determine Ag+ concentration using an inductively coupled plasma
(ICP)-atomic absorption optical spectrometer (Optima 7300 DV Perkin-Elmer, Shelton, CT, USA)
following Standard Method 3120 B [64]. The limit of detection of the instrument was 0.005 mg L−1.
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Figure 2. Silver (Ag) microprofile measurement setup (inset: closeup of Ag+ micro-ion-selective
electrode (micro-ISE)).

2.5. Membrane Filtration Experiment

The filtration experimental setup consisted of three parallelly connected cross-flow membrane cells
(model: CF042A, Sterlitech, Kent, WA, USA), feedwater delivery pump, flow control valves, feed and
concentrate pressure gauges, flow meters, chiller/heater (for temperature control), and storage tanks
(Figure 3). To investigate the effect of the number of bilayer depositions on membrane permeability, DI
water was filtered through the membranes. The membrane coupons were first compacted for 4 h and
then the feedwater was circulated at a pressure of 40 psi. The pure water flux through the membrane
was measured using Equation (1).

Flux (J) = V/(A × t) (1)

where V = volume of permeate (L), A = Active area of membrane coupon (m2), and t = time taken to
collect permeate (h).Membranes 2020, 10, x  6 of 17 
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2.6. Fouling Protocol and Antifouling Performance Evaluation

Flat-sheet membrane coupons were compacted in the filtration cells with a 42 cm2 effective
membrane area by circulating DI water for 4 h. The pressure was then adjusted to 80 psi and the pure
water flux (F1) of the virgin membrane was determined by filtering DI water for 12 h. To determine
antifouling performance of the modified membrane, the feedwater was spiked with 10 mg L−1 of
commercially available humic acid (HA) and rejection experiments were conducted using virgin UF and
PAH/PAA/AgPNP-functionalized UF (AgPNP-BL) membranes (Table 1). For the fouling run, the flux
(FHA) was measured after circulating the HA-spiked feedwater for 12 h. The concentrations of HA in
the feed and permeate samples were measured using ultraviolet absorbance at 254 nm wavelength
(UVA254). After cleaning the system with DI water, the post fouling flux (F2) was determined through
a DI water filtration run and Equations (2)–(5).

%Flux decline (FD) = (1 − FHA/F1) × 100% (2)

%Flux Recovery (FR) = (F2/F1) × 100% (3)

%Reversible flux decline (RFD) = [(F2 − FHA)/F1] × 100% (4)

%Irreversible flux decline (IrFD) = [(F1 − F2)/F1] × 100% (5)

The PAH/PAA/AgPNP-functionalized membrane was further evaluated for its antimicrobial
property. Modified and virgin membrane coupons with 2 cm diameter were immersed in 20 mL
of bacterial suspension inoculated with E. coli, which was previously cultured to log phase in TPB.
The samples were continuously stirred at 200 rpm to avoid settling of the bacterial suspension. Samples
were taken at the beginning of the test and after 24 h, serially diluted (100; 10−2; 10−4; 10−6) and plated in
triplicate on sterile TPA plates, and incubated at 35 ◦C for 24 h before counting of the bacterial colonies.
Plate counts in terms of Colony Forming Units (CFU mL−1) were reported using the least dilute sample
in the range of 30–300. The bacterial adhesion to the membrane surface was examined using SEM.
Prior to scanning, the samples were prepared by immersing them in a 3% v/v glutaraldehyde solution
for 5 h at 4 ◦C, then they were dehydrated in ethanol and dried in air.

A WITEC Alpha300 Raman Analyzer was utilized to compare the Raman spectra of surfaces of
the virgin and modified membrane samples that were exposed to the E. coli suspension. Bacterial
cells are made up of a number of proteins, lipids, nucleic acids, and saccharides. Raman spectroscopy
produces unique responses based on the functional groups and their molecular vibration properties
present in these cells [65,66]. Three different spots on each sample were selected and each spot was
scanned 10 times. Thus, the average of 30 scans was used to generate the average spectral response for
each sample.

3. Results and Discussion

3.1. UF Membrane Surface Properties Following PE-Assisted AgPNP Functionalization

When comparing the SEM images (Figure 4a,c) of the virgin and modified UF membrane surfaces,
the latter exhibited distinct bright specks, which were later confirmed as Ag by EDS scans (Figure 5).
This indicated that the AgPNPs were successfully immobilized within the PAH/PAA BLs. The average
loading of Ag, estimated from the EDS scans, was up to approximately 9% by weight on the 5
AgPNP-BL UF membrane. Ag ions show high affinity to carboxyl functional groups (—COOH) [67].
During membrane functionalization, the carboxylate ion groups (—COO−) from PAA likely bind
the Ag+ within the bilayers for subsequent reduction to AgPNPs [68,69]. The pH of 3.5 used for
the polyelectrolyte complex solutions in this study ensured that free carboxylic acid groups in the
PAH/PAA bilayers were available for binding Ag+ [56,70]. The cross-sectional views (Figure 4b,d)
show how a stable and uniform coating rendered a smoother surface on the modified membrane
sample than on that of the virgin membrane. This is due to the inherent properties of the applied PEs,
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which form an ultra-thin coating on the surface of the membrane. AFM analysis demonstrated that
the UF membrane functionalized with 5 AgPNP embedded PAH/PAA bilayers (AgPNP-BL) had a
smoother surface with an average roughness (Ra) of 10 nm and root mean square roughness (Rrms) of
12.6 nm in comparison with that of the virgin membrane (Ra = 20.3 nm and Rrms = 26 nm) (Figure 6).
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From contact angle measurements following different numbers of BL depositions, it appears that
the UF membrane becomes more hydrophilic once stable BLs are formed (Figure 7a). Although 3
BLs resulted in a higher contact angle (CA = 43◦) compared to that of the virgin UF membrane (34◦),
the contact angle began to decrease when the membrane was coated with 5 or more BLs. It required
5 BL depositions to achieve a stable and uniform coating (Figure 4), before which, the rather ‘loose’
PE molecules that might have accumulated on the membrane surface in a sporadic manner likely
resulted in a rougher surface. An increase in surface roughness, as hypothesized to have resulted
from 3 BL depositions in this case, may result in an increase in contact angle [71]. Once the membrane
surface became smoother following 5 or more BL depositions, the functional groups of PAH and PAA
imparted membrane hydrophilicity, as indicated by the gradual decrease in contact angle (Figure 7a).
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The effect of membrane modification on surface charge is of importance, particularly when the
organic fouling of membranes is considered [49,50]. Zeta potential (ZP) measurements exhibited that
the modified membrane (5 AgPNP-BL) became markedly more negatively charged (over the range
of pH values tested) compared to the virgin membrane (Figure 7b). The increased negative charge
on the modified membrane is likely due to the deposited PAA as the top layer of the BLs, rendering
the membrane’s antifouling property as a result of electrostatic repulsion between the membrane and
foulants as discussed later in Section 3.4. The ZP was relatively steady over pH 7 to 8.5—the pH range
typically practiced/maintained during water treatment.

3.2. AgPNP Stability Within PAH/PAA Layers

A custom needle type Ag+ microsensor was used to measure the concentration of Ag+ in situ near
the membrane surface under flow conditions. With a very small tip diameter (20 µm), the sensor was
applied to generate a concentration microprofile to provide mechanistic information on the release of
Ag+ that cannot be obtained from bulk-scale measurements. In this study, the concentration gradients
of Ag+ diffusion from a membrane with stabilized AgPNP was compared with that infused with Ag+,
but not converted to stable AgPNP (Figure 8).

The Ag+ microprofiles demonstrated the release of Ag+ from the Ag+ infused membranes but not
from the AgPNP decorated membranes. The linear increase in Ag+ concentration approaching the
surface of the Ag+ infused membrane indicated that the release of Ag+ occurred through a diffusive
process. Using Fick’s law, the Ag+ flux from the membrane at pH 7 and pH 6 was calculated to be
3.18 × 10−7 mg cm−2 s−1 and 4.07 × 10−7 mg cm−2 s−1, respectively. At this rate, the release of Ag+ into
the environment could cause adverse impacts. The United States Environmental Protection Agency
(USEPA) regulates silver to be less than 0.1 mg L−1 under the secondary drinking water standards of the
Safe Drinking Water Act. Therefore, it is imperative that Ag+ is stabilized within the PAH/PAA layers
of the membrane to avoid regulatory issues. For the samples with Ag+ converted to stable AgPNP,
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which were immobilized within the PAH/PAA bilayers, Ag+ measurements by the micro-ISE were
below the detection limits (0.1 mg L−1) for all distances above the membrane surface, confirming the
formation and immobilization of stable AgPNPs within the PAH/PAA layers. Furthermore, the final
layer of the PAH/PAA BLs showed no influence on AgPNP immobilization since Ag+ concentrations
were below the micro-ISE detection limit for both the cases when PAA or PAH was deposited as the
final layer (Figure 8). When tested under a pressure-driven filtration condition, the Ag+ concentrations
in the feed and permeate samples collected following 48 h of filtration were below the detection limit
of ICP (0.005 mg L−1), indicating that the membrane samples with stable AgPNPs allowed negligible
Ag leaching during pressure-driven filtration.
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3.3. Effect of PAH/PAA BL Functionalization on UF Membrane Flux

The permeate fluxes of the virgin and PAH/PAA modified UF membranes (PAH/PAA-UF) as a
function of applied pressure are shown in Figure 9. The modified UF membranes are expected to offer
NF-like performances as indicated by the overall flux trends [72]. The 3-BL membrane exhibited higher
fluxes (pure water permeability, PWP = 8.9 L m−2 h−1 bar−1) compared to that by the virgin membrane
(PWP = 7.6 L m−2 h−1 bar−1). The PWP by the virgin membrane is comparable to the that reported by
the manufacturer (PWP = 7.9 L m−2 h−1 bar−1) [73]. While the hydrophilicity of the UF membrane
was reduced due to 3 BL deposition (Figure 7a), the increased flux could be attributed to the surface
roughness [74] caused by the sporadically deposited PAH and PAA molecules. It appears that stable
films are effectively formed after the deposition of 3 BLs on the membrane substrate. This is in line
with the findings of Mallwitz and Laschewsky [36], who developed a method to fabricate ultrathin
freestanding PE films in the meshes of an electron microscopy grid. The initial films formed were so
fragile that they could not be observed using optical microscopy. However, the films became stable
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after three cycles of coating and a slow drying process. The mechanical stability of the films was
improved by adding more PE films and upon thermal crosslinking [36].
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In the current study, as more stable and uniform BLs began to form on the surface, the PE-derived
hydrophilicity was expected to result in increased permeate flux. However, the deposition of 5 BLs,
despite increasing membrane hydrophilicity (CA~32◦ for the 5-BL membrane vs. ~34◦ for the
unmodified membrane), resulted in slightly lower fluxes (PWP = 6.8 L m−2 h−1 bar−1) than the
virgin membrane (PWP = 7.6 L m−2 h−1 bar−1). This is likely a combined effect of hydrophilicity
and surface and pore coverage by the PAH/PAA BLs “tightening” the membrane. Since the fluidic
method was applied in this study, it was expected that PAH and PAA would be forced into the
support structure of the membrane in addition to coating the surface. As more BLs (7 and 10) were
deposited, the membrane hydrophilicity was improved (Figure 7a), but permeate flux did not improve
(PWP = 3.5 L m−2 h−1 bar−1 and 1.8 L m−2 h−1 bar−1 for 7 and 10 BLs, respectively). Park et al. [75]
investigated PAH/PAA modification of commercial polysulfone substrates as an approach to improve
desalination performance of RO membranes. They reported higher rejection (>99%) of NaCl, but
markedly decreased permeate flux with the increase in the number of BLs deposited. The authors
attributed this reduced flux performance to the formation of dense PAH/PAA films through crosslinking.
This was further supported by the observation that the BL thickness increased exponentially as a
function of BL numbers, particularly past 5 BLs [75]. In the current study, the number of BLs deposited
was limited to five to ensure that the enhancement of membrane hydrophilicity and the resulting
permeability were not offset by the hindrance from BL deposition.

3.4. Effect of PAH/PAA BLs on Organic Fouling Resistance and Flux Recovery

The normalized flux (J/J0) values at different stages of the fouling test are shown in Figure 10.
The virgin UF membrane showed a flux decline of 22.8 ± 8.8% in the presence of a model organic
foulant, humic acid (HA), and 74.4 ± 16.1% of the original flux was recovered after cleaning. In contrast,
the modified membrane (AgPNP-BL) showed a lower flux decline (13.8 ± 12%) and a greater flux
recovery (86.2 ± 12%) compared to that of the virgin membrane. Hence, the overall flux decline by
the functionalized UF membrane after 36 h was approximately 20%, whereas that for the unmodified
commercial membrane was around 34%. The electrostatic repulsion resulting from increased surface
negative charge upon PE functionalization, as indicated by the ZP measurements (Figure 7b), likely
caused “loose” foulant layer(s), thereby contributing to the “reversibility” of flux. In comparison,



Membranes 2020, 10, 293 11 of 17

when filtering HA-spiked feedwater, the unmodified membrane’s flux continued to decline even after
cleaning (Figure 10).Membranes 2020, 10, x  12 of 17 
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3.5. Effect of AgPNP-Immobilized PAH/PAA BLs on UF Membrane Antimicrobial Property

The virgin and modified UF membrane (AgPNP-BL) samples were exposed to a log phase bacterial
suspension for 24 h. The average plate count for the AgPNP-loaded membrane was 8000 CFU mL−1,
while that for the virgin UF membrane was 33,000 CFU mL−1 (Figure 11). Furthermore, the SEM image
of the surface of the virgin membrane showed the presence of rod-shaped bacteria (Figure 12a), which
were not observed on the AgPNP embedded membrane surface. The visible particles (Figure 12b) on
the modified membrane resembled the immobilized AgPNPs that are shown in Figure 4c. This clearly
demonstrates that the PAH/PAA BL assisted AgPNP immobilization imparted the antimicrobial
property to the UF membrane, implying less activity [76] and attachment of microorganisms that
initiate the multi-step process of biofilm formation on the membrane surface [77]. A previous study by
Liu et al. [78], who tested a Ag-loaded chitosan/cellulose acetate blended membrane, suggested that
functionalizing an anti-adhesive membrane surface with anti-microbial property was an effective way
of providing anti-biofouling performance when compared to the approach of killing/inactivating the
bacteria after attachment to the membrane surface.

The Raman spectroscopic study of the membranes further demonstrates that the virgin UF
membrane had bacterial biomass attached/deposited on the surface (Figure 13). Bio-molecular
components (DNA, nucleic acids, mono and di-saccharides, and proteins) typical of E. Coli cells were
identified on the surface of the virgin UF membrane sample that was exposed to the bacterial solution,
confirming the accumulation of E. Coli in the absence of AgPNPs. In the case of the AgPNP-modified
membrane, the Raman spectra did not exhibit much variation before or after E. Coli exposure, implying
that the AgPNPs hinder the activity and attachment of E. Coli on the surface. This agrees with the plate
counts from the static bacterial adhesion tests discussed above.
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2. Experiment

2.1. Specimen for Experiment

There are two thicknesses used for the Invar used in an LNG cargo hold, i.e., 1.5 and 3.0 mm.
This study derived the optimal conditions for laser welding using a fiber laser at each thickness.
The Invar used in this study contains 36% nickel, and its chemical composition is shown in Table 2.

Table 2. Chemical composition of Invar.

Material Composition (%)

Invar (ASTM F1684)

Ni Mo C Mn Fe
36 ~0.5 ~0.1 ~0.06 bal.
P S Si Cr -

~0.025 ~0.025 ~0.35 ~0.5 -

In this study, a laser welding experiment was conducted on a specimen which was fabricated for
an experiment on the Invar structure in an LNG cargo hold. As shown in Figure 1a, three plates were
used to form the “+” shape. The size of three plates is equally 500 × 50 × 1.5 mm or 500 × 50 × 3.0 mm.
Experiments were performed for the thickness of 1.5 and 3.0 mm, respectively. As shown in Figure 1b,
a total of two welding passes were performed, once per joint. This is an improvement over TIG
welding, which needs a total of four fillet welds, i.e., two fillet welds per joint (Figure 1c).

Figure 1. Experimental schematic diagram and welding location. (a) Isometric view of specimen
(b) Position of fiber laser welding (c) Position of TIG welding.

To control the welding distortion that may occur during laser welding, a jig that can constrain the
angular distortion of two horizontal plates was fabricated before the experiment, as shown in Figure 2.
Additionally, the jig controls the gap between the base materials and the degree of gap was almost
0 mm in this study.

Figure 11. Plate counts (E. coli) on a virgin UF membrane at time (t) = 0 h (a) and at t = 24 h (b); plate
counts on 5 AgPNP-BL UF membrane at time = 0 h (c) and at time = 24 h (d).
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4. Conclusions

Ultrafiltration (UF) membranes were functionalized by immobilizing AgPNPs within
polyelectrolyte (PAH/PAA) bilayers, rendering anti-organic fouling and antimicrobial properties
to the membrane. Microprofile measurements on and near membrane surfaces using a customized
solid contact Ag micro-ISE as well as post-filtration ICP analysis demonstrated that AgPNPs were
effectively immobilized within the crosslinked PAH/PAA bilayers. This study reveals that the expected
membrane flux enhancement due to PAH/PAA functionalization depends on a combined effect of
PAH/PAA-derived hydrophilicity and surface and pore coverage by the stable BLs tightening the
membrane. Hence, an optimum number of BLs (5 BLs in the current study) must be applied to ensure
that the resulting permeability is not offset by the hindrance from BL deposition. When fouled by
humic acid, the functionalized UF membrane exhibited a lower flux decline and a greater flux recovery
when compared to the unmodified commercial membrane, likely due to the electrostatic repulsion
imparted by PAA of the deposited BL. SEM studies, E. Coli plate counts, and Raman spectroscopic
studies confirmed that the PAH/PAA-assisted AgPNP immobilization provided antimicrobial property
to the UF membrane and caused fewer attachments of microorganisms that would have initiated the
formation of biofilms ultimately leading to biofouling.
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