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Abstract
Messenger ribonucleic acid (mRNA) vaccinesmade their successful public debut
in the effort against the COVID-19 outbreak starting in late 2019, although the
history of mRNA vaccines can be traced back decades. This review provides an
overview to discuss the historical course and present situation of mRNA vaccine
development in addition to some basic concepts that underly mRNA vaccines.
We discuss the general preparation and manufacturing of mRNA vaccines and
also discuss the scientific advances in the in vivo delivery system and evaluate
popular approaches (i.e., lipid nanoparticle and protamine) in detail. Next, we
highlight the clinical value of mRNA vaccines as potent candidates for thera-
peutic treatment and discuss clinical progress in the treatment of cancer and
coronavirus disease 2019. Data suggest that mRNA vaccines, with several promi-
nent advantages, have achieved encouraging results and increasing attention due
to tremendous potential in diseasemanagement. Finally, we suggest some poten-
tial directions worthy of further investigation and optimization. In addition to
basic research, studies that help to facilitate storage and transportation will be
indispensable for practical applications.
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1 INTRODUCTION

Messenger ribonucleic acid (mRNA) vaccines are now
regarded as an attractive and promising alternative to
conventional vaccines. mRNA vaccines show several
prominent advantages compared to live attenuated and
subunit-based vaccines.1,2 First, they exhibit reliable
potency in the induction of immune responses.3 mRNA
vaccines are able to drive both humoral and cellular
immunity.4,5 In addition, RNA interacts directly with pat-
tern recognition receptors (PRRs), driving a robust innate
immune response without the need to involve additional
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adjuvants. However, innate antiviral responses may be a
double-edged sword, as they may reduce vaccine effective-
ness by downgrading mRNA expression. Second, mRNA
vaccines are safe, avoiding many risks of conventional
vaccines, such as reversion to virulence or insertional
mutagenesis.6,7 Furthermore,mRNA, as aminimal genetic
unit, does not stimulate any antivector immunity, making
recurrent administration of mRNA vaccine safe and
easy.8,9 Third, mRNA vaccines are rapid and inexpensive
to manufacture, because the synthesis of mRNA vaccines
mainly uses in vitro transcription (IVT),10 which bypasses
the time-consuming steps of in vivo protein expression
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(i.e., cloning and cell culture).11,12 Lastly, mRNA is a
manageable transient modulator of physiologic processes.
The global COVID-19 pandemic beginning in 2020

brought mRNA vaccines into the spotlight and has
greatly accelerated their deployment. Recently, the
Pfizer-BioNTech COVID-19 vaccine became the first-ever
approved mRNA-based vaccine available to the public,
although the idea of a nucleic acid vaccine was proposed
decades ago.13 For a long time, the susceptibility of naked
RNA to extracellular RNase degradation was the major
obstacle to RNA transfection; therefore, a delivery system
that protected mRNA and mediated cellular internaliza-
tion of mRNA was needed. The earliest solution arose
as early as 1978, when scientists conducted a landmark
experiment, which demonstrated that human cells could
take upmRNA sequestered within the liposome and stably
produce proteins from it.14 However, the use of mRNA
as a potential therapeutic agent still remained a concept
with little practicality, until in 1984, when mRNA was
successfully in vitro synthesized in the laboratory.15 Since
then, mRNA vaccine development has attracted more
interest, and in 1993, Martinon and his team designed
and tested the first mRNA vaccine encoding the influenza
nucleoprotein (NP). They managed to elicit anti-influenza
cytotoxic T lymphocytes (CTL) responses in mice.16 In
later years, mRNA vaccines were verified to have versatil-
ity in giving effective protection to animal hosts against
various diseases, including both infectious diseases (e.g.,
rabies, Zika virus, and others)17–22 and noninfectious
diseases (e.g., cancer).23–31 In 2005, another revolutionary
paper was published by Katalin Karikó and her colleagues,
suggesting that different uridine modifications of RNA
(e.g. m5C, m5U, pseudouridine Ψ, and others) could sup-
press the activation of different human Toll-like receptors
(TLRs), while the unmodified forms stimulated all TLRs
such as TLR3, TLR7, and TLR8.32 This finding made a
profound impact on mRNA vaccine design and further
advanced the use of mRNA (Figure 1).
In this review, we provide a broad overview of the

progress in mRNA vaccine technology (i.e., the engineer-
ing of mRNA sequence and in vivo delivery systems),
current application and success of mRNA vaccines in the
treatment of cancer, aswell as a range of infectious diseases
(e.g., COVID-19).

2 BASICS OFmRNA VACCINES

2.1 mRNA biology

mRNA is single-strandedRNA (ssRNA) encoding a genetic
sequence that can be translated to a protein by ribosome.33

There are three main types of mRNAs that mRNA vac-
cines can use: conventional mRNA, self-amplifying RNA,
and circular RNA.34,35 Conventional mRNA is a nonrepli-
cating linear mRNA and so far has been the focus of this
field. Self-amplifying RNA (saRNA) resembles conven-
tional mRNA, albeit containing extra elements, including
5′ and 3′ conserved sequence elements, a large open read-
ing frame (ORF) encoding four nonstructural proteins
(nsP1-4), which form alphavirus RNA-dependent RNA
polymerase (RdRP), and a subgenomic promoter dictat-
ing the expression of gene of interest as subgenomic RNA.
saRNA can achieve same efficacy with a much lower
dose.36–38 However, reuse of saRNA may be limited by
immunity against viral RdRP.39 Circular RNA (circRNA)
can be rendered translatable by inserting an internal ribo-
some entry site upstream of the coding sequence. Themost
viable approach for generating circRNA in vitro to date uti-
lizes the group I intron self-splicing ribozyme, which pro-
duces large circRNA using guanosine 5′-phosphate (GTP)
and magnesium ion as cofactors.34,40–43 This method is
also known as the permuted introns and exons method.44
A typical mRNA consists of a 5′ cap, a 5′ untrans-

lated region (UTR), an ORF, a 3′ UTR, and a poly-A
tail. In the eukaryotic system, translation initiation fac-
tor 4E (eIF4E) binds to the 5′ cap, and poly-A binding
protein (PABP) binds to the 3′ poly-A tail. Through the
interaction of eIF4E and PABP with the translation initia-
tion factor eIF4G, the mRNA circularizes, which increases
its structural stability45–47 and allows enhanced transla-
tion. A poly-A tail about 100 nucleotides long is pre-
ferred in mRNA design, because maintenance of a long
poly(d(A/T)) stretch of DNA templates is usually difficult
in the bacterial host.48–50 Pfizer/BioNTech utilized a poly-
A tail 110 nucleotide long with a GCAUAUGACU linker
placed between the poly(A)30 and poly(A)70 sequences.51
Counterintuitively, recent insights into poly-A tail biology
suggested that mRNAs with shorter poly-A tails (about
30 nt long) are generally better translated than those with
longer poly-A tails. Counteracting the roles of cytoplas-
mic poly(A) binding protein (PABPC) in protecting the
poly-A tail to sustain translation and in facilitating dead-
enylase activities to accelerate mRNA decay may be one
explanation.52
The UTR elements impact the translational efficiency

of mRNA.53–55 UTRs of customized mRNAs are usually
adapted from highly expressed human genes. For exam-
ple, UTRs of α-globin and β-globin were often used, and in
the BNT162b2 vaccine,56 3′ UTRs of hybrid AES-mtRNR1
were adopted after screening by systematic evolution of
ligands via the exponential enrichment method.57–60 The
ORF generally encodes a target protein antigen for the
purpose of eliciting effective immune responses.
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F IGURE 1 Timeline of major findings and breakthroughs in the development of messenger ribonucleic acid (mRNA) vaccines. EMA,
European Medicines Agency; COVID-19, coronavirus disease 2019; FDA, U.S. Food and Drug Administration; LNP, lipid nanoparticle

2.2 Innate immune responses:
Something to exploit or to avoid?

Exogenous mRNAs are typically transferred to the cytosol
through the endosomal pathway, along which the cargo
mRNAs are readily recognized by PRRs, such as TLR-
7. The recognition triggers immediate induction of type
I interferon that ultimately leads to both stimulation of
innate immunity and inhibition of translation.61,62 Cure-
Vac managed to solve this dilemma by introducing the
RNActive technology,63 in which a mixture of naked
mRNAs and protamine-complexed mRNAs work together
to activate the TLR-7-dependent immune response, while
maintaining an acceptable level of antigen expression. The
two-component mRNA vaccine system could thus elicit
balanced humoral and T cell-mediated responses, in par-
ticular the type 1 helper T (Th1)-biased responses.64–66
However, the more common practice is to avoid PRR
recognition of the delivered mRNA, especially the uridine
moiety, rather than to exploit it. CureVac also devised an
mRNA sequence engineeringmethod to select for themost
germinal center (GC)-rich codons, thereby reducing the
presence of uridine and achieving significantly higher level

of protein production.67 Codon optimization, which could
generate misfolded proteins or even novel proteins with
unknown functions, should be scrutinized on a case by
case basis.68–70 The prevailing approach is to substitute
the uridine in mRNA molecules with modified nucleo-
sides, such as pseudouridine, N1-methyl-pseudouridine, or
5-methoxyuridine.71–73 However, the previously unexam-
ined issue of modified nucleosides impeding translation
elongation and termination deserves due attention.74,75

2.3 Manufacture of mRNA vaccines

mRNA synthesis in vitro starts from bacteriophage (usu-
ally T7) RNA polymerase-mediated transcription of a
linear DNA template. A typical final product of in vitro
mRNA manufacturing is Cap 1 mRNA.76 The Cap 1 struc-
ture is derived from the Cap 0 structure, which has an
N7-methyl guanosine connected to the 5′ nucleotide by a
5′-5′ triphosphate bridge. Further methylation at the 2′-
O position of Cap 0 gives the Cap 1 structure. For Cap 1
mRNA, the Cap 0 backbone enables high accessibility to
the translationalmachinery,77 while both 2′-Omethylation
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and elimination of 5′ triphosphate contribute to the eva-
sion of translational inhibition followed by innate immune
recognition.
Capping of RNA in vitro could be done in two ways:

either via co-transcription or via post-transcriptional enzy-
matic reactions. Co-transcriptional capping is a one-step
process, a typical example of which uses CleanCap tech-
nology. Thismethod uses a proprietary 5′ capping solution,
which has a capping efficiency of 94% without the yield
being significantly compromised. Enzymatic capping is
a conventional two-step process, in which vaccinia cap-
ping enzyme catalyzes the formation of Cap 0, while
2′-O-methyltransferase converts Cap 0 to Cap 1 structure.
Co-transcriptional capping is simple and convenient.How-
ever, CleanCap not only requires the expensive cap ana-
logue and achieves incomplete capping but also requires
alkaline phosphatase processing of uncapped RNA to
avoid innate immune recognition. In addition, the DNA
template must be modified to replace the GG sequence,
which often appears after the TATA box of the T7 pro-
moter, with an AG sequence. As for enzymatic capping, it
is highly efficient but requires a buffer exchange between
steps, which is more complicated and time-consuming.
Furthermore, certain secondary structures at the 5′ end
of RNA may hamper efficient enzyme-mediated capping
(Figure 2).
These in vitro reactions can be easily scaled up for bulk

manufacture of mRNA. When the reactions are complete,
impurities in the reaction systems (e.g., buffers, proteins,
residue substrates, DNA templates, dsRNA byproducts,
and short RNA fragments) must be removed to obtain
pure mRNA products. mRNA purification involves degra-
dation of DNA templates with DNase I digestion, removal
of dsRNA via cellulose chromatography, removal of small-
molecule impurities with tangential flow filtration (TFF),
and removal of particulate contaminants via a sterile
filter.78 This process is simple and convenient; however,
remaining dsRNA byproducts could still trigger innate
immune responses and interfere with vaccine efficacy.
Strategies such as oligo dT affinity chromatography,79
anion exchange chromatography, and hydrogen bond
chromatography80 can produce mRNA with even higher
purity in combination with a subsequent polishing step.
For oligo dT affinity chromatography, the poly-A tail of
mRNA basepairs with the oligo dT stretches under high
ionic strength and dissociates under low ionic strength
during elution. Other impurities that cannot bind to oligo
dT are removed.81 For anion exchange chromatography,
the net contribution of hydrogen bonding is reduced
with an anion exchanger with reduced hydrogen bond-
ing potential, and impurities like dsRNA and DNA are
washed off with 1MNaCl and 10mMEDTA. Subsequently,
ssRNA can be eluted at ambient temperature by a pH gra-
dient. For hydrogen bond chromatography, impurities like

dsRNA and DNA can also be washed off with 1 M NaCl
and with 10 mM EDTA, and ssRNA can be eluted by a
pyrophosphate gradient.82
Complexation ofmRNAwith lipid nanoparticles (LNPs)

can be carried out with multiple microfluidics devices
placed in parallel.83 After purification by a TFF device and
a sterile filter, the resulting mRNA-LNPs are diluted with
buffer to achieve pharmaceutical concentrations of interest
(Figure 3).

2.4 Storage of mRNA vaccines

The two approved mRNA vaccines, mRNA-1273 and
BNT162b2, both formulated in LNPs, have shelf lives
of 6 months in a frozen state at −20◦C and −80 to
−60◦C,84 respectively. When thawed, they can be stored
at 2–8◦C for up to 1 month.85 These strict storage condi-
tions challenge the global distribution of those vaccines,
and many studies have been dedicated to addressing this
issue.86–89 LyophilizedmRNA-LNPs achieved a stable stor-
age duration of 6 months at 4◦C and 3 months at room
temperature.88

2.5 Quality control of mRNA vaccines

In 2021, the WHO released guidance on mRNA against
infectious diseases, in which the drug substance (mRNA)
and the drug product (final formulated vaccine) are some-
what divergent in quality control considerations.90 For
mRNA, the identity, purity and impurities, quantification
and physical state, safety attributes, referencematerials, as
well as stability are points of concern, while for the final
formulated vaccine, the identity, purity and impurities,
content, strength or quantity, safety attributes, potency, ref-
erence materials, as well as stability testing, storage, and
expiry date are the focus.

2.6 Adverse effects of mRNA vaccines

Data from mass vaccination efforts suggest that mRNA
vaccines are safe, with adverse effects that are gener-
ally acceptable in frequency and severity. Nevertheless,
rapid and robust local inflammation could be induced
in mice-administrated mRNA vaccines via intradermal,91
intramuscular,92 or intranasal routes.93 This process
was dependent on the ionizable lipid component of
the LNP formulation.94 Myocarditis is also an adverse
effect of concern, which, however, could be attributed
to inadvertent intravenous injection during intramuscu-
lar administration.88 Furthermore, anaphylaxis could be
induced by antibody response toward the polyethylene
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F IGURE 2 Three types of messenger ribonucleic acid (mRNA) and their production and modification. (A) Features of conventional
mRNA, self-amplifying RNA, and circular RNA, as well as their typical synthesis processes in vitro. M in circle, methyl group. G in green,
guanylate. UTR, untranslated region. IVT, in vitro transcription. pA, poly (A) sequence. NSP1-4, sequence encoding four nonstructural
proteins, namely nsP1-4, which together form RNA-dependent RNA polymerase. Sgp, subgenomic promoter. IRES, internal ribosome entry
site. (B) Structure of cap analogue Cleancap AG, as well as uridine and its modifications. Note that for Cleancap AG, the two methyl groups
are highlighted with purple circles.

glycol (PEG) moiety, which is a rare, yet possibly fatal
outcome.95–97 These data warrant future study to optimize
the delivery system of mRNA vaccines.

2.7 Administration routes of mRNA
vaccines

Administration method is very important for the effi-
cacy of mRNA vaccines and can affect the organ dis-
tribution, expression kinetics, induced immune response

intensity, and side effects. For prevention vaccines, such
as COVID-19 mRNA vaccines, in order to induce a
strong immune response, administration is typically intra-
muscularly and subcutaneously (Tables 1 and 2).98–100
Therapeutic mRNA vaccines, such as a variety of tumor
therapeutic mRNA vaccines, can be administered intra-
venously, intratumorally,101 or subcutaneously (Table 3).102
In addition, mRNA can be transfected into dendritic cells
(DCs) in vitro to prepare a DCs cell vaccine, and the
cell vaccine can be infused to prevent or treat diseases
(Table 4).103–105
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F IGURE 3 Preparation and application of messenger ribonucleic acid (mRNA) vaccines. Once pathogens or tumors are identified,
sequences for the target antigens are determined by the combined efforts of sequencing, bioinformatics, and computational approaches.
Target DNAs are synthesized and transcribed into mRNAs in vitro, and then mRNA transcripts are purified to remove contaminants and
reactants. Purified mRNA is mixed with lipids in a microfluidic mixer to form lipid nanoparticle mRNA vaccines. Dendritic cells are loaded
with candidate mRNA to form DC-mRNA vaccines. Various vaccines are produced by scaling up, then quickly tested and stored in sterilized
bottles to treat various cancers and infectious diseases through different administration methods. DC, dendritic cells; LNP, lipid nanoparticle

3 IN VIVO DELIVERY SYSTEMS FOR
mRNA VACCINES

The selection of an optimal delivery system for mRNA
vaccines remains one of the greatest challenges in their
development. Intratumoral injection of naked mRNA can
be used for cancer treatment while showing an appro-
priate adjuvant effect.106 However, due to the extremely
low uptake of naked mRNA, this drug delivery system is
often supplemented to reinforce the stability and efficiency
of mRNA in vivo delivery. In addition, mRNA molecules
are large, hydrophilic, and carry negative charges, and
electrostatic repulsion makes them thermodynamically
unfavorable to diffuse across the plasmamembrane, which
is also negatively charged.107–109 Once entering the body,
mRNA will be further challenged by endogenous nucle-
ases for degradation. Therefore, having a nontoxic and
efficient delivery system is of critical importance to the suc-

cess of mRNA vaccines. An ideal mRNA delivery system
should not only enhance cellular uptake and expression of
mRNA by target cells, but also protect them from nuclease
degradation.99,100,110
At present, there is a large number of mRNA delivery

systems being reported, many of which have already
entered clinical trials. Mature delivery systems include
LNP84,111,112 and protamine carriers,113–115 while other
less popular attempts include polyethylenimine,116
cell-penetrating peptides,117 lipopolyplexes,118 cationic
nanoemulsions,119 and exosomes.120,121 LNPs and other
synthetic nanoparticles are foreign substances, which
can cause related side effects ranging from mild to
severe. Exosomes are naturally occurring, nano-sized
extracellular vesicles with low immunogenicity and high
safety. In addition, exosomes can penetrate physiological
barriers that synthetic nanoparticle carriers cannot.
These characteristics make exosomes an ideal delivery
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F IGURE 4 Schematic diagram of the typical structure of messenger ribonucleic acid (mRNA)-LNP and in vivo delivery. In an acidic
environment, the cationic LNP can form a complex with nucleic acids via electrostatic interaction. In the neutral environment, the formula
becomes neutrally charged and thereby interacts less with serum components. Once mRNA-LNP reaches the cell membrane, cationic
phospholipids fuse with and destabilize the cell membrane, promoting the delivery of mRNAmolecules. After being internalized into the cell,
the mRNA-LNP is engulfed by the endosome. The endosomal environment acidifies the ionizable phospholipids, allowing fusion with the
negatively charged primary lysosomal membrane. LNP integrity is disrupted by this interaction, and therefore mRNA is released. Membrane
fusions and structural changes in LNPs are thought to be the main causes of endosomal membrane destabilization and mRNA escape.

carrier for mRNA.122 The challenges of using exosomes
as carriers of mRNA delivery currently lie in large-scale
GMP-grade production and the encapsulation efficiency of
exosomes.8,123 The three large-scale developers of mRNA
vaccines—Moderna, CureVac, and BioNTech—invested
heavily in the LNP delivery system in the development
of mRNA vaccines, rendering LNP the most prevalent
nonviral delivery system for nucleic acid drugs.

3.1 LNP

LNP is a nonviral carrier that is regarded as nontoxic
and safe. The main components of LNP include PEGy-
lated lipids, cholesterol, neutral helper lipids, and ion-
izable cationic lipids (Figure 4).108,124 PEG locates on
the surface of LNP. It prevents the interaction of LNP
with other lipid particles or serum components,125 which

blocks LNP from aggregating and being phagocytosed
by immune cells. Cholesterol allows strong membrane
fusion, which facilitates the entry of mRNA into the
cytoplasm.126 The neutral helper lipids are, in general,
saturated phospholipids.127 They increase the phase tran-
sition temperature of cationic liposomes, which support
the formation of a lamellar lipid bilayer and stabilize
its structure.128 The ionizable cationic phospholipids, the
most critical excipient in LNP composition, determine
the efficiency of mRNA delivery and transfection.129 They
play a critical role in the intellectual property protec-
tion of the current LNP delivery systems.130 For example,
the ionizable cationic lipids used in the Pfizer-BioNTech
and Moderna COVID-19 mRNA vaccines (BNT162b2 and
mRNA-1273) are [(4-hydroxybutyl)azanediyl]di(hexane-
6,1-diyl) bis(2-hexyldecanoate) (ALC-0315) and SM-102,51
respectively; the siRNA drug Onpattro uses Dlin-MC3-
DMA.131 Microfluidic technology based on the organic
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solvent injection method to prepare LNPs can accurately
control the size of LNPs, and this represents the most
suitable preparation technology for LNPs at present.132
Although mRNA-LNP vaccines have shown unprece-

dented potential, LNP delivery technology still has poten-
tial limitations, which hinder practical application, such
as induction of allergic reactions, easy oxidative degrada-
tion, and poor preparation reproducibility.94,112,133–136 The
biggest concern is that LNP constituents may increase the
risk of allergic reactions. A series of LNP-triggered aller-
gic reactions is currently considered to be related to several
factors. First among them is the strong immunogenic
nature of ionizable cationic phospholipids.94,137 For exam-
ple, after injection of the Pfizer-BioNTech or Moderna
COVID-19 mRNA vaccines, various symptoms including
swelling, pain, chills, and fever have been reported.138–140
These are suspected to be the consequence of the pro-
duction of pro-inflammatory cytokines such as IL-1β and
IL-6.141–143 Second, an increasing number of studies has
verified the immunogenicity of PEG; therefore, repeated
administration of PEG can induce allergic reactions.143,144
In addition, the hypersensitivity reactions observed after
mRNA-1273 and BNT162b2 administration are likely to be
attributed to the formation of anti-PEG antibodies after
the first vaccination.145,146 Fortunately, it has been reported
that alternative lipids can be involved to prevent aggregate
formation. For example, polysarcosine-modified lipids can
stabilize the LNP delivery system and prevent aggregate
formation with no allergic reactions yet observed.147

3.2 Protamine

Protamine is a natural cationic polypeptide mixture and
exhibits two main advantages as an mRNA delivery
vehicle: first, due to its high positive charge,114 it can
spontaneously complex with negatively charged mRNA,
thereby protecting mRNA from serum nuclease degrada-
tion. Second, protamine also acts as an adjuvant.66,148,149
The protamine-mRNA complex is recognized by immune
cells via the TLR-7/TLR-8 pathway and activates a strong
immune response to secrete type I interferon, TNF-
α, IL-12, and other cytokines.115,150–155 Protamine-mRNA
nanoparticles of different sizes have different stimulatory
effects on immune cells. For example, larger particles
mainly activate monocytes and promote the production
of TNF-α, while particles smaller than 450 nm effectively
stimulate plasmacytoidDCs to release IFN-α.152,156 Tomeet
varying research needs, it was discovered that by adjusting
the protamine tomRNA ratio and the salt concentration of
the dilution solution, protamine-mRNA can be prepared
into particles with average diameters ranging from 50 to
1000 nm.157

CureVac rabies vaccine (CV7201) uses protamine as a
delivery vehicle. CV7201 is made up of protamine and
mRNA that encodes rabies virus glycoprotein (RABV-
G).158 In addition, CureVac also established an RNAc-
tive platform containing a protamine delivery vector.
Based on RNActive,159 CureVac carried out clinical trials
for melanoma, prostate cancer (CV9104), and nonsmall
cell lung cancer (NSCLC) (CV9201 and CV9202).160,161
In the phase IIb clinical trial of the CV9104 vaccine
(NCT01817738), the overall survival (OS) of patients with
metastatic castration-resistant prostate cancer was not
significantly improved compared with the placebo con-
trol group.162 Clinical trials for CV9201 and CV9202 also
failed to show significant efficacy, which may be a result
of tumor-induced immunosuppression. Therefore, it has
been proposed to combine mRNA vaccines with immune
checkpoint inhibitors in future studies. Based on these
results, CV9202 is undergoing a phase 1/2 study of com-
bination immunotherapy and mRNA vaccine in subjects
with NSCLC. The vaccine, administrated by intrader-
mal injection using a needle-free jet injector, is used
in combination with the anti-PD-L1 antibody (Durval-
umab) and/or the anti-CTLA4 antibody (Tremlimumab)
(NCT03164772).66
Currently, protamine-formulated mRNA delivery sys-

tems result in limited mRNA translation efficiency and
immunity strength. Compared with LNP, lower transfec-
tion efficiency of protaminemay arise from its hydrophilic-
ity, whichmakes it difficult to permeate the cell membrane
and escape from endosome.114,163,164 Adding endosome
destabilizing agents or adjusting the protamine to DOTAP
(1,2-Dioleoyl-3-trimethylammonium-propane, a cationic
lipids) ratio is expected to improve the transfection effi-
ciency of protamine-mRNA complexes.165

3.3 Tissue and cell targeted delivery
systems

For mRNA therapy, it is absolutely critical that the mRNA
is delivered to the right place in the body to have the desired
therapeutic effect. This not only enhances the curative
effect but also reduces off-target effects. However, the liver
has been found to be a natural site for accumulation upon
systemic administration of mRNA-LNP.166,167 In order to
promote the efficacy of mRNA, the delivery of mRNA to
specific organs, tissues, and cells needs to be resolved.
Targeted delivery of mRNA to the spleen is beneficial

for vaccines and immunotherapy because there are a large
number of immune cells in this organ. It was previously
reported that using intravenously-administered positively
charged RNA-lipoplexes (RNA-LPX) (lipid to RNA charge
ratio of 5:1) targeted Luc expression predominantly in the
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lungs of mice. After optimally adjusting the RNA-LPX for-
mulation with a charge ratio of 1.3:2, which effectively
targeted RNA to the spleen, LPX mediated mRNA effi-
cient uptake and expression of the encoded antigen by DC
populations and macrophages.168
Selective organ targeting (SORT) nanoparticles are in

the development for mRNA delivery to nonliver tissues.
LNPs are usually composed of ionizable cationic lipids,
amphiphilic phospholipids, cholesterol, and poly(ethylene
glycol) lipids. SORT molecules are the fifth component
added to the traditional four-component LNPs, with
the added SORT molecules controlling biodistribution,
global/apparent pKa, and serumprotein interactions of the
SORT nanoparticles. With the help of SORT molecules,
LNPs can specifically target the lungs, the spleen, and the
liver, and effect mRNA delivery and gene editing of related
cells, such as epithelial cells, endothelial cells, B cells, T
cells, and hepatocytes.41,169

4 mRNA VACCINES FOR
PREVENTION OF INFECTIOUS DISEASES

Infectious diseases are transmissible diseases caused by
infection by pathogens, such as bacteria and viruses. The
first active defense of host against those pathogens is
innate immunity, which is usually evoked by PRR recogni-
tion of pathogen-associated molecular patterns (PAMPs).
PAMPs are a series of conserved and highly abundant
molecular motifs within a class of pathogens. Innate
immunity utilizes various mechanisms to combat invad-
ing pathogens, such as inflammation, engulfment, and the
complement system. Later, adaptive immunity, elicited by
antigen presentation in an inflammatory milieu, reacts
specifically to antigens of pathogens by secreting antibod-
ies and activating cytotoxic lymphocytes. Effective innate
immunity creates the optimal microenvironment to fos-
ter a potent adaptive immunity, or it will otherwise be too
weak and too late to prevail over pathogens in cases of seri-
ous infections. However, prophylactic vaccination is able
to boost a strong adaptive defense and adaptive memory
before infection takes place, achieving enduring immu-
nity against relevant pathogens. mRNA vaccines encoding
pathogen antigens are an active family of vaccines for
controlling infectious diseases.1,170

4.1 COVID-19 mRNA vaccines

The COVID-19 pandemic caused by the severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) has more
than 447 million cases and six million deaths globally as
of March 8, 2022. It has devastating effects on health, as

well as social and economic situations. Two mRNA vac-
cines were released after a short period of development.
BNT162b2, under the brand name Comirnaty, and mRNA-
1273, under the brand name Spikevax, were developed by
Pfizer–BioNTech and Moderna, respectively. They were
authorized for emergency use in December 2020 and have
sincemade considerable contributions to infection control.

4.1.1 Design of the COVID-19 mRNA
vaccines

The two approved COVID-19 mRNA vaccines, BNT162b2
and mRNA-1273 (see Table 1),171 both contain mRNAs
encoding the SARS-CoV-2 spike (S) protein, a 1273 amino
acid long type I transmembrane glycoprotein that dic-
tates the infectivity of the virus. One common feature is
that they both harbor two substitutions of amino acids,
namely K986P and V987P, in the peptide chain to stabi-
lize the prefusion conformation of the S protein.112,172 In
addition, they both use N1-methyl-pseudouridine, instead
of uridine, as a substrate to limit innate immune responses
to mRNAs. However, the capping strategies differ. Cap-
ping for BNT162b2 is fulfilled co-transcriptionally with the
previously described CleanCap cap analogues,84,173 while
capping for mRNA-1273 is achieved by post-transcription
reactions catalyzed by vaccinia capping enzyme and 2′
O-methyltransferase as discussed above.84,174
Other modifications of the S antigen were also inves-

tigated. In one study, wild-type S antigen versions with
two proline substitutions (2P), four additional proline
substitutions (6P), furin cleavage site elimination, and
endoplasmic reticulum retention signal elimination were
compared for their capacity to induce neutralizing anti-
bodies. The S antigen with both 2P and furin cleavage site
elimination outperformed the others, inducing Th1-biased
responses in both the mouse and nonhuman primate
models.175 In another study, glycosylation site depletion in
the receptor-binding domain or the S2 domain of the S
antigen exposed more conserved epitopes, and the mRNA
vaccine encoding this type of S protein conferred broad
protection against wild-type virus and different variants of
concern. The resulting misfolded protein product induced
cell apoptosis and potent T cell responses.176
Although the S antigen is the predominant target for

COVID-19 mRNA vaccines, other structural and nonstruc-
tural genes have been proposed as targets.177–184 These
genes are not under constant high selection pressure and
are thusmore conserved. Structural gene encodingNP (N),
which is indispensable in the viral life cycle, was shown
to elicit protective immune responses.177,180 Nonstructural
genes, although not present in viral particles, can also
be exploited to mark the infected cells for destruction.
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TABLE 1 Information on COVID19 mRNA vaccines approved for use

Category Pfizer-BioNTech Moderna
Name product BNT162b2 mRNA-1273
Lipid nanoparticle
components and ratio

ALC-0315/DSPC/Cholesterol/ALC-0159 =
46.3:9.4:42.7:1.6

SM-102/DSPC/Cholesterol/PEG2000-DMG =

50:10:38.5:1.5
Ionizable nitrogen/phosphate
molar raio

6 Estimated to be 6

Excipients KH2PO4; Na2HPO4; KCl; NaCl; Sucrose; Water
for injection

Tris; sodium acetate; sucrose; water for injection

Ages recommended 5+ years old 18+ years old
mRNA dose; route of
administration

30 μg; intramuscular 100 μg; intramuscular

Primary series Two doses; given 3 weeks apart two doses; given 4 weeks apart
Booster dose Everyone aged 18 years and older should get a

booster dose of either Pfizer-BioNTech or
Moderna (COVID-19 vaccines) 5 months after
the last dose in their primary series.

Everyone aged 18 years and older should get a
booster dose of either Pfizer-BioNTech or
Moderna (COVID-19 vaccines) 5 months after
the last dose in their primary series.

Teens 12–17 years old should get a Pfizer-BioNTech
COVID-19 Vaccine booster 5 months after the
last dose in their primary series.

Null

When fully vaccinated 2 weeks after 2nd dose 2 weeks after 2nd dose

Note: The table’s data adapted from https://www.sciencedirect.com/science/article/pii/S0378517321003914 and https://www.cdc.gov/coronavirus/2019-ncov/
vaccines/different-vaccines.html.
Abbreviation: ALC-0315, ([(4-hydroxybutyl)azanediyl]di(hexane-6,1-diyl) bis(2-hexyldecanoate)); ALC-0159, 2-[(polyethylene glycol)-2000]-N,N-ditetra
decylacetamide; COVID-19, corona virus disease-2019; DSPC, 1,2-Distearoyl-sn-glycero-3-phosphocholine; mRNA,messenger ribonucleic acid; PEG, polyethylene
glycol.

Studies have suggested that nonstructural protein 3 (Nsp3),
Nsp8, and Proteinase 3CL-PRO could serve as potential
targets.181–183

4.1.2 Mechanisms of action of COVID-19
mRNA vaccines in humans

mRNA vaccines can induce adaptive immunity against
specific antigens. In the case of COVID-19mRNAvaccines,
while the induction of neutralizing antibodies, which inac-
tivate the live viruses, is currently a major concern, the
roles of T cell immunity in the process are becoming more
appreciated.185
Analyses on vaccinated individuals revealed that, after

the first dose, COVID-19mRNA vaccines elicited rapid Th1
and follicular helper T (Tfh) cell responses, which posi-
tively correlated with the level of follow-up CD8+ T cells
and neutralizing antibodies after the second dose. Impor-
tantly, CD4+ and CD8+ T cells generated by mRNA vac-
cination exhibited memory characteristics, which could
be pivotal to recall responses for future infection.4,186 In
another study, by directly probing GC responses in the
lymph nodes (LNs) of vaccinees, a connection between GC
formation and the generation of neutralizing antibodies
and memory B cells after COVID-19 mRNA vaccination

was proposed.187 It was demonstrated in a recent study
that, after COVID-19 mRNA vaccination, GCs in LNs were
robustly developed, and vaccine mRNA and the result-
ing S antigen were present in the GCs for a prolonged
period of time. Nine months after vaccination, the titre
of spike-specific IgG dropped to about 1/20 of the peak
level; however, a third-dose booster managed to generate
another new peak of antibody titer within 1 week.188 Sev-
eral other studies also corroborated a waning of immune
responses against COVID-19 over time, arguing for the
necessity of further boosters to consolidate long-term
immunity.19,189–193
Mucosal immunity, which directly responds to viral

challenges, is also a concern. Disappointingly, in contrast
to systemic immunity, mucosal immunity was poorly acti-
vated following standard intramuscular administration.194
In light of this, a mucosal booster strategy was proposed to
elevate mucosal immunity against COVID-19.195

4.1.3 Real-world efficacy and strategies of
COVID-19 mRNA vaccines

Data from real-world observational studies have been
accumulating, as mass vaccination programs have been
implemented worldwide.196 A general study on mRNA

https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines.html
https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines.html
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vaccines based on health care staff, first responders, and
other frontline workers demonstrated vaccine effective-
ness of 91% for those who received two doses, and 81%
for those who had only 1 dose. Moreover, for those who
contracted the virus, the vaccinated group benefited by
experiencing a 40% reduction in viral load, a 58% lower risk
of febrile symptoms, and 2.3 days less sickbed time.197
In one study conducted by Israel’s largest health care

organization on the BNT162b2 vaccine, by exploring the
data collected at days 14 through 20 after the first dose and
at day 7 ormore days after the second dose, the vaccine had
effectiveness rates of 46% and 92% for documented infec-
tion, 57% and 94% for symptomatic COVID-19, 74% and 87%
for hospitalization, and 62% and 92% for severe disease.
Importantly, estimated mortality avoidance rate was 72%
at days 14 through 20 after the first dose.198 Another study
was carried out in a large health maintenance organiza-
tion in Israel, with individuals who frequently underwent
polymerase chain reaction testing for SARS-CoV-2 infec-
tion. For the prevention of asymptomatic SARS-CoV-2
infection, the BNT162b2 vaccine showed an estimated
effectiveness of 89% 7 days after two doses, in contrast
to 61% 2 weeks after 1 dose.199 A third study involved
health-care workers in England, who also underwent reg-
ular asymptomatic testing. The effectiveness of BNT162b2
vaccine was 70% 21 days after the first dose and 85% 7 days
after the second dose.200 A more recent study confirmed
the effectiveness of the BNT162b2 vaccine in a large health
provider cohort in Israel, achieving a protection rate of 90%
and 94% against SARS-Cov-2 infection and COVID-19 after
two doses, respectively. Results from immunosuppressed
patients were also impressive, reaching 71% protection
against infection.201
Recently published results for the two-dose mRNA-

1273 vaccines were also encouraging. mRNA-1273 provided
protection against COVID-19 infection (87.4%), COVID-19
hospitalization (95.8%), and hospital mortality (97.9 %).
Effectiveness against symptomatic COVID-19 was 88.3%,
compared to 72.7% against asymptomatic cases. A mod-
erate effectiveness of 8.2–33.6% was observed among
individuals with COVID-19 history, suggesting the need
for vaccination of those who have recovered from the
disease.202
To date, there have been five SARS-CoV-2 variants of

concern: alpha (B.1.1.7 and descendant lineages), beta
(B.1.351), gamma (P.1), delta (B.1.617.2 and AY lineages),
and omicron (B.1.1.529 and BA lineages), with each caus-
ing a surge in cases and mortalities.203 Reduced neu-
tralizing activity by vaccines against these variants was
observed, most notably for the latest variants, Delta and
Omicron.204–207 Fortunately, strategies such as sequen-
tial immunization and additional boosters have shown
promise for limiting the breakthrough infection, hospi-

talization, severe disease, and death caused by SARS-
CoV-2.26,208–211 In addition, there are also suggestions for
alternative strategies, such as constantly updating vac-
cines with newly prevalent variant sequences, polyvalent
vaccines, or pan-coronavirus strategies.212
A recent real-world study in Qatar revealed that two

doses of an mRNA vaccine achieved peak protection
rates of 41.6% and 51.7% against symptomatic infection
by Omicron subvariants BA.1 and BA.2 3 months after
the last dose, before dropping to 10% or lower.196 Similar
waning protection was also observed for the third dose,
where moderate peak protection rates of 59.9% and 43.7%
against infection by the two subvariants, respectively, were
achieved 1 month after the last dose. Encouragingly, two
doses of an mRNA vaccine reduced COVID-19 hospital-
ization and death by 70%–80%, and a third dose further
reduced the rate by >90%.196
These data establish that the COVID-19 mRNA vaccines

currently in use are substantially efficacious. Nevertheless,
further improvements are needed to combat the constantly
evolving virus.

4.2 mRNA vaccines for other infectious
diseases

Clinical trials of multiple mRNA vaccines targeting
other infectious diseases, such as influenza,175,213 Zika
virus,18,22,214 and rabies215,216 are underway. However, the
development of these vaccines is not comparable to the rate
of progress that development of the SARS-CoV-2 vaccine
has achieved (Table 2).

5 mRNA CANCER VACCINES

Although the COVID-19 pandemic has accelerated the
application of mRNA vaccines against viral infectious
diseases, mRNA cancer vaccines were the earliest direc-
tion assessed in exploratory clinical trials, and remain
a field with the most intense competition and the most
concentrated R&D pipelines.217
There are two types of cancer vaccines with fundamen-

tally different working principles: prevention vaccines
and therapeutic vaccines (Figure 5). It is estimated that
15% of all human cancers are associated with viral infec-
tion (e.g., human papillomavirus, hepatitis B virus, and
others).218–222 Therefore, vaccines that protect against
certain viruses serve as prophylactic measures against
certain cancers. In contrast, therapeutic vaccines address
existing cancers. The mRNA-based vaccine allows the use
of vaccines as an available immunotherapy for cancer and
other nonviral diseases. Most cancer vaccines fall into the
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F IGURE 5 Mechanisms of messenger ribonucleic acid (mRNA) vaccines for infectious diseases and cancers. mRNA molecules
encoding tumor antigens are injected into body (either with or without delivery vehicles). The mRNA molecules are taken up and translated
into protein antigens by antigen presenting cells (APCs). After proteasomal processing of proteins, antigen peptides associate with major
histocompatibility complex (MHC) Class I molecule in the endoplasmic reticulum and are transferred to the APC surface, activating CD8+ T
cells for a specific cellular immune response. Protein antigens, which are sorted for the endosome route, can activate CD4+ T cells via the
MHC Class II presentation pathway. The secretory protein antigen or membrane antigen encoded by mRNA can stimulate B cells to produce
neutralizing antibodies, and activate phagocytes such as macrophages to secrete inflammatory cytokines, facilitating the clearance of
circulating infectious pathogens and tumor cells
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TABLE 2 Clinical trials of mRNA vaccines targeting other infectious diseases

Funding
source Vaccine name Target Route Phase NCT Number
Moderna mRNA-1189 Epstein-Barr Virus

Infection
Intramuscular Phase I NCT05164094

mRNA-1345 Respiratory Syncytial
Virus (RSV)

Intramuscular Phase II/III NCT05127434

mRNA-1647 Cytomegalovirus
Infection

Intramuscular Phase III NCT05085366

mRNA-1010 Seasonal Influenza Intramuscular Phase I/II NCT04956575
mRNA-1893 Zika Virus Intramuscular Phase II NCT04917861
mRNA-1443 CMV Intramuscular Phase I NCT03382405
mRNA-1325 Zika Intramuscular Phase I NCT03014089
mRNA-1653 hMPV/PIV3 Intramuscular Phase I NCT04144348;

NCT03392389
mRNA-1851
(VAL-339851)

Influenza A (H7N9) Intramuscular Phase 1 NCT03345043

mRNA-1440
(VAL-506440)

Influenza A (H10N8) Intramuscular Phase 1 NCT03076385

mRNA-1010 Influenza A (H1N1,
H3N2), influenza B
(Yamagata lineage,
Victoria lineage)

Intramuscular Phase I/II NCT04956575

mRNA-1944 Chikungunya Intramuscular Phase I NCT03829384
mRNA-1388
(VAL-181388)

Chikungunya Intramuscular Phase I NCT03325075

CureVac CV7201 Rabies Intradermal,
intramuscular

Phase I NCT02241135

CV7202 Rabies Intramuscular Phase I NCT03713086
CureVac AG CVSQIV Influenza Intramuscular Phase I NCT05252338
GSK GSK3903133A Rabies Intramuscular Phase I NCT04062669
NIAID BG505 MD39.3 mRNA;

BG505 MD39.3 gp151
mRNA; BG505
MD39.3 gp151 CD4KO
mRNA

HIV Infections Intramuscular Phase I NCT05217641

Note: The table summarizes the clinical trials of mRNA vaccines targeting other infectious diseases registered at Clinical Trials.gov.
Abbreviations: CMV, cytomegalo virus; GSC, Glaxosmithkline Plc; mRNA, messenger ribonucleic acid; NIAID, National Institute of Allergy and Infectious
Diseases.

therapeutic category. In general, they target tumor-
associated antigens (TAA), which are preferentially
expressed in cancerous cells.8
Currently, mRNA tumor vaccines are applied in two

ways. One directly delivers mRNA into the body using
delivery vehicles such as LNP or protamine,223–225 and
the other ex vivo transfects DCs with tumor antigen-
encoding mRNA to prepare a DC vaccine.226,227 In addi-
tion, although mRNA encoded immunostimulants are
not strictly part of tumor vaccines, their ability to turn
cold tumors, with no or low immune response, into
well-responsive hot tumors has attracted attention. Con-

sequently, many clinical trials have attempted to enhance
antitumor efficacy228–230 (Table 3).
The development of a therapeutic cancer vaccine

is a research focus for many: using “cancer vaccine”
as keywords in ClinicalTrials.gov results in more than
2000 clinical registered projects; however, this goal
remains extremely challenging. After huge investments of
human and financial resources, many blockbusting can-
cer vaccines failed in phase III trials, such as Stimuvax
(Merck, USA), which targets the tumor antigen mucin
(MUC1),231 and the lead product of GlaxoSmithKline,
GSK1572932A,232 which targets melanoma-related antigen
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3 (MAGE-A3).233,234 These vaccines target a single TAA;
however, for the development of mRNA tumor vaccines,
simultaneous targeting of multiple TAAs or neoantigens is
more promising (Table 3).

5.1 mRNA vaccines simultaneously
encoding multiple TAAs

Simultaneous targeting of multiple TAAs reduces the
chance of tumor antigen escape due to mutations and low
expression of target antigens and thus increases the robust-
ness and precision of specific antitumor responses.235–237
The majority of ongoing clinical trials employ this strat-
egy. More than 90% of melanoma patients express at least
one of the four prevalent TAAs: NY-ESO-1, MAGE-A3,
Tyrosinase, and TPTE.8,238 BNT111 is a lead candidate
from the BioNTech FixVAC platform, which is experi-
encing the fastest research and developmental progress,
and encodes all four TAAs of melanoma. According to
a completed phase I clinical trial (NCT02410733), most
melanoma patients given this vaccine that showed sta-
ble disease (SD) and partial responses have achieved
ongoing survival. Some patients have survived for more
than 2 years with TAA-specific T cells still remain-
ing at a detectable level in their body.239 Based on the
safety and preliminary efficacy of BNT111 demonstrated
in that phase I trial, a phase II clinical trial of BNT111
in combination with Libtayo (Cemiplimab) was initiated
in May 2021(NCT04526899), which targets patients with
unresectable anti-PD1-refractory/relapsed melanoma.240
More DNAmutations can produce more candidate pep-

tides and lead to an increase in tumor antigens that can be
presented. Several studies have demonstrated that tumor
patients with a high tumor mutational burden are often
associated with stronger T cell response and better clinical
outcomes.241,242 Therefore, multitargetingmRNA vaccines
have shown promising prospects in the treatment of highly
immunogenic melanomas but have not progressed as well
in other tumor types.243–245 For example, the mRNA vac-
cine BI-1361849 (formerly called CV9202), developed by
Curevac, is currently undergoing phase I/II clinical trials
for treatment of NSCLC. BI-1361849 encodes six TAAs (NY-
ESO-1, MAGE-C2, MAGE-C1, survivin, 5T4, and MUC1).
The completed phase I clinical trial (NCT01915524) showed
that BI-1361849 was well tolerated and immunogenic.66
Furthermore, a phase I/II clinical trial (NCT03164772) of
BI-1361849 in combination with durvalumab and treme-
limumab for NSCLC has also been completed. It is
speculated that this may be related to poor clinical effi-
cacy. CureVac terminated its cooperation agreement with
Germany’s Boehringer-Ingelheim CV9202 project for the
treatment of NSCLC in June 2021.246

Although current studies focus on aberrantly or over-
expressed autoantigens in tumors, several obstacles con-
strain the further clinical application of TAA-targeted
vaccines. First, only a limited number of TAAs have
been identified for certain solid tumors, and extensive
mutations in TAAs lead to immune escape and drug resis-
tance. Second, TAAs exhibit poor immune specificity and
immunogenicity, because they exist in normal tissues.
Additionally, some TAAs used to be embryonic anti-
gens, which have already induced an immune tolerance
during the individual developmental processes. Lastly,
TAA-targeted therapy may trigger autoimmune responses
can lead to serious safety concerns.247,248 Therefore, devel-
oping cancer vaccines based on tumor-specific antigens
with high immunogenicity has been a hope of oncologists.
mRNA tumor vaccines that encode neoantigens provide a
new research path.27,249–251

5.2 Personalized neoantigen-encoding
mRNA vaccines

Malignant cells are characterized by continuous and rapid
proliferation, with the expansion of the tumor popula-
tion often accompanied by mutations in a large number
of genes, generating multiple neoantigens. Neoantigens
originate from random somatic mutations in tumor cells
and do not exist in normal cells. Therefore, neoanti-
gens are recognized as nonself by the immune system
and are presented to T cells by human leukocyte anti-
gen (HLA), which makes them the most promising target
for tumor vaccines.252–259 Compared with a TAA-targeted
vaccine, a neoantigen-based vaccine provides inspiring
advantages: first, due to the constrained expression of
neoantigens in tumor cells only, neoantigen vaccines
elicit a true tumor-specific T-cell response, and avoid
off-target damage to nontumorous tissues. Next, a substan-
tial fraction of nonsynonymous neoantigens causes strong
immunogenicity,260 this is perhaps due to the fact that
somatic mutated neo-epitopes manage to bypass the cen-
tral tolerance. Lastly, prolonged T cell responses, along
with immune memory, can be induced by neoantigens.
They together prevent potential tumor recurrence and
metastasis.261–264
Each tumor patient has their own unique neoanti-

gen profile, also known as the mutanome. With the
wide application of next-generation sequencing and
the development of neoantigen prediction technology,
each patient can benefit from individualized sequenc-
ing for quick and efficient neoantigen identification
and selection.265,266 Then, a monoepitope or, more com-
monly, polyepitope mRNA vaccine targeting neoantigens
can be rapidly prepared. At present, the clinical results
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for several neoantigen-targeting mRNA vaccines are
encouraging.23,25,267,268
In 2017, there were two significant medical break-

throughs of individualized vaccines for melanoma treat-
ment. Both studies were based on whole-exome sequenc-
ing of tumor tissues. In a study from Harvard Medical
School, six melanoma patients received a neoantigen vac-
cine adjuvanted with an immunostimulant, poly-ICLC.
The results suggested that four patients showed no recur-
rence within a median of 25 months (from 20–32 months),
and two other patientswith lungmetastases achieved com-
plete remission after relapse by taking the immune check-
point inhibitor Keytruda (NCT01970358).253 At BioNTech,
researchers prepared individualized mRNA neoantigen
vaccines for each patient. After treatment, the recurrence
and metastasis of melanoma were significantly reduced,
and the progression-free survival (PFS) of patients was
significantly extended.25
Inspired by these results, 21 clinical trials of mRNA

tumor vaccines targeting neoantigens are currently under
development, according to ClinicalTrials.gov (Table 3).
Bioenterprises such asModerna and BioNTech are actively
exploiting customized tumor vaccine in competition with
each other. The mRNA-4157 vaccine developed by Mod-
erna can encode up to 34 neoantigens and has completed
a phase I clinical trial (NCT03313778) for the treatment
of solid tumors. A combination therapy of the mRNA-
4157 vaccine and the immune checkpoint inhibitor pem-
brolizumab revealed antitumor potential against a variety
of solid tumors.269 The phase II clinical trial of mRNA-
4157 vaccine for melanoma has begun to recruit patients
(NCT03897881).229 Another completed phase I clinical
trial (NCT03289962) is BioNTech’s combination therapy
for the treatment of locally advanced or metastatic solid
tumors (e.g., NSCLC, colorectal cancer, melanoma, and
triple negative breast cancer). This therapy combines per-
sonalized mRNA cancer vaccine BNT122 with the PD-L1
inhibitor atezolizumab. Among 108 patients who received
at least one postdose assessment, the objective response
rate (ORR) was about 8% (nine patients), and the SD
rate was 49% (53 patients).270 NEO-PV-01, another per-
sonalized neoantigen vaccine for advanced solid tumors,
is also being tested in combination with nivolumab. The
phase Ib clinical trial (NCT02897765) suggested that, for
vaccinated patients with melanoma, NSCLC, and blad-
der cancer, the corresponding ORRs were 59%, 39%, and
27%; the median PFS was 23.5 months, 8.5 months, and
5.8 months, respectively. Furthermore, the 1-year OS rates
were 96% for melanoma, 83% for NSCLC, and 67% for
bladder cancer, all of which were superior to the his-
torical data obtained from programmed death-1 inhibitor
monotherapy.271 The existing clinical data suggest that in
the treatment of tumor types with a high mutational bur-

den (e.g., melanoma and NSCLC) and mismatch repair-
deficient colorectal cancer, neoantigen vaccines used in
combination with immune checkpoint inhibitors should
be the focus of future research, because they may provide
synergistic effects to enable a higher response rate and
PFS.228,258,259,271
Although neoantigen vaccines have great prospects, the

design of such vaccines depends heavily on the continuous
optimization of algorithms, including HLA typing, bind-
ing strength of neoantigens and MHC, and T cell receptor
(TCR) analysis. They are further limited by the median
time from screening neoantigens to vaccine preparation of
103 days (ranging from 89 to 160 days), which is too long for
patients with advanced tumorswho urgently demand indi-
vidualized treatment.25,251,272–274 Despite these difficulties,
mRNA vaccines targeting tumor neoantigens may enable
in a new era of personalized treatment.

5.3 mRNA-transfected DC vaccines

DC vaccines represent another type of popular cancer
vaccine. DCs are ex vivo transfected with TAA-encoding
mRNA in various ways and are then adoptively trans-
ferred back. The world’s first human clinical trial of
mRNA-transfected DC vaccines was carried out in 2001.275
After two decades, there are now 23 clinical trials of DC
tumor vaccines prepared by mRNA transfection (Table 4),
many of which experience simultaneous transfection with
mRNAs encoding multiple TAAs.264 In 2010, the US Food
and Drug Administration approved the world’s first DC
tumor vaccine, Sipuleucel-T, for the treatment of advanced
prostate cancer, starting a new chapter for antitumor
vaccines.276–279 Efficient loading of tumor antigens into
DCs has been one of the core issues in the preparation of
DC vaccines. Progress in the in vitro synthesis of mRNA
considerably enhances the stability ofmRNA,while reduc-
ing its immunogenicity bymRNAmodification. Therefore,
transfecting DCs with TAA-encoded mRNA is a suit-
able way to load tumor antigens and has shown great
application prospects.280–282
The function of DCs is collectively determined by

the balance of several factors, such as cell surface co-
stimulatory molecules, co-inhibitory molecules, and acti-
vating and inhibitory cytokines. Therefore, DC vaccines
designed to boost multiple aspects of DC function are
likely to achieve optimal efficacy. The immunostimulatory
activity of DC is elevated remarkably when it is electro-
plated with mRNAs that encode adjuvants, such as OX40L
or 4-1BBL.283,284 Another representative approach is the
TriMix platform developed by eTheRNA. TriMix includes
three mRNA components that encode the adjuvants
CD70 and CD40L, and constitutively active TLR4.101,105,285
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Co-transfection of TriMix andmRNAencoding theHLA-II
targeting signal (DC-LAMP) and themelanoma-associated
antigen fusion protein (MAGE-A3, MAGE-C2, tyrosinase
or gp100) into autologous DC to prepare a DC vaccine
(TriMixDC-MEL) activation and promote DC maturation
and function is underway (NCT01066390).286 In a further
clinical trial of TriMixDC-MEL in combination with ipil-
imumab (TriMixDC-MEL IPI), a 6-month disease control
rate of 51% was observed. After 5 years of clinical follow-
up, vaccine-induced immune responses were evaluated
in 15 patients (NCT01302496) and were sustained in 12
of the 15 patients. Stronger and more extensive immune
responses were detected in patients with complete and
partial responses compared to patients with stable and
progressive disease.105,287
The advantages of DC vaccines include controllable ex

vivo culture conditions of DC cells, accurate tumor anti-
gen loading by mRNA transfection, and high transfection
efficiency. However, it also shares some problems common
to all cell vaccines that require individualization, including
a long production cycle, high labor costs, and poor tumor
targeting. These issues need to be addressed before general
application is feasible.

6 CONCLUSIONS AND PERSPECTIVES

mRNA vaccines have been developed at an unprecedented
speed. As outlined in this review, although immuno-
oncologists were among the first to show early and wide
acceptance of mRNA-based vaccines, they can also be
a generalized prophylactic measure for infectious dis-
eases and have become the most promising approach to
COVID-19 prevention and control.
There are two key aspects that allow the rapid pace of

mRNA vaccine development: the mRNA sequence design
and in vivo delivery systems.110,288–291 Because the thera-
peutic use of mRNA vaccine seems more feasible, owing
to technical innovations that greatly improved the mRNA
delivery efficiency and mRNA stability in the physiolog-
ical environment, this potential billion-dollar market has
attracted funding from diverse sources, including gov-
ernments, research project agencies, and pharmaceutical
enterprises. Moderna Therapeutics, the “unicorn” set up
in 2010, has already raised more than US $2 billion for
the development and commercialization of mRNA-based
vaccines.292
There are several aspects to mRNA vaccines that require

further improvements. First, adverse effects should be
harnessed, partly by introducing novel lipids that are
more biocompatible, for example, ready to be fully catabo-
lized into harmless substances in the body.293–295 Current
ionizable cationic lipid and PEGylated lipid components

can be substituted.26 Second, targeted delivery of mRNA
vaccine into DCs should be put to real-world use to
enhance efficacy, reduce dosage, and limit adverse effects.
Vehicles, such as LNPs, can be endowed with target-
ing ability by introducing functionalized components.20,295
Novel intravital administration techniques can be devel-
oped. Third, novel adjuvants should be incorporated
into the formulation to further boost the efficacy of the
mRNA vaccines.29,296,297 A delicate balance of several fac-
tors, for example, stimulation of immunity, exacerbated
inflammation, and suppression of mRNA expression is
required. Fourth, the issue raised by nucleoside modi-
fication and codon optimization of mRNA needs to be
addressed to ensure efficient and accurate translation of
full-length polypeptides that are properly folded.49,298–300
Fifth, mRNA cancer vaccines in combination with other
immunotherapies should be investigated to determine
which combinations exert synergetic effects in cancer
treatment.66,241,301,302 Lastly, it is important to determine
whethermRNA vaccines are processed and function in the
same way in animal models and in humans, because some
mRNA vaccines, which showed immunogenicity in pre-
clinical animal trials, have generated disappointing results
in human trials.28,91,175,303
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