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Abstract

Genetic white matter disorders have heterogeneous etiologies and overlapping

clinical presentations. We performed a study of the diagnostic efficacy of gen-

ome sequencing in 41 unsolved cases with prior exome sequencing, resolving

an additional 14 from an historical cohort (n = 191). Reanalysis in the context

of novel disease-associated genes and improved variant curation and annotation

resolved 64% of cases. The remaining diagnoses were directly attributable to

genome sequencing, including cases with small and large copy number variants

(CNVs) and variants in deep intronic and technically difficult regions. Genome

sequencing, in combination with other methodologies, achieved a diagnostic

yield of 85% in this retrospective cohort.
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Introduction

Next-generation sequencing (NGS) including both tar-

geted gene panels and exome sequencing has become a

central component of the diagnostic evaluation of indi-

viduals with a neurologic disorder of unknown origin.1,2

Exome sequencing has shown success in phenotypically

diverse cohorts, including the leukodystrophies, a broad

class of genetic disorders that affect the white matter of

the central nervous system (CNS).2,3

Leukodystrophies are diverse in origin and highly

heterogeneous in presentation and disease course, making

diagnosis challenging. Until recently, the probability of

obtaining a definitive molecular diagnosis was less than

50% over 5 years2 and despite increases of up to threefold

in diagnostic efficacy, many cases remain unsolved. Previ-

ously, we reported on a cohort of 191 families with a sus-

pected leukodystrophy, of which 71 were persistently

unsolved despite targeted molecular and enzymatic testing

and 19 were lost to follow-up.1 Trio-or-greater exome

sequencing analysis resolved 42% (30/71) of unsolved

cases, which, in combination with standard of care

approaches, yielded a 77% overall diagnostic rate from

172 families available for testing. This was a substantial

increase over the historical norms,2 but left at least 23%

persistently unsolved.1

Genome sequencing has the potential to detect a wide

variety of variant types, including single-nucleotide vari-

ants and indels (out-performing exome sequencing in

protein-coding regions), copy number variants (CNV),4

repeat expansions,5 and detection of pathogenic nonpro-

tein-coding variation that is missed by other NGS

approaches. We pursued genome sequencing on the

remaining 41 persistently unsolved families to assess the

potential value of genome sequencing diagnostics in a

pediatric neurological disease cohort.

Methods

Recruitment

Affected individuals were referred to the Myelin Disorders

Bioregistry Project (MDBP) for unsolved leukoen-

cephalopathy of presumed genetic etiology between 1

August 2009 to 31 July 2013, as previously described.1

The study had approval from the institutional review

boards at collaborating institutions.

Clinical and neuroimaging descriptions are available on

request. All individuals had abnormal white matter identi-

fied by neuroimaging, suggestive of a leukodystrophy.

Symptom onset ranged from birth to 19 years. Ethnicities

varied and included individuals of mixed and northern

ª 2020 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association. 145

G, Helman et al. Genome Sequencing in Persistently Unsolved White Matter Disorders



European descent, as well as African American, Arabian,

African, Asian, and Latin American origin.1

Genome sequencing and analysis

Genome sequencing was performed at Illumina Inc., San

Diego on an Illumina 2000 using 2 x 125 nucleotide

paired-end reads. Dual analyses were run in parallel for

each sample. In one, reads were aligned to the reference

human genome (GRCh37) using the Burrows-Wheeler

Aligner (BWA) software package and pedigree informed

variant calling was performed using the GATK Haplo-

typeCaller v3.7.6 Variant annotation was performed using

SnpEff v4.3m.7 This analysis used a custom variant anno-

tation and interpretation interface to identify possible

causal variants. In the other analysis, samples were pro-

cessed using the Illumina Secondary Analysis Software

v5.11.0 (Northstar v5 release), aligned to the reference

human genome (GRCh37). Candidate variants were iden-

tified using a custom-built variant interpretation engine.

In both analyses, variants were triaged and prioritized by

minor allele frequency, conservation, genotype, inheri-

tance, disease-association, consequence, and predicted

pathogenicity. Candidate splice-altering variants were vali-

dated using a minigene splicing assay (Appendix S1).8

Assessment of Variants

Putatively causal variants were assessed as per the Ameri-

can College of Medical Genetics (AGMC) guidelines.9

Cases with variants in known disease genes meeting the

ACMG criteria for pathogenic or likely pathogenic, and

whose clinical features were concordant with the estab-

lished gene–disease relationship (including magnetic reso-

nance imaging (MRI) patterns) were classified as resolved.

Candidate variants in potentially novel disease genes were

submitted to GeneMatcher.

Results

Forty-one families that remained without a molecular eti-

ology after exome sequencing received genome sequencing

(Fig. 1A). The mean read depth in probands was 34X and

on average, 91% of the genome had coverage depth greater

than 20X (Appendix S1). Genome sequencing resulted in a

molecular diagnosis for 14 families (34%) (Table 1). Nine

diagnoses were achieved through improvements in variant

curation or novel disease-associated genes described since

the exome sequencing analysis. Five diagnoses were

achieved through identification of CNVs (three cases),

deep intronic variants (one case), and variants in techni-

cally difficult regions (one case). One case was considered

clinically resolved following multidisciplinary review.

Since our initial study, more than 1,200 new gene–dis-
ease relationships have been described, and studies have

shown increases of up to 10% in diagnostic yield with

reanalysis within 24–36 months.10 Reanalysis in the con-

text of recently published literature (and associated anno-

tation pipelines) allowed resolution of an additional eight

cases. These included a de novo missense variant in

H3F3B (OMIM:601058) (LD_0246),11 a hemizygous, syn-

onymous variant in AIFM1 (OMIM:300169) (LD_0500),12

and biallelic variants in HIKESHI (OMIM:614908)

(LD_0162),13 NKX6-2 (OMIM:605955) (LD_0527),14 and

SPATA5 (OMIM:613940) (LD_0808),15 all previously

associated with prominent white matter disease in multi-

ple affected individuals. Affected individuals in families

LD_0579 and LD_0587 had variants in genes previously

implicated in neurologic syndromes where improvements

to our analysis pipeline or improved phenotypic under-

stand permitted a diagnosis or prioritized a high confi-

dence candidate, in L1CAM (OMIM:308840)16 and

KDM5C (OMIM:314690),17 respectively. White matter

abnormalities are a rare association with L1CAM-related

disorder.16 LD_0587 has a clinical presentation with intel-

lectual disability, epilepsy, aggressive behavior, and

macrocephaly, all consistent features of KDM5C-related

disorder and is classified as clinically resolved but the

identified variant lacks definitive proof to be classified as

likely pathogenic or pathogenic.17 This case was not

included in overall numbers of definitively resolved cases

as this variant remains a variant of uncertain significance

per the ACMG criteria. Finally, causal nonprotein-coding

variants were identified in SNORD118 (OMIM:616663),

confirming a clinical diagnosis of leukoencephalopathy

with calcifications and cysts (OMIM:614561) in

LD_0807.18 SNORD118 variants were found as part of a

targeted cohort study and concomitantly found in our

genome sequencing cohort.18

In two individuals, genome sequencing revealed vari-

ants not identified on exome sequencing analysis due to

lack of variant annotation or stringent filtering. For

LD_0725, genome sequencing revealed a mitochondrial

DNA variant, m.3243A>G in MT-TL1 (OMIM:590050),

carried on 42% of reads in the affected individual and

15% of the maternal reads. This variant has been previ-

ously associated with mitochondrial encephalomyopathy,

lactic acidosis, and stroke-like episodes (MELAS

[OMIM:540000]). LD_0315 had biallelic variants in

DARS2 (OMIM:610956), associated with leukoen-

cephalopathy with brainstem and spinal cord involvement

and lactate elevation (LBSL [OMIM:611105]). An intronic

variant, c.228-21delTinsCC, p.(Arg76Serfs*5) that has

been shown to affect mRNA splicing of DARS2 with skip-

ping of exon 319 was found in trans with a previously

unreported missense variant, c.294G>T, p.(Glu98Asp).
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Stringent variant filtering performed during the prior

exome sequencing analysis excluded this intronic variant

and precluded a diagnosis.1 To confirm the predicted

splicing change of intronic and exonic variants based on

SpliceAI annotations,20 we generated a minigene splicing

reporter assay (Appendix S1), demonstrating each variant

results in the skipping of exon 3 (Appendix S1).

The remaining five cases were resolved due to the iden-

tification of variants not typically identifiable by exome

sequencing. The first is related to a region that is techni-

cally difficult to assess. Biallelic variants were identified in

LD_0617 in GJC2 (OMIM:608803), causative of Peli-

zaeus-Merzbacher-like disease (PMLD [OMIM:608804]),

a maternally inherited missense variant c.203A>G,
p.(Tyr68Cys), and a 13 base paternally inherited duplica-

tion c.916_928dupGCCTCCGCCCCCG, p.(Ala310fs). The

duplication was previously undetected by exome sequenc-

ing due to a lack of coverage as it lies in the middle of a

110 nucleotide block of a ~ 95% GC-rich region

(Fig. 1B).1 The c.916_928dupGCCTCCGCCCCCG GJC2

variant called by genome sequencing was supported by

six of 19 genome sequencing reads covering the position

(Fig. 1C), and was confirmed by Sanger sequencing

(Fig. 1D).

In family LD_0393, genome sequencing revealed a

homozygous intronic variant, c.1969+115_1969+116delAG
in CSF1R (OMIM:164770). Heterozygous CSF1R variants

are associated with another leukodystrophy, hereditary

diffuse leukoencephalopathy with spheroids

(OMIM:221820). This biallelic variant affects a cryptic

splice site and results in the inclusion of a novel 99nt

pseudo-exon, with an in-frame stop codon p.(Pro658-

Serfs*24) resulting in nonsense-mediated decay of the

truncated protein. These individuals were found to have a

novel syndrome due to biallelic variants in CSF1R charac-

terized by brain malformation and skeletal dysplasia,

reported in Guo et al. (2019).21

Genome sequencing CNV analysis provided a diagnosis

in three affected individuals (Table 1). LD_0498 was

found to have impaired peroxisomal b-oxidation of C26:0

and genome sequencing revealed a homozygous, 7.5kb

deletion in ACBD5 (OMIM:616618) causing loss of exons

7 and 8, confirmed by Sanger sequencing.22 LD_0594 was

found to have an X-linked 396kb duplication covering

ARX (OMIM: 300382), previously associated with a broad

spectrum of neuroimaging abnormalities and early infan-

tile epileptic encephalopathy (OMIM:308350). LD_0671

was found to harbor a 21kb de novo deletion encompass-

ing a region in chromosome 2 covering SATB2

(OMIM:608148), previously associated with Glass syn-

drome (OMIM:612313).23

Discussion

Of the original 191 families examined in this cohort, 101

received a definitive diagnosis using enzymatic, biochemi-

cal, or single gene molecular approaches (53%). Nineteen

families were subsequently lost to follow-up, leaving 71

families able to be tested by NGS. Thirty cases were

solved by exome sequencing,1 and in this study, genome

sequencing established a diagnosis in an additional 14

families yielding a 20% improvement, and an overall

diagnostic efficacy of NGS of genome or exome sequenc-

ing increased to 44/71 (62%) and in total resolution of

145/172 (84%) of the original testable cohort.

Reanalysis by genome sequencing also led to the identi-

fication of variants in recently described disease genes

AIFM1,12 HIKESHI,13 H3F3B,11 NKX6-2,14 and

SPATA5,15 and genes missed in the previous analysis

(L1CAM). This is consistent with multiple recent studies

that have shown increases of up to 10% in diagnostic

yield with reanalysis within 24–36 months.10 Improve-

ments in variant annotation and filtering detected variants

in mitochondrial DNA and intronic regions proximal to

captured exons. It is expected that these would have been

identified on exome sequencing if performed with current

testing modalities.

Genome sequencing findings improved the overall diag-

nostic yield in this cohort by ~11% (5/44 cases solved by

NGS), through the detection of variants in GC-rich

regions, deep intronic variants, and CNVs. As sequencing

assays and associated informatic pipelines improve, some

of these variant types may be detected by exome sequenc-

ing. In our exome analysis, however, these variants were

not found due to limitations of either sequencing or anal-

ysis, some of which will be difficult to overcome due to

Figure 1. Myelin Disorders Bioregistry Project Unsolved Cohort and Challenging Variants in Known Leukodystrophy Genes. (A) The initial

“unsolved” cohort consisted of 191 families. 101 were diagnosed by standard of care (SoC) methodologies, 71 of the remaining families

underwent exome sequencing, while 19 were excluded due to lack of DNA or inability to access the family trio for NGS testing. The genome

sequencing cohort consisted of 41 families, 14 of which were solved. (B) Variants in GJC2 (OMIM:608803) were identified in LD_0617 and are

causative of Pelizaeus-Merzbacher-like disease (OMIM:608804). The 13bp paternally inherited duplication, c.916_928dupGCCTCCGCCCCCG,

p.Ala310fs in GJC2, was previously undetected by exome sequencing due to a lack of coverage in this region.1 (C) The duplication lies in the

middle of a 110 nucleotide block of a ~ 95% GC-rich region and was identified in the affected individual and father on genome sequencing,

where it is indicated by a green rectangle. (D) Sanger chromatogram confirming the presence of the c.916_928dupGCCTCCGCCCCCG variant in

the LD_0617 proband. The duplicated sequence is indicated in red with the second copy in LD_0617 bold and underlined.

148 ª 2020 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association.

Genome Sequencing in Persistently Unsolved White Matter Disorders G, Helman et al.



T
a
b
le

1
.
C
lin
ic
al
ly

si
g
n
ifi
ca
n
t
si
n
g
le
-n
u
cl
eo

ti
d
e,

in
d
el
,
an

d
co
p
y
n
u
m
b
er

va
ri
an

ts
.

Fa
m
ily

ID
G
en

d
er

C
u
rr
en

t

A
g
e

A
g
e
at

In
it
ia
l

M
R
I

G
en

e
Zy
g
o
si
ty

V
ar
ia
n
t
(G
R
C
h
3
7
)

&
Tr
an

sc
ri
p
t
ID

cD
N
A

Pr
o
te
in

rs
ID

g
n
o
m
A
D

A
F1

M
ax

A
F2

SI
FT
/

M
u
ta
ti
o
n

Ta
st
er

3

V
ar
ia
n
t

C
la
ss
ifi
ca
ti
o
n

A
C
M
G

C
ri
te
ri
a4

N
o
ve
l
G
en

e
(n

=
4
)

LD
_0

2
4
6

M
8
Y

1
1
M

H
3
F3
B

H
et
.,

d
e
n
o
vo

1
7
-7
3
7
7
4
7
2
2
-G

-C

EN
ST
0
0
0
0
0
2
5
4
8
1
0

c.
3
6
5
C
>
G

Pr
o
1
2
2
A
rg

N
/A

0
.0
0
0
0

0
.0
0
0
0

N
/A
/
D
C

Pa
th
o
g
en

ic
PS
2
,
PM

2
,

PP
3

LD
_0

5
0
0

M
6
Y

2
3
M

A
IF
M
1

H
em

i.,

d
e
n
o
vo

X
-1
2
9
2
7
4
5
6
9
-G

-A

EN
ST
0
0
0
0
0
2
8
7
2
9
5

c.
7
2
0
C
>
T

A
sp
2
4
0
A
sp

N
/A

0
.0
0
0
0

0
.0
0
0
0

N
/A
/
N
/A

Pa
th
o
g
en

ic
PS
2
,
PS
3
,

PM
2

LD
_0

5
2
7

M
8
Y

U
N
K

N
K
X
6
-2

H
o
m
.

1
0
-1
3
4
5
9
8
6
4
8
-C
-T
A

EN
ST
0
0
0
0
0
3
6
8
5
9
2

c.
6
0
6
d
el
G
in
sT
A

Ly
s2
0
2
fs

N
/A

0
.0
0
0
0

0
.0
0
0
0

N
/A
/
N
/A

Li
ke
ly

p
at
h
o
g
en

ic

PV
S1

,
PM

2

LD
_0

8
0
7

F
1
7
Y

1
2
Y

SN
O
R
D
1
1
8

H
et
.
(m

)
1
7
-8
0
7
6
8
4
8
-A
-C

EN
ST
0
0
0
0
0
3
6
3
5
9
3

n
.5
8
T>

G
N
/A

N
/A

0
.0
0
0
0

0
.0
0
0
0

N
/A
/
N
/A

V
U
S

PM
2
,
PM

3
,

PP
4
,
B
P6

H
et
.
(p
)

1
7
-8
0
7
6
7
6
2
-G

-A

EN
ST
0
0
0
0
0
3
6
3
5
9
3

n
.
*9

C
>
T

N
/A

N
/A

0
.0
0
1
9
0
7

0
.0
0
1
9
0
7

N
/A
/
N
/A

V
U
S

PM
2
,
PM

3
,

PP
4
,
B
P6

In
tr
o
n
ic
(n

=
1
)

LD
_0

3
9
3

F
(3
)
&
M

(1
)

N
/A

N
/A

C
SF
1
R

H
o
m
.

5
-1
4
9
4
4
0
3
0
9
-C
T-

EN
ST
0
0
0
0
0
2
8
6
3
0
1

c.
1
9
6
9
+

1
1
5
_1

9
6
9
+

1
1
6
d
el
A
G
5

Pr
o
6
5
8
Se
rf
s*
2
4

N
/A

0
.0
0
0
0

0
.0
0
0
0

N
/A
/
N
/A

Li
ke
ly

p
at
h
o
g
en

ic

PS
3
,
PM

2
,

PP
1

M
T-
D
N
A
(n

=
1
)

LD
_0

7
2
5

F
2
1
Y

1
Y

M
T-
TL
1

H
et
.
(m

)
M
T-
3
2
4
3
-A
-G

EN
ST
0
0
0
0
0
3
8
6
3
4
7

n
.1
4
A
>
G

N
/A

rs
1
9
9
4
7
4
6
5
7

N
/A

N
/A

N
/A
/
N
/A

Pa
th
o
g
en

ic
PS
1
,
PS
3
,

PP
3
,
PP
4

C
h
al
le
n
g
in
g
V
ar
ia
n
ts

(n
=
2
)

LD
_0

3
1
5

M
7
Y

1
9
M

D
A
R
S2

H
et
.
(p
)

1
-1
7
3
7
9
7
4
5
0
-T
-C
C

EN
ST
0
0
0
0
0
3
6
1
9
5
1

c.
2
2
8
-2
1
d
el
Ti
n
sC

C
N
/A

rs
5
2
8
7
7
2
9
8
4

0
.0
0
0
0
2
1

0
.0
0
2

N
/A
/
N
/A

Li
ke
ly

p
at
h
o
g
en

ic

PS
3
,
PM

1

H
et
.
(m

)
1
-1
7
3
7
9
7
5
3
7
-G

-T

EN
ST
0
0
0
0
0
3
6
1
9
5
1

c.
2
9
4
G
>
T6

G
lu
9
8
A
sp

N
/A

0
.0
0
0
0

0
.0
0
0
0

T/
D
C

Li
ke
ly

p
at
h
o
g
en

ic

PS
3
,
PM

2
,

PP
2
,
PP
3

LD
_0

6
1
7

F
7
Y

2
Y

G
JC
2

H
et
.
(p
)

1
-2
2
8
3
4
6
3
8
8
-C
-G

C
C
TC

C
G
C
C
C
C
C
G

EN
ST
0
0
0
0
0
3
6
6
7
1
4

c.
9
1
6
_

9
2
8
d
u
p
G
C
C
T

C
C
G
C
C
C
C
C
G

A
la
3
1
0
fs

N
/A

0
.0
0
0
0

0
.0
0
0
0

N
/A
/
N
/A

Pa
th
o
g
en

ic
PV

S1
,
PM

2
,

PP
4

H
et
.
(m

)
1
-
2
2
8
3
4
5
6
6
2
-A
-G

EN
ST
0
0
0
0
0
3
6
6
7
1
4

c.
2
0
3
A
>
G

Ty
r6
8
C
ys

rs
1
0
3
1
7
2
0
6
5
4

0
.0
0
0
0

0
.0
0
0
0

D
/
D
C

Li
ke
ly

p
at
h
o
g
en

ic

PM
2
,
PM

3
,

PP
3
,
PP
4

Im
p
ro
ve
d
Pi
p
el
in
e/

Se
p
ar
at
e
st
u
d
y
n
o
ve
l
g
en

e
(n

=
4
)

LD
_0

1
6
2

M
&

M
D
ec
ea
se
d

3
Y

H
IK
ES
H
I

H
o
m
.

1
1
-8
6
0
1
7
4
1
6
-G

-C

EN
ST
0
0
0
0
0
2
7
8
4
3

c.
1
6
0
G
>
C

V
al
5
4
Le
u

rs
2
0
2
0
0
3
7
9
5

0
.0
0
0
1
2
9
9

0
.0
0
0
2

D
/
D
C

Li
ke
ly

p
at
h
o
g
en

ic

PS
1
,
PM

1
,

PP
1
,
PP
4
,

PP
5

LD
_0

5
7
9

M
5
Y

5
M

L1
C
A
M

H
em

i.
(m

)
X
-1
5
3
1
3
5
2
7
8
-A
-T

EN
ST
0
0
0
0
0
2
6
4
1
6
1

c.
1
1
0
3
T>

A
Ile
3
6
8
A
sn

N
/A

0
.0
0
0
0

0
.0
0
0
0

D
/
D
C

Li
ke
ly

p
at
h
o
g
en

ic

PM
1
,
PM

2
,

PP
2
,
PP
3

LD
_0

8
0
8

M
6
Y

1
8
M

SP
A
TA

5
H
et
.
(p
)

4
-1
2
3
8
5
5
3
0
0
-G

-A

EN
ST
0
0
0
0
0
2
7
4
0
0
8

c.
5
5
4
G
>
A

G
ly
1
8
5
G
lu

rs
7
5
3
5
8
7
5
1
8

0
.0
0
0
0
2
5
3

0
.0
0
0
2

D
/
D
C

Li
ke
ly

p
at
h
o
g
en

ic

PM
2
,P
M
3
,

PP
2
,
PP
3
,

PP
4

H
et
.
(m

)
4
-1
2
3
9
4
9
3
4
8
-G

-C

EN
ST
0
0
0
0
0
2
7
4
0
0
8

c.
1
8
7
7
G
>
C

Tr
p
6
2
6
Se
r

rs
3
7
5
3
4
3
7
5
3

0
.0
0
0
0
1
2
2

0
.0
0
0
0

D
/
D
C

Li
ke
ly

p
at
h
o
g
en

ic

PM
2
,
PM

5
,

PP
3
,
PP
4
,

PP
5

C
lin
ic
al
ly

R
es
o
lv
ed

LD
_0

5
8
7

M
9
Y

9
M

K
D
M
5
C

H
em

i.
(m

)
X
-5
3
2
2
6
1
8
6
-C
-A

EN
ST
0
0
0
0
0
3
7
5
4
0
1

c.
2
6
6
3
G
>
T

A
rg
8
8
8
Le
u

rs
3
7
5
8
5
0
8
7
2

0
.0
0
0
0
1
4
4

0
.0
0
0
1

D
/
P

V
U
S

PM
2
,
PP
3

(C
o
n
ti
n
u
ed

)

ª 2020 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association. 149

G, Helman et al. Genome Sequencing in Persistently Unsolved White Matter Disorders



limitations of the assay (e.g. GC-rich regions) or the abil-

ity of exome to accurately detect large genomic alterations

in single cases.

Our study lends support to a previous study that sug-

gested that currently up to 80% of white matter disorders

may be able to be solved.2 Notably, no recurring diag-

noses were made in the current cohort of n = 41, and

only a minority across all tiers of NGS testing (20%) were

associated with canonical leukodystrophy genes. These

data indicate that only a fraction of affected individuals

would achieve a diagnosis using targeted testing

approaches, including panels of classically defined

leukodystrophy genes now in widespread use. An estab-

lished diagnostic workflow for laboratory and genetic test-

ing in combination with MRI pattern recognition24

suggests that if initial biochemical and enzymatic testing

is not confirmatory and if the MRI does not fit an estab-

lished leukodystrophy, broad-based NGS testing should

be implemented. Our data support this approach, favor-

ing genome sequencing over exome sequencing.
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Supporting Information

Additional supporting information may be found online

in the Supporting Information section at the end of the

article.

Appendix S1. A supplemental text PDF file is provided

which includes methods and results for the minigene

splicing reporter assay used in the case of LD_0315 (Sec-

tion 1) and sequencing coverage achieved for proband

samples (Table S2). Case reports are for each of the 41

families with diagnoses associated with single-nucleotide

variants and small insertion-deletion events (Section 2),

copy number variants (Section 3), or remaining unsolved

after genome sequencing and analysis (Section 3). The

supplemental text of the original study can be found at:

https://imb.uq.edu.au/download/Vanderver_AON_2016.ca

se_reports.pdf
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