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a b s t r a c t

Dietary nutrient manipulation (e.g. protein fractions) could lower the environmental footprints of ru-
minants, especially reactive nitrogen (N). This study investigated the impacts of dietary soluble protein
(SP) levels with decreased crude protein (CP) on intestinal N absorption, hindgut N metabolism, fecal
microbiota and metabolites, and their linkage with N metabolism phenotype. Thirty-two male Hu sheep,
with an age of six months and an initial BW of 40.37 ± 1.18 kg, were randomly assigned to four dietary
groups. The control diet (CON), aligning with NRC standards, maintained a CP content of 16.7% on a dry
matter basis. Conversely, the experimental diets (LPA, LPB, and LPC) featured a 10% reduction in CP
compared with CON, accompanied by SP adjustments to 21.2%, 25.9%, and 29.4% of CP, respectively. Our
results showed that low-protein diets led to significant reductions in the concentrations of plasma
creatinine, ammonia, urea N, and fecal total short-chain fatty acids (SCFA) (P < 0.05). Notably, LPB and
LPC exhibited increased total SCFA and propionate concentrations compared with LPA (P < 0.05). The
enrichment of the Prevotella genus in fecal microbiota associated with energy metabolism and amino
acid (AA) biosynthesis pathways was evident with SP levels in low-protein diets of approximately 25% to
30%. Moreover, LPB and LPC diets demonstrated a decrease in fecal NHþ

4 eN and NO�
2eN contents as well

as urease activity, compared with CON (P < 0.05). Concomitantly, reductions in fecal glutamic acid de-
hydrogenase gene (gdh), nitrite reductase gene (nirS), and nitric oxide reductase gene (norB) abundances
were observed (P < 0.05), pointing towards a potential reduction in reactive N production at the source.
Of significance, the up-regulation of mRNA abundance of AA and peptide transporters in the small in-
testine (duodenum, jejunum, and ileum) and the elevated concentration of plasma AA (e.g. arginine,
methionine, aspartate, glutamate, etc.) underscored the enhancement of N absorption and N efficiency. In
summary, a 10% reduction in CP, coupled with an SP level of approximately 25% to 30%, demonstrated the
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potential to curtail reactive N emissions through fecal Prevotella enrichment and improve intestinal
energy and N utilization efficiency.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
1. Introduction

According to the United Nations dataset (FAOSTAT, 2021), live-
stock feed production accounts for about two-thirds of the total
crop-cultivated land in the world. This is coupled with the
increasing demand for livestock-derived proteins, which may
intensify the competition between food for humans and feed for
livestock (Cheng et al., 2022). Ruminants have the ability to maxi-
mize the utilization of plant biomass that is not directly edible by
humans. Approximately, 60% of their feed is composed of human-
inedible cellulose, which contributes to food security and reduces
the environmental impact of farming activities, such as straw
incineration (Tilman and Clark, 2014). However, ruminants exhibit
lower nitrogen (N) utilization efficiency compared with mono-
gastric animals (Uwizeye et al., 2020). This results in relatively
higher reactive N losses and greenhouse gas emissions. Therefore,
the development of sustainable systems that prioritizes environ-
mental protection, resource conservation, and high product quality
has become an essential prerequisite for ruminant production.

The Hu sheep, with a farming history of over a thousand years, is
a unique and precious white breed in China, characterized by its
strong reproductive capacity, stress resistance, and fast growth and
development (Geng et al., 2003; Yue, 1996). It has been reported
that precision dietary interventions can improve N efficiency in
ruminants and lower their environmental footprint of reactive N
emissions by implementing low N diets or adjusting the pro-
portions of dietary protein fractions (Tan et al., 2021; Wu et al.,
2022). In our previous studies, we primarily focused on rumen N
metabolism in sheep, employing both in vitro and in vivo experi-
ments to identify optimal dietary soluble protein (SP) gradients.
The in vitro results suggested that adjusting SP levels to 30% or 40%
of CP could result in the altered bacterial and protozoal commu-
nities, in turn obtaining higher N efficiency (Zhang et al., 2022). On
the other hand, in an in vivo study when sheep were fed a diet with
decreased dietary N content, dietary SP levels of about 25% to 30%
appeared to be a crucial variable for preventing excessive N emis-
sions while optimizing animal performance. This approach resulted
in heightened ruminal microbiota richness and Prevotella abun-
dance, which promoted nutrient fermentation and increased
related metabolites such as unsaturated fatty acids and vitamin B6
in the rumen (Zhang et al., 2021).

However, studies focusing solely on rumen N metabolism are
insufficient to provide comprehensive insights into the reduction of
reactive N emission. Additionally, the significance of hindgut N
metabolism, particularly in feces directly excreted into the envi-
ronment, should not be overlooked (Harris et al., 2016). For
instance, NH3 and N2O emissions from livestock manure account
for 49% and 30% of total agricultural emissions, respectively, with
over 15% of cattle feed N being discharged into sewers through
manure (Bai et al., 2016; van derWeerden et al., 2020). Therefore, to
develop effective strategies for reducing reactive N emissions while
maintaining sheep production performance, it is crucial to inves-
tigate the hindgut N metabolism and its associated microbiota.

This study aims to investigate the impact of dietary N level
reduction and SP regulation on nutrient metabolism, particularly
reactive N, in sheep feces, based on our prior in vivo experiments.
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The main objectives were as follows: (1) to compare the effects of
reduced dietary N levels and varying SP levels on intestinal N ab-
sorption and fecal N metabolism, and (2) to elucidate the potential
mechanistic relationships among fecal microbiota, microbial-
derived metabolites, and reactive N emissions through dietary SP
regulation. We hypothesized that oscillating dietary SP levels,
coupled with decreased CP, could enhance intestinal N absorption
and mitigate reactive N emissions by reshaping fecal microbiota
and metabolites in sheep.

2. Materials and methods

2.1. Animal management, feedstuffs, and experimental design

2.1.1. Animal ethics statements
All procedures conducted on animals in this experiment were

approved by the Animal Welfare Committee of Yangzhou Veteri-
narians under the Ministry of Agriculture of China (Protocol No.
Syxk (Su) 2019-0029).

2.1.2. Animal management and experimental treatments
Thirty-two healthy male Hu sheep, with an age of 6 months and

an initial BW of 40.37 ± 1.18 kg, were randomly allocated into four
dietary treatment groups (n¼ 8 per group) and individually housed
in pens. The four treatments included one control diet and three
treatment diets. The control diet (CON) was formulated according
to the nutritional requirements outlined in the National Research
Council standard (NRC, 2007) for sheep with a BW of 40 kg and an
average daily gain of 200 to 250 g/d. The CP content of the CON diet
was 16.7% of the dry matter (DM) basis.

The three treatment diets (LPA, LPB, and LPC) had a 10% lower CP
content compared with the CON diet. The SP proportion in each of
treatment diets was adjusted to 21.2% (LPA), 25.9% (LPB), and 29.4%
(LPC) of CP. All four diets were isoenergetic, and the three treatment
diets were isonitrogenous and met 90% of the CP standard re-
quirements. The target SP levels were achieved mainly by adjusting
the amount of various concentrates added. The analysis method of
feed SP is reported in Section 2.1.3.

Sheep were fed twice a day (08:00 and 18:00) with the feeding
level of the diets on a DM basis set to 3% of the BWof sheep on a DM
basis. The diet comprised a 50:50 forage-to-concentrate ratio (DM
basis), and cleanwater was available at any time during the feeding
period. The experiment included a 1-week adaptation period and a
4-week experimental period. Data on DM intake and average daily
gain have been previously reported (Zhang et al., 2021).

2.1.3. Chemical analyses of feedstuffs
Roughage used in this experiment was amixed silage of cabbage

waste and rice straw, with a 6:4 ratio of cabbage waste to straw.
Additionally, 0.035 g/kg of Lactobacillus plantarum and 0.250 g/kg of
cellulase were added to enhance fermentation. Concentrates,
including corn, soybean meal, wheat bran, corn protein meal, and
premix, were purchased from commercial feed suppliers.

The nutritional levels of the four diets were analyzed according
to the standard methods of Association of Official Analytical
Chemicals (AOAC, 2005). The DM content was determined by
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drying triplicate samples at 105 �C to a constant weight. The CP
content (N� 6.25) was analyzed using a Kjeldahl apparatus (Kjeltec
2300, FOSS Analytical AB, Hoganas, Sweden). The ether extract (EE)
content was quantified using a Soxhlet extractor (FOSS Soxtec8000,
Denmark). The ash content was determined as the residue after
combustion at 550 �C in a muffle furnace (SX2-12-10, Rongfeng,
Shanghai, China). Furthermore, neutral detergent fiber (NDF) and
acid detergent fiber (ADF) were sequentially determined via filter
bag technology (ANKOM 2000; Ancom Technology Corp., Fairport,
NY, USA). Calcium (Ca) and phosphorus (P) were measured via the
disodium ethylenediaminetetraacetate complexometric titration
method and ammonium vanadate molybdate colorimetric method,
respectively. The digestive energy (DE) was calculated based on
their formula proportions by retrieving feed rawmaterials from the
China Feed Database (https://www.chinafeeddata.org.cn/).

The detection method for dietary protein solubility referred to
the buffer-soluble N protocols of a previous publication (Licitra
et al., 1996). This method entails measuring the mass fraction of
protein dissolved in the borate-phosphate buffer for 1 h at 39 �C.
The ingredients and nutrition levels of the four diets are reported in
Table S1.
2.2. Collection and measurements of fecal samples

2.2.1. Fecal sample collection
During the last three days of the experiment, six sheep were

randomly taken from each group for feces collection at 4 h after
morning feeding. Feces were collected rectally and pooled within
each individual animal. A total of 100 g of the pooled feces were
stored at �80 �C for further analysis of fermentation parameters,
carbon (C) and N (including inorganic N) contents, as well as
enzyme activity. Additionally, 5 g of feces collected on the last day
were snap-frozen in liquid N for subsequent DNA extraction and
metabolomic analysis.
2.2.2. Determination of fecal pH, microbial protein (MCP), and
contents of short-chain fatty acids (SCFA)

Fresh feces were homogenized with distilled water at a 1:5 ratio
(w/v) to determine pH value and MCP content. The pH was deter-
mined immediately after homogenization using a pH meter (pHS-
3C, Shanghai, China), while the MCP content was determined using
the trichloroacetic acid precipitation method as described by
Koontz (2014). Moreover, 1 g of feces sample was homogenized in
1 mL of metaphosphoric acid (25%, w/v) and 10 mL of phosphate-
buffered saline (pH ¼ 7.4). The homogenized feces were then
centrifuged (12,000 � g, 10 min, 4 �C) to collect supernatant. The
supernatant was filtered through a 0.22-mm membrane and
analyzed for SCFA using a gas chromatograph (GC-14B, Shimadzu,
Kyoto, Japan) according to the protocol described in our previous
publication (Zhang et al., 2021).
2.2.3. Detection of fecal C, N, and inorganic N contents
The fecal total N (TN) content was analyzed using the Kjeldahl

method as described in Section 2.1.3 and C content was measured
using an elemental analyzer (RapidCS cube C Version, Elementar
Analysensysteme GmbH, Germany). The C/N ratio was calculated as
the ratio of C content to TN content. To determine the content of
inorganic N, including ammonia N (NHþ

4eN), nitrate N (NO�
3eN),

and nitrite N (NO�
2eN), which were analyzed by Nessler's reagent

spectrophotometry, the phenol disulfonic acid method, and N-(1-
naphthyl)-ethylenediamine photometric method, respectively, as
described by previous protocols (Noyes, 1919; Sabharwal, 1990;
Yuen and Pollard, 1954).
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2.2.4. Fecal enzyme activity assay
The activities of urease, nitrate reductase, and nitrite reductase

in fecal samples were measured using an enzyme labeling instru-
ment (SpectraMax M5/M5e, Molecular Devices, USA) and com-
mercial reagent kits (Solarbio Technology Co., Ltd., Beijing, China).

2.2.5. Fecal DNA extraction, 16S rRNA sequencing, and absolute
quantification PCR

Fecal total genomic DNA was extracted using HiPure Soil DNA
Kit (D3142B, Magen, Guangzhou, China) and the quality and
quantity were measured using Nanodrop 2000 UV/Vis spectro-
photometer (Thermo Fisher Scientific, Wilmington, DE, USA) before
being stored at �80 �C. The 16S rRNA gene in the V3 to V4 hyper-
variable regions was amplified with the primers, 341F (50-
CCTACGGGNGGCWGCAG-30) and 806R (50-GGACTACHVGGGTW
TCTAAT-30), using the specific amplification reaction procedure
referred to our previous report (Zhang et al., 2021). Sequencing was
performed on the Illumina Novaseq PE250 platform (Genepioneer
Biotechnologies Co., Ltd, Nanjing, China) according to the manu-
facturer's protocol to obtain paired-end (PE) reads. FLASH (version
1.2.11) was used to merge paired-end readings and fastp (version
0.20.0) was used to filter the quality of the original labels to obtain
high-quality clean labels (Chen et al., 2018; Magoc and Salzberg,
2011). Then, chimeric sequences were detected and removed by
Vsearch (version 2.15.0) to obtain valid labels (Rognes et al., 2016).
Unique sequences with 97% similarity were clustered into repre-
sentative operational taxonomic units (OTU) by applying Uparse
(version 7.0.1001) (Edgar, 2013) and the taxonomic informationwas
annotated following the Silva Database (http://www.arb-silva.de/)
based on the Mothur algorithm (Chappidi et al., 2019). Finally, the
sequence proportions in each classification level (phylum, class,
order, family, and genus) were statistically analyzed based on the
OTU abundance and annotation information.

The abundance of genes related to N transformation was
quantified by absolute quantification PCR. Each target gene was
cloned into the pMD19-T vector (TaKaRa Bio, China) and trans-
formed into Escherichia coli DH5a competent cells. Then plasmid
DNA was extracted using a plasmid extraction kit (TaKaRa Bio,
China) and analyzed for DNA quality and its concentration was
measured using a NanoDrop 2000 UV/Vis spectrophotometer. PCR
reactions were performed in a 20-mL reaction mixture, including
10 mL SYBR real-time PCR premixture, 2 mL DNA template, 0.4 mL
forward primer, 0.4 mL reverse primer, and 7.2 mL ddH2O (Huang
et al., 2015). Calibration curves (log DNA concentration versus an
arbitrarily set cycle threshold value) for glutamic acid dehydroge-
nase gene (gdh), ammonia monooxygenase gene subunit A (amoA),
nitrate reductase gene (narG), nitrite reductase gene (nirS/nirK),
nitric oxide reductase gene (norB), and nitrous oxide reductase
gene (nosZ) were constructed using serial dilutions of amplicons of
single colonies. The gene copy number of the amplicon was
calculated by multiplying the molar concentration of the amplicon
and the Avogadro's constant. Each sample was performed in trip-
licate, and efficiencies of real-time PCR assays were over 95%, and
R2 was 0.99. Primers of the above target genes are reported in
Table S2.

2.2.6. Liquid chromatography coupled with mass spectrometry
(LCeMS/MS) metabolomics processing of feces samples and data
analysis

Fecal samples (100 mg per sample) were ground with liquid N
and the homogenate was resuspended with prechilled 80% meth-
anol of 500 mL by vortexing. The samples were incubated on ice for
5 min and then centrifuged at 15,000 � g at 4 �C for 20 min. One
milliliter of the supernatant was diluted to the final concentration
containing 53% methanol by LC-MS/MS grade water. The samples
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were subsequently transferred to a fresh Eppendorf tube and then
centrifuged at 15,000� g at 4 �C for 20min. Finally, the supernatant
was injected into the LC-MS/MS system.

LC-MS/MS analyses were performed using a Vanquish UHPLC
system (Thermo Fisher, Germany) coupled with an Orbitrap Q
Exactive HF-X mass spectrometer (Thermo Fisher, Germany) in
Novogene Co., Ltd. (Beijing, China). Samples were injected into a
Thermo Scientific Hypersil GOLD column (length 100 mm, internal
diameter 2.1 mm, particle diameter 1.9 mm) using a 12-min linear
gradient at a flow rate of 0.2 mL/min. The eluents for the positive
polarity mode were eluent A (0.1% formic acid) and eluent B
(methanol). The eluents for the negative polarity modes were
eluent A (5 mmol/L ammonium acetate, pH 9.0) and eluent B
(methanol). Q Exactive HF-X mass spectrometer was operated in
positive/negative polarity mode with a spray voltage of 3.5 kV, a
capillary temperature of 320 �C, a sheath gas flow rate of 35 psi, an
aux gas flow rate of 10 L/min, an S-lens RF level of 60, and an aux
gas heater temperature of 350 �C.

The raw data files generated by LC-MS/MS were preprocessed
using Compound Discoverer 3.1 (CD3.1, Thermo Fisher, Germany) for
peak alignment, peak picking, and quantitation of each metabolite.
Subsequently, the peakswerematched against themzCloud (https://
www.mzcloud.org/), mzVault and MassList database to obtain ac-
curate qualitative and relative quantitative results.

These metabolites were annotated using the KEGG database
(Kanehisa and Goto, 2000) (https://www.genome.jp/kegg/
pathway.html), HMDB database (Wishart et al., 2007) (https://
hmdb.ca/metabolites), and LIPIDMaps database (Fahy et al., 2007)
(http://www.lipidmaps.org/). Statistical analysis of metabolites and
pathways was completed via the online platform MetaboAnalyst
5.0 (Pang et al., 2021) (accessed on 8th January 2023) (https://
www.metaboanalyst.ca/MetaboAnalyst/faces/home.xhtml). This
comprehensive approach allowed for a thorough examination of
the metabolic profile and its associated pathways in our study.

2.3. Collection and measurement of blood and intestinal samples

2.3.1. Blood and intestinal collection
On the last day of the feeding period, sheep were fasted over-

night and then after fasting with no access to water for 2 h, they
were anesthetized by intravenous administration of sodium thio-
pental (0.125 mg/kg BW) with potassium chloride (10 mL). Blood
samples (10 mL each animal) were collected through vacutainers
containing ethylenediaminetetraacetic acid (EDTA). One part of
each whole blood sample was used to separate the plasma by
centrifugation at 3000 � g at 4 �C for 10 min. After removing the
mesenteric lymph nodes and connective adipose tissue, tissue
samples (1 to 2 cm in length and approximately 5 g each) were
taken from each segment of the small intestines (i.e. duodenum,
jejunum, and ileum) by thoroughly washing 3 times with pre-
cooled phosphate buffered saline (PBS). The samples were then
immediately frozen in liquid N and stored at �80 �C for further
analysis.

2.3.2. Detection of blood biochemical indexes and analysis of
plasma AA concentration

The whole blood samples were directly analyzed for common
blood indicators, including white blood cells, red blood cells, he-
moglobin, and platelets, using an automatic blood cell analyzer
(BC-2600, Mindray, Shenzhen, China). The plasma concentrations
of total protein, albumin, globulin, creatinine, ammonia, urea N,
alkaline phosphatase, lactate dehydrogenase, cholesterol, tri-
glycerides, high-density lipoprotein, and low-density lipoprotein in
the plasma were determined using the commercial kits (Jiancheng
Biotechnology Research Institute, Nanjing, China). The plasma AA
60
concentration was measured using the external standard method
with an AA automatic analyzer (Terrlink et al., 1994).

2.3.3. Isolation of RNA from intestinal samples and real-time PCR
The total RNA was extracted from small intestinal samples (du-

odenum, jejunum, or ileum) using the RNA simple Total RNA Isola-
tion Kit in accordance with the manufacturer's instructions
(TIANGEN Biotech, Beijing, China). The RNA concentration and
integrity were determined using a NanoDrop 1000 UV/Vis spectro-
photometer (Thermo Fisher Scientific, NY, USA) and an Agilent 2100
Bioanalyzer (Agilent Technologies, TX, USA). Samples for subsequent
analysis had OD260/OD280 values �1.9 and RNA Integrity Number
(RIN) �8.0. The first strand of cDNA was synthesized using the
FastQuant RT Kit (TIANGEN Biotech, Beijing, China). The qRT-PCR
was performed on the 7500 Real-Time PCR System (Applied Bio-
systems, CA, USA) and the reactionmixtures were preheated at 95 �C
for 15 min, followed by 40 cycles of melting at 95 �C for 10 s and
annealing at 60 �C for 32 s (Hu et al., 2020). Beta-actin and glycer-
aldehyde-3-phosphate dehydrogenase (Gapdh) served as reference
genes. The relative gene expression was calculated using the 2�DDCt

method and the mRNA abundance of target genes in CON was taken
as the baseline for fold changes relative to treatments (Livak and
Schmittgen, 2001). Primers of target genes of intestinal AA and
peptide transporters are reported in Table S3.

2.4. Measurements of N absorption and N efficiency

During the last three days of the experimental period, feed
intake was recorded for all sheep to determine N intake. Simulta-
neously, feces and urine were quantitatively collected using fecal
and urine bags, respectively, and treated with H2SO4 (10%, v/v) to
prevent N loss. Finally, 10% of the total amount of feces and urine
was sampled for the quantification of fecal N excretion and urinary
N excretion. The N content was determined using a Kjeldahl
analyzer as described in Section 2.1.3. Nitrogen absorption was
calculated as N intake minus N excretion and N efficiency was
defined as N absorption/N intake.

2.5. Statistical analysis

All statistical analyses were performed using SPSS software
(version 16.0, IBM Co. Ltd., NY, USA) (Norusis, 2008) and R program
(version 3.6.1) (Chambers, 2008). The statistical model used was as
follows: Yij ¼ m þ Ti þ Sj þ εij, where Yij is the observation of
dependent variables; m is the overall mean; Ti is the fixed effect of
treatment; Sj is the random sheep effect, and εij is the residual error
for the observation. The PROC GLM procedure and Tukey's method
were used for multiple comparisons of blood biochemical indexes,
fecal physicochemical indexes, and gene quantification. Signifi-
cance was declared at P < 0.05, and a tendency was identified at
0.05 � P < 0.1.

For the analysis and visualization of fecal microbiota and
metabolome data, R packages including “UpSetR”, “vegan”,
“ggplot2”, “tidyverse”, and “microbiomeViz” were utilized (Barnett
et al., 2021; Conway et al., 2017; Oksanen et al., 2007; Wickham,
2011; Wickham et al., 2017). Fecal metabolites with variable
importance in projection (VIP) > 1 and P < 0.05, as well as fold
change (FC) � 2 or FC � 0.5, were considered to be differential
metabolites. Volcano plots were employed to filter metabolites of
interest based on log2(FC) and �log10(P-value) of metabolites using
the “ggplot2” package (version 3.3.6). Clustering heatmaps were
generated using the “Pheatmap” package with data normalized via
z-scores of the intensity areas of differential metabolites. Spear-
man's rank correlations between fecal microbiota and microbial
metabolites were analyzed and visualized using the “Psych”
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(Revelle, 2017) and “ggcorrplot” packages, with the threshold of |
r| > 0.5 and P < 0.05.
3. Results

3.1. Fecal fermentation indicators

Dietary treatments had no significant impact on pH value and
MCP concentration (P > 0.05, Table 1), while all low-protein treat-
ments (LPA, LPB and LPC) caused a decrease in the total SCFA con-
centration (P < 0.05) compared with the control. Notably, LPA had a
lower concentration compared with LPB and LPC (P < 0.05). In
addition, the proportion of propionate significantly decreased while
the proportion of butyrate significantly increased in LPA compared
with CONand LPC (P< 0.05). However, therewas no difference in the
percentage of acetate (P > 0.05) among the treatments.

With respect to branched-chained fatty acids, isobutyrate per-
centage was lower in LPA and LPB compared with CON and LPC
(P < 0.05). However, no significant differences were found in
valerate and isovalerate percentages among all groups (P > 0.05).
3.2. Different forms of N content, enzyme activity, and gene
transcription levels related to N transformation in feces

The TN content in LPB was lower than CON (P < 0.05, Fig. 1A).
However, no difference was observed in the C/N ratio among the
treatments (P > 0.05, Fig. 1B). A decrease in inorganic N was found in
LPB and LPC compared with CON (P < 0.05), specifically in NHþ

4eN
content (Fig. 1C) and NO�

2eN content (Fig. 1D). However, no differ-
ence was found in NO�

3eN among the treatments (P > 0.05, Fig. 1E).
In terms of enzyme activity, urease activity was reduced by

decreasing dietary protein or increasing the SP level (P < 0.05,
Fig. 1F). LPB decreased nitrate reductase activity compared with
CON (P < 0.05, Fig. 1G), while no difference was observed in nitrite
reductase activity among the treatments (P > 0.05, Fig. 1H).

Regarding gene transcription levels (Fig. 1I), the abundance of
the gdh gene was down-regulated in the three low-protein treat-
ments (LPA, LPB and LPC) compared with CON with LPB being the
lowest among these three treatments (P < 0.05). Additionally, LPB
has a lower abundance of the narG gene compared with CON and
LPA (P < 0.05), while no difference was observed between LPB and
LPC (P > 0.05). Furthermore, LPB and LPC had decreased abun-
dances of the nirK gene and the norB gene compared to CON
(P < 0.05). No differences were found in amoA, nirK, and nosZ gene
abundances among the treatments (P > 0.05).
Table 1
Fermentation and microbial metabolic products in the feces of sheep fed low-
protein diets with different soluble protein (SP) levels.

Item Treatments SEM P-value

CON LPA LPB LPC

pH 6.81 6.82 6.79 6.77 0.021 0.652
MCP, mg/g digesta 13.62 12.92 13.82 11.50 0.670 0.531
Total SCFA, mmol/L 59.65a 27.83c 50.80b 49.36b 3.237 <0.001
Acetate, mol/100 mol 77.52 81.68 78.92 78.96 2.920 0.474
Propionate, mol/100 mol 12.58a 4.85b 10.28a 11.10a 0.785 <0.001
Butyrate, mol/100 mol 2.87b 6.38a 4.63ab 2.84b 0.522 0.002
Isobutyrate, mol/100 mol 3.90a 1.85b 1.63b 4.04a 0.356 0.007
Valerate, mol/100 mol 2.29 2.80 2.83 2.17 0.282 0.562
Isovalerate, mol/100 mol 0.84 1.04 0.92 0.89 0.110 0.807

MCP ¼ microbial crude protein; SCFA ¼ short-chain fatty acids; SEM ¼ standard
error of the mean.
aecWithin a row, means without a common superscript differed at P < 0.05.
Treatments included CON (16.7% crude protein [CP] based on nutritional re-
quirements), LPA, LPB, and LPC (CP decreased by approximately 10%, with SP pro-
portions of 21.2%, 25.9%, and 29.4% of CP, respectively).
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3.3. Fecal microbial diversity and taxonomic differences

The OTU numbers shared by the four treatments were 1252,
which accounted for 58.5% of the total OTU number (Fig. 2A). The
OTU numbers shared by LPB and LPC were the highest (105, 4.9%),
and the specific OTU numbers for CON, LPA, LPB, and LPC were 42,
42, 72, and 120 (5.6%, highest), respectively. Fig. S1 indicated that
low-protein treatments increased the species richness (P < 0.05;
ACE and Chao1) while sample diversity (Shannon and Simpson)
showed no significance among treatments. Beta-diversity results
(PCoA based on BrayeCurtis dissimilarity matrix, Fig. 2B) revealed
significant differences in the bacterial communities (PERMANOVA:
P ¼ 0.009).

In terms of taxonomic classification, Firmicutes (57.1% to 76.8%),
Bacteroidetes (12.4% to 23.1%) and Proteobacteria (3.0% to 4.3%)
were the top-3 dominant phyla (Fig. 2C); Ruminococcaceae (25.4%
to 43.8%) and Lachnospiraceae (9.4% to 16.7%) were the dominant
families (Fig. 2D), with Ruminococcaceae UCG�005 (10.5% to 17.7%)
and Christensenellaceae R�7 group (8.5% to 16.6%) accounting for
the top-2 abundance at the genus level (Fig. 2E).

Significant taxonomic differences in bacterial classification
among the four treatments were further analyzed (Fig. 2F, G;
Table S4). Psychrobacter was enriched in CON with the highest
linear discriminant analysis (LDA) score and had a higher abun-
dance compared with the low-protein treatments (P < 0.05).
Additionally, the abundance of Prevotellaceae UCG-004 was also
higher in CON than in LPB and LPC (P < 0.05; Table S4). Notably,
Prevotellaceae (family), Prevotella_1, and Prevotellaceae_UCG-001
were increased in LPB and LPC compared with CON and LPA
(P < 0.05; Table S4) and enriched with an LDA score over 4.
Furthermore, Muribaculaceae (family) and Desulfovibrio (LDA
score > 3.5) were enriched in LPA and the abundance of Desulfo-
vibrio in LPA was highest among all the treatments (P < 0.05). In
addition, Patescibacteria (phylum), Candidatus_Saccharimonas,
Ruminiclostridium 9, and Lachnospiraceae UCG-004were enriched in
LPC (LDA score > 2.5), and the abundances of Patescibacteria,
Ruminiclostridium 9, and Lachnospiraceae UCG-004 were increased
in LPB and LPC compared with LPA (P < 0.05; Table S4).

3.4. Fecal metabolome profile and pathway enrichment analysis

A total of 696 positive ion mode metabolites and 573 negative
ion mode metabolites were identified from 24 fecal samples based
on LC-MS/MS, projections to latent structures-discriminant anal-
ysis (PLS-DA) score plots and score results showed that the four
treatments were clearly separated in different ion modes
(Fig. S2AeF), with the corresponding R2Y values ranging from 0.88
to 0.97, indicating the satisfactory effectiveness of the model.
Subsequent principal component analysis (PCA) score plots showed
the composition of positive (Fig. S3A) and negative (Fig. S3B) ion
mode metabolites of different treatments, which mainly classified
into metabolism (level 1). Except for global and overview maps
(level 2), pathway “AA metabolism” was the highest both in posi-
tive and negative modes (Fig. S3C and D).

The volcano plots of differential metabolites compared in pairs
showed differentially altered metabolites with VIP >1.0 and q (FDR-
adjusted P-value) <0.05 (Fig. 3A). These metabolites were then
classified into AA, peptides, and analogues (Fig. 3B), carbohydrates
and carbohydrate conjugates (Fig. 3C), fatty acids and conjugates
(Fig. 3D), and others (Fig. 3E). In addition, as the SP proportion
increased in low-protein diets, the contents of amides (e.g. ole-
amide, stearamide, hexadecanamide, and oleoyl ethylamide) and
AA (e.g. L-phenylalanine, DL-tryptophan, L-tyrosine, L-valine, and
methionine) were found decreased in LPB and LPC compared with
LPA (Fig. 3F, Table S5).



Fig. 1. Total nitrogen (TN) (A), carbon-to-nitrogen (C/N) ratio (B), NHþ
4 eN (C), NO�

3 eN (D), NO�
2 eN (E), enzyme activity (FeH) and gene expression (I) related to N transformation in

feces of sheep fed low-protein diets with different soluble protein (SP) levels. a, b, cBars with different letters indicate a significant difference at P < 0.05. ON ¼ organic nitrogen;
NHþ

4 eN ¼ ammonia nitrogen; NO�
3 eN ¼ nitrate nitrogen; NO�

2 eN ¼ nitrite nitrogen; NO ¼ nitric oxide; N2O ¼ nitrous oxide; gdh ¼ glutamic acid dehydrogenase
gene; amoA ¼ ammonia monooxygenase gene subunit A; narG ¼ nitrate reductase gene; nirS/nirK ¼ nitrite reductase gene; norB ¼ nitric oxide reductase gene; nosZ ¼ nitrous oxide
reductase gene. Treatments included CON (16.7% crude protein [CP] based on nutritional requirements), LPA, LPB, and LPC (CP decreased by approximately 10% with SP proportions
of 21.2%, 25.9%, and 29.4% of CP, respectively).
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Pathway enrichment analysis (Fig. 4A) revealed that 24 meta-
bolic pathways were altered with decreased CP (LPA, LPB, and LPC).
It is worth noting that amino sugar and nucleotide sugar meta-
bolism pathways (e.g. tyrosine metabolism pathway, lysine degra-
dation pathway, histidine metabolism pathway, and phenylalanine
metabolism pathway) and biosynthesis of unsaturated fatty acids
pathways were enriched in CON. As the SP proportion increased in
low-protein diets, “pyruvate metabolism pathway”, “propanoate
metabolism pathway”, “thiamine metabolism pathway”, and
“phenylalanine and tyrosine and tryptophan biosynthesis path-
ways” were significantly enhanced.

Spearman's rank correlations indicated the complex relation-
ships between bacterial genera (top-20 in abundance) and differ-
ential metabolites in feces. Psychrobacter (mainly enriched in CON)
showed negative correlations with AA, peptides, and analogs
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(Fig. 4B). Prevotella 1 (enriched in LPB) also exhibited similar pat-
terns, which also showed negative correlations with most carbo-
hydrates and carbohydrate conjugates, fatty acids and conjugates,
linoleic acids and derivatives, pyrimidines and pyrimidine de-
rivatives, etc. (Fig. S4).

3.5. Blood routine examination and plasma biochemical indexes

As shown in Table 2, different treatments had no significant
impact on blood routine indicators (contents of white blood cells,
red blood cells, hemoglobin, and platelets; P > 0.05). In terms of
plasma biochemical indicators, low-protein treatments (LPA, LPB,
and LPC) decreased the concentrations of creatinine, ammonia,
and urea N (P < 0.05), while no differences were found in other
biochemical indicators among all treatments (P > 0.05).



Fig. 2. Fecal microbiota composition and taxonomic differences of sheep fed low-protein diets with different soluble protein (SP) levels. (A) Histograms illustrating core operational
taxonomic units (OTU) shared in three and four treatments, dispensable OTU present in two treatments, and specific OTU present in one treatment. (B) Principal coordinates
analysis (PCoA) demonstrating the separation of microbial communities in feces among the four treatments based on the BrayeCurtis dissimilarity matrix. (C to E) Bacterial
compositions in feces at the phylum (C), family (D), and genus (E) levels for CON, LPA, LPB, and LPC treatments. (F) Dendrogram indicating differentially enriched taxa in the rumen
samples of four treatments, color-coded CON (red), LPA (green), LPB (blue), and LPC (purple). (G) Linear discriminant analysis (LDA) scores highlighting microbial OTU in the feces,
with LDA score >2.5 marked. Treatments included CON (16.7% crude protein [CP] based on nutritional requirements), LPA, LPB, and LPC (CP decreased by approximately 10%, with SP
proportions of 21.2%, 25.9%, and 29.4% of CP, respectively).
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3.6. The mRNA abundance of intestinal AA/peptide transporters and
plasma AA concentration

The mRNA expression analysis revealed that LPA treatment
resulted in lower abundances of solute carrier family 1 member 1
(SLC1A1), solute carrier family 7 member 2 (SLC7A2), solute carrier
family 7 member 8 (SLC7A8), and peptide/histidine transporter 1
(PHT1) in the duodenum, jejunum, and ileum compared with CON
(P < 0.05, Fig. 5A). However, LPB and LPC treatment did not
significantly differ from CON (P > 0.05). Additionally, in the duo-
denum, the mRNA abundance of SLC1A5 was lower in LPA
compared with CON (P < 0.05), while the mRNA abundance of
SLC7A1 was lower in LPA than in CON and LPB (P < 0.05). LPA
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treatment also decreased the mRNA abundance of PepT1 (P < 0.05).
The mRNA abundance of PHT2 was lower in the three low-protein
dietary treatments than the control diet (P < 0.05). Moreover, in
the ileum, LPA treatment also resulted in a lower mRNA abundance
of PepT1 compared with CON (P < 0.05).

As shown in Fig. 5B, seven essential AA (EAA) and two non-
essential AA (NEAA), including cysteine, histidine, lysine, phenyl-
alanine, threonine, tryptophan, valine, alanine, and proline, were
down-regulated in the low-protein treatments. It is worth
mentioning that the concentrations of arginine, isoleucine, leucine,
methionine, aspartate, glutamate, glutamine, citrulline, and orni-
thine were reshaped when the SP level was adjusted to 25.9% (LPB)
or 29.4% (LPC) of CP in low-protein diets.



Fig. 3. Classification and summary of differential metabolites in the feces of sheep fed low-protein diets with different soluble protein (SP) levels. (A) Volcano plots illustrating
differential metabolites comparisons (CON vs. LPA, CON vs. LPB, CON vs. LPC, LPA vs. LPB, LPA vs. LPC, and LPB vs. LPC). (B to E) Heatmaps presenting different metabolites among the
four treatments, notably amino acids, peptides, and analogues (B), carbohydrates and carbohydrate conjugates (C), fatty acids and conjugates (D), and others (E). Black font
indicating that metabolites were detected in positive mode, while red font indicating that those were detected in negative mode. (F) VIP scores highlighting key differential
metabolites in the feces of sheep fed low-protein diets with different SP levels (LPA, LPB, and LPC) in positive/negative ion modes. Treatments included CON (16.7% crude protein
[CP] based on nutritional requirements), LPA, LPB, and LPC (CP decreased by approximately 10%, with SP proportions of 21.2%, 25.9%, and 29.4% of CP, respectively).
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3.7. N absorption and N efficiency

The data of N intake, N Excretion, N absorption, and N efficiency
are detailed in Supplementary Table S6. In brief, dietary CP reduction
led to a decrease inN intake (P<0.05).Notably, Nexcretiondecreased
while N absorption and N efficiency increased (P < 0.05) when
adjusting SP (% of CP) to 25.9 and 29.4, and specifically, N efficiency
was improved by 12.2% and 8.5%, respectively, compared with CON.
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3.8. Correlations of fecal microbiota, derived metabolites, and N
metabolism phenotypes

Redundancy analysis (RDA) revealed that the C/N ratio was the
primary factor affecting the fecal microbial community, followed by
NHþ

4eN and NO�
2eN (Fig. 6A). Notably, several bacterial taxa

positively correlated with the C/N ratio, including OTU 892, 852,
1046, 348, 861, 1315, and 910, which mainly belonged to the



Fig. 4. Enrichment analysis of metabolic pathways of differential fecal metabolites across four treatments. (A) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis performed using significantly different fecal metabolites based on pairwise comparisons (CON vs. LPA, CON vs. LPB, CON vs. LPC, LPA vs. LPB, LPA vs. LPC, and
LPB vs. LPC). (B) Spearman's rank correlations between fecal microbiota (genus level) and microbial metabolites, predominantly comprising amino acids, peptides, and analogues,
where blue circles represent negative correlations and red circles represent positive correlations. Treatments included CON (16.7% crude protein [CP] based on nutritional re-
quirements), LPA, LPB, and LPC (CP decreased by approximately 10%, with SP proportions of 21.2%, 25.9%, and 29.4% of CP, respectively).
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Ruminococcaceae family (especially Ruminococcaceae UCG-005 at
the genus level; Table S7). In contrast, these taxa showed negative
correlations with NHþ

4eN and NO�
2eN. On the other hand, NO�

2eN,
NHþ

4eN, and TN were identified as the top three factors impacting
differential metabolite composition (Fig. 6B). Notably, Com7,
Com64, Com75, and Com76 (primarily classified as AA and fatty
acids; Table S7) were positively correlated with NO�

2eN.
As shown in Fig. 6C, N metabolism phenotype indexes, except

NO�
2eN, showed strong positive correlations with urease and ni-

trate reductase activities as well as gdh gene abundance (P < 0.01).
The concentration of the total SCFA was positively correlated with
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propionate but negatively correlated with butyrate (P < 0.01).
Notably, the concentration of butyrate was negatively correlated
with the abundance of gene nirK (P < 0.05). Furthermore, the
abundance of narG gene was positively correlated with urease and
nitrate reductase activities (P < 0.05), but negatively correlated
with the concentration of propionate. From Mantel's test, urease
and nitrate reductase activities were found to be correlated with
fecal microbiota (Mantel's P < 0.05). Additionally, TN and urease
activity were correlated with fecal differential metabolites in the
AA classification (Mantel's P < 0.05); plasma ammonia concentra-
tion, total SCFA content, urease activity, and the abundance of gdh



Table 2
Blood routine examination and plasma biochemical indexes of sheep fed low-protein diets with different soluble protein (SP) levels.

Item Treatments1 SEM P-value

CON LPA LPB LPC

Whole blood
White blood cells, �109/L 12.58 10.30 11.85 13.80 0.972 0.721
Red blood cells, �1012/L 10.81 11.13 11.25 11.56 0.181 0.576
Platelets, �109/L 415.3 415.7 485.7 478.7 35.71 0.376
Hemoglobin, g/L 138.7 133.7 151.9 138.0 3.03 0.192
Plasma
Total protein, g/L 73.08 65.47 68.13 58.70 2.362 0.139
Albumin, g/L 23.65 23.50 20.43 20.75 0.623 0.115
Globulin, g/L 49.43 41.97 47.70 37.95 2.337 0.262
Albumin/globulin 0.49 0.64 0.43 0.57 0.041 0.286
Creatinine, U/L 57.03a 49.00b 47.67b 44.25b 4.322 0.023
Ammonia, mmol/L 150.6a 118.5b 122.8b 126.9b 8.53 0.021
Urea nitrogen, mmol/L 13.38a 9.67b 7.20b 8.35b 0.826 0.001
Alkaline phosphatase, U/L 175.8 259.0 227.7 201.3 19.31 0.522
Lactate dehydrogenase, U/L 591.3 723.7 646.0 725.8 44.65 0.691
Cholesterol, mmol/L 1.63 1.69 1.54 1.67 0.085 0.947
Triglycerides, mmol/L 0.18 0.32 0.29 0.16 0.041 0.424
High-density lipoprotein, mmol/L 0.67 0.90 0.73 0.78 0.058 0.488
Low-density lipoprotein, mmol/L 0.59 0.55 0.52 0.61 0.033 0.837

SEM ¼ standard error of the mean.
a, bWithin a row, means without a common superscript differed at P < 0.05.

1 Treatments included CON (16.7% crude protein [CP] based on nutritional requirements), LPA, LPB, and LPC (CP decreased by approximately 10%, with SP proportions of
21.2%, 25.9%, and 29.4% of CP, respectively).
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gene were associated with differential metabolites in the carbo-
hydrate classification (Mantel's P < 0.05); plasma urea-N and
ammonia, fecal TN, total SCFA, urease activity, and the abundance of
narG gene were correlated with the plasma AA concentration
(Mantel's P < 0.05).

4. Discussion

In a previous study, we examined the effects of reduced CP diets
containing varying levels of SP levels on growth performance,
nutrient digestibility, rumen microbiota and metabolites, as well as
their potential associations with N metabolism (Zhang et al., 2021).
In the present study, we attempted to focus on the impacts of these
dietary treatments on intestinal N absorption, fecal microbiota, and
metabolites, as well as their linkage with the N metabolism
phenotype in feces, aiming to reveal the potential and mechanisms
of nutrient manipulation, specifically N fraction, in the regulation of
hindgut microbial fermentation, with the ultimate aim to miti-
gating reactive N emissions.

The counts of white blood cells and red blood cells in whole
blood, along with total protein, globulin, and alkaline phosphatase
in plasma, serve as indicators of animal humoral immunity and
protein synthesis (Chen et al., 2015). In this study, physiological and
biochemical parameters of blood in all sheep were in alignment
with those of the previous studies (Peng et al., 2016; Sweeny et al.,
2014). These parameters suggested that a modest reduction in di-
etary CP content (approximately 10%) did not adversely affect the
metabolic and health status of the sheep. Notably, with the eleva-
tion of SP levels in low-protein diets, a declining trend in creatinine
concentration was observed. This finding is consistent with previ-
ous reports (Xu et al., 2019), wherein creatinine concentration
linearly decreased with an increase in dietary urea content (0, 10,
20, 30 g/kg) for fattening Hu sheep. The modulation of urea pro-
portionwas a pivotal factor in altering dietary SP levels in this study
(Table S1), warranting further investigations to elucidate the rela-
tionship between SP levels and blood creatinine concentration. In
addition, the reduction in dietary CP content led to decreased
plasma ammonia and urea N concentrations, which was in
concordance with our previous results on serum parameters
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(Zhang et al., 2021). It was noted that an increase in dietary SP (%
CP) from 34.4% to 44.9% resulted in elevated ammonia and urea N
concentrations (Wilson et al., 1998). However, no significant dif-
ferences were observed in ammonia and urea N concentrations
with the incremental rise in SP (% CP) in low-protein diets, poten-
tially attributed to the lower addition of dietary urea. Further in-
vestigations are warranted to delineate this relationship.

The nutritional quality of protein entering the gut of ruminants,
especially the small intestine, largely depends on the AA and
peptide composition of microbial proteins within the forestomach
(Merchen and Titgemeyer, 1992). It has been reported that micro-
bial protein content was linearly correlated with dietary CP, sug-
gesting that to some extent, increased dietary CP enhances the
influx of AA and peptides into the intestine. Consequently, this may
augment the delivery of AA and peptides across the intestinal
epithelium into the bloodstream for utilization by target tissues
(Ghorbani et al., 2011).

Our study revealed that lower plasma contents of AA, particu-
larly essential AA, in the low-protein treatments compared with
CON. Nevertheless, the transportation and absorption of AA and
small peptides occur through distinct transporters in the intestinal
epithelium (Broer, 2008). To assess the potential correlation be-
tween changes in the plasma AA concentration and the absorption
process, we examined the mRNA expression levels of intestinal AA
and peptide transporters. Notably, the duodenum, jejunum, and
ileum of the LPA treatment exhibited decreased mRNA abundance
of SLC1A1, SLC7A2, and SLC7A8 compared with CON. SLC1A1 is a
Naþ-dependent glutamate transporter that can transfer glutamate
and aspartate (Rao et al., 2021; Wang et al., 2022b). These two AA
are involved in various metabolic processes, especially in intestinal
integrity, protein synthesis, and energy metabolism (Lin et al.,
2014; Pi et al., 2014). The concentrations of plasma glutamate and
aspartate were upregulated in LPB and LPC compared to LPA, sug-
gesting that enhanced intestinal nutrient utilization efficiency with
an SP proportion of approximately 25% to 30%, simultaneously the
evidence could also be found in the results of N absorption and N
efficiency (Zhang et al., 2021). SLC7A2 and SLC7A8 were two
important acidic AA transporters. The up-regulated expressions of
SLC7A2 and SLC7A8 may contribute to heightened arginine



Fig. 5. Differential mRNA abundance of small intestinal amino acids (AA) and peptide transporters (A) and plasma AA concentrations (B) across four treatments. a, bBars with
different letters indicate a significant difference at P < 0.05. DU ¼ duodenum, JE ¼ jejunum, IL ¼ ileum; EAA ¼ essential amino acids, NEAA ¼ non-essential amino acids. Treatments
included CON (16.7% crude protein [CP] based on nutritional requirements), LPA, LPB, and LPC (CP decreased by approximately 10%, with soluble protein [SP] proportions of 21.2%,
25.9%, and 29.4% of CP, respectively).
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absorption and protein synthesis, thereby improving the endoge-
nous urea N cycle (Ding et al., 2019), which also explained the
elevated plasma arginine content in LPB and LPC. Regarding pep-
tide transporters, LPA exhibited decreased mRNA abundance of
PepT1 and PHT1, particularly PHT1. However, understanding how SP
levels regulate intestinal peptide transport will require a systematic
and thorough investigation.

Nutritional manipulation, involving adjustments and optimiza-
tion of dietary CP levels, emerged as a highly effective strategy for
mitigating fecal N emissions during the feeding stage, primarily
through the modulation of the gut microbiome (Lynch et al., 2007).
Numerous studies have consistently reported that a significant
reduction in TN content in the ruminant feces and NH3 emissions
from manure management with decreased dietary CP levels (Lee
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et al., 2012; Sajeev et al., 2018). Furthermore, a recent study on
weaned pigs (Lee et al., 2022) found a decrease in NHþ

4eN content
in intestinal chyme as dietary CP content decreased. Our study
corroborates these results, demonstrating a concurrent decline in
TN and NHþ

4eN contents, as well as reduced urease activity and the
abundance of gdh gene. This further substantiates the positive as-
sociation between NHþ

4eN content and dietary N levels. Interest-
ingly, no significant variations were observed with changing SP
levels.

It is essential to highlight that urease activity in CON and LPA
was notably higher, necessitating careful attention to manure
management. Consistent with our previous study (Zhang et al.,
2021), a higher urea N content in the urine of CON and LPA



Fig. 6. Interactions of fecal microbiota, metabolites, plasma amino acids (AA) concentration and nitrogen (N) metabolism phenotypes. (A and B) Redundancy analysis (RDA)
revealing the relationship between fecal N metabolism phenotypes and bacterial community at operational taxonomic unit (OTU) abundance (A) and the relationship between fecal
metabolism phenotypes and differential metabolites (B). (C) Correlation analysis encompassing fecal metabolic N phenotype, fermentation indicators, enzyme activity, gene
expression levels and fecal microbiota, and types of differential metabolites based on Mantel-test coefficient. *Means Pearson's P < 0.05 and **means Pearson's P < 0.01. FM ¼ fecal
microbiota; FAA ¼ fecal differential metabolites in amino acid classification; FCAR ¼ fecal differential metabolites in carbohydrate classification; PAA ¼ plasma AA concentration;
TN ¼ total nitrogen; NHþ

4 eN ¼ ammonia nitrogen; NO�
3 eN ¼ nitrate nitrogen; NO�

2 eN ¼ nitrite nitrogen; MCP ¼ microbial crude protein; SCFA ¼ short-chain fatty acids;
gdh ¼ glutamic acid dehydrogenase gene; amoA ¼ ammonia monooxygenase gene subunit A; narG ¼ nitrate reductase gene; nirS/nirK ¼ nitrite reductase gene; norB ¼ nitric oxide
reductase gene; nosZ ¼ nitrous oxide reductase gene.
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groups emphasizes the imperative need to avoid mixing manure
and urine. Such practices are crucial to prevent the substantial
production of NH3, as underscored by Powell et al. (2011).
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The N cycle and associated gene abundance play a pivotal role in
sustaining agricultural and livestock production (Wang et al.,
2022a). Nitrate reductase and nitrite reductase are key



Z. Zhang, Y. Sun, X. Zhong et al. Animal Nutrition 18 (2024) 57e71
contributors to denitrification, transforming nitrate into N2 or N2O.
Our findings align with those reported by Lycus et al. (2018),
revealing a positive correlation between TN and nitrate reductase
activity. Nitrate reductase facilitates N storage by enhancing
organic N mineralization to NHþ

4eN, which is subsequently con-
verted into stable N compounds by nitrate reductase, contributing
to its storage in manure products (Chen et al., 2019).

Notably, LPB demonstrated a decrease in nitrate reductase
activity compared to CON, accompanied by down-regulation in
NO�

2eN content and narG gene abundance. The narG gene en-
codes a membrane-bound nitrate reductase catalyzing nitrate
reduction to nitrite under anaerobic conditions (Ramírez-
Fern�andez et al., 2021). Furthermore, LPB and LPC exhibited
reduced abundance of the nirS gene, with no significant differ-
ence observed in the nirK gene. According to Heylen et al. (2006),
the nitrite reductase encoded by the nirS gene has a higher af-
finity for electrons in denitrification compared with the nirK
gene, suggesting a potential reduction in intestinal denitrifying
bacteria in LPB and LPC.

Additionally, the abundance of the norB gene decreased in LPB
and LPC, possibly contributing to decreased intestinal N2O emis-
sions. These findings underscore the need for future systematic
studies to comprehensively investigate the intricate relationships
within the microbial community impacting N cycling.

Hindgutmicrobiota fermentationprimarily yielded SCFA, such as
acetate, propionate, and butyrate. Contrary to general expectations
of increased long-chain fatty acids (i.e. valerate) during the
fermentation ofN-containing compounds (Le et al., 2009; Smith and
Macfarlane, 1998), our study revealed no significant variation in
valerate proportions. This suggests that intestinal fermentation is
still dominated by carbohydrates. Notably, diminished dietary pro-
tein levels have been reported to reduce the concentrations of the
total SCFA and propionate in the hindgut of the G€ottingen Mini-pig
(Xu et al., 2020), which is consistent with the findings in our study.

Fecal microbiota analysis indicated a reduction in the abun-
dance of Psychrobacter in feces with low-protein diets, correlating
with decreased organic matter degradation and carbohydrate
fermentation (K€ampfer et al., 2002; Ma et al., 2020). Additionally,
the distinctive fecal metabolite profile of the CON group primarily is
concentrated in AA, nucleotide sugar metabolism, and unsaturated
fat acid biosynthesis. This emphasizes the impact of dietary
composition on hindgut microbiota and associated metabolic
pathways, providing insights into the modulation of microbial ac-
tivity through protein levels in the diet.

When the SP level was adjusted to 21.2% of CP in low-protein
diets, a notable decrease in the SCFA concentration and the pro-
portion of propionate was observed compared with SP levels at
25.9% and 29.4% of CP. Conversely, the proportion of butyrate
increased, reflecting the available fermented nutrients in the
hindgut, the balance between C and N degradation, and microbial
diversity (Perea et al., 2017). Remarkably, Desulfovibrio, which is
characterized by the use of lactate, pyruvate, ethanol or some fatty
acids as carbon sources, significantly enriched in LPA, thereby
promoting sulfate reduction to hydrogen sulfide and increasing
butyrate production (Chen et al., 2021; Devereux et al., 1990).

Additionally, an increase in intestinal butyrate production in
goats fed with high rumen undegradable protein is associated with
the enrichment of gut Eubacterium members that contribute to
butyrate production (Wu et al., 2022). In line with our previous
results on rumen microbiome, Prevotellaceae and Prevotella in
feces are enriched in diets with an SP proportion of approximately
25% to 30% of CP, playing a vital role in intestinal SCFA synthesis,
particularly in utilizing arabinoxylan and oligofructose for
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propionate production (G�alvez et al., 2020; Kovatcheva-Datchary
et al., 2015).

Moreover, adjusting SP to 25.9% and 29.4% of CP in low-protein
diets led to an increase in Patescibacteria abundance, actively
participating in denitrification and reducing the accumulation of
NO�

2 , NO, and N2O. Patescibacteria has shown an ability in the
reduction of NO�

2eN by involving in denitrification (Yang et al.,
2022b). Patescibacteria also mitigates energy loss caused by envi-
ronmental changes in ungulates (Wang et al., 2022c), thereby
improving nutrient utilization efficiency. Furthermore, the abun-
dance of Candidatus Saccharimonas, Ruminiclostridium 9, and
Lachnospiraceae UCG-004 was improved. It is shown that the
enrichment of these genera in feces is beneficial for improving
metabolic syndrome and maintaining intestinal homeostasis (Xu
et al., 2022; Yang et al., 2022a).

Pathway enrichment analysis showed that with the increase of
SP levels in low-protein diets, pyruvate and propionate metabolism
increased, which further provided evidence to support the con-
clusions we have drawn. In addition, thiamine metabolism was
enhanced in LPB and LPC compared with LPA, highlighting the
importance of thiamine as a coenzyme in the catabolism of sugar
and AA, and its pivotal role in carbohydrate energy release. Thia-
mine deficiency reduces the activity of pyruvate dehydrogenase,
leading to lactate accumulation. Therefore, thiamine therapy is
considered a potential strategy for improving metabolic pathways
(Fujii et al., 2020; Nozaki et al., 2009). Recent studies have sug-
gested that thiamine supplementation may regulate energy meta-
bolism disorders in lipopolysaccharide-induced rumen epithelial
cells (Ma et al., 2022), indicating the potential detriment of lower
SP levels to energy and N metabolism homeostasis (Henning et al.,
1993).

In this study, the abundance of fecal microbiota demonstrated a
close association with urease and nitrate reductase activities. Ure-
ase, in particular, exhibited links with distinct AA and carbohydrate
metabolites, influencing the transformation of N phenotype forms
in feces, including NHþ

4eN and NO�
2eN contents. RDA analysis

highlighted these enzymatic activities as primary drivers of fecal
microbiota and metabolites. Therefore, effective reduction of
ruminant N excretion requires not only adjustments to nutrition
manipulation strategies but also the consideration of the microbial
community structure and functional characteristics across different
ecological niches throughout the entire digestive tract. Concur-
rently, ecological strategies are required to maximize the efficacy of
N emission reduction in manure management.

5. Conclusions

Decreasing dietary CP content by approximately 10% emerges as
a promising strategy to mitigate N emissions from the source.
Notably, fine-tuning the dietary SP levels to 25% to 30% of CP in low-
protein diets demonstrated an amplifying effect. This adjustment
not only contributed to a decline in fecal urease activity but also led
to a reduction in NHþ

4eN and NO�
2eN contents, facilitated by the

enrichment of the Prevotella genus. The observed up-regulation in
mRNA abundance of intestinal AA and peptide transporters,
coupled with elevated plasma AA concentrations, underscores a
significant enhancement in N efficiency. This nuanced dietary
intervention, therefore, holds promise for optimizing N utilization
in livestock. Furthermore, our findings highlight the intricate
relationship between dietary SP level and the urea N cycle. The
variations in plasma urea cycle-related AA with SP levels under-
score the need for future comprehensive investigations into the
systemic responses of the urea N cycle to dietary SP manipulations.
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Such endeavors are essential for advancing our understanding and
refining strategies for sustainable and efficient N management in
animal production systems.
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