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Abstract: Spatio-temporal models need to address specific features of spatio-temporal infection
data, such as periods of stable infection levels (endemicity), followed by epidemic phases, as well
as infection spread from neighbouring areas. In this paper, we consider a mixture-link model for
infection counts that allows alternation between epidemic phases (possibly multiple) and stable
endemicity, with higher AR1 coefficients in epidemic phases. This is a form of regime-switching,
allowing for non-stationarity in infection levels. We adopt a generalised Poisson model appropriate
to the infection count data and avoid transformations (e.g., differencing) to alternative metrics, which
have been adopted in many studies. We allow for neighbourhood spillover in infection, which is also
governed by adaptive regime-switching. Compared to existing models, the observational (in-sample)
model is expected to better reflect the balance between epidemic and endemic tendencies, and short-
term extrapolations are likely to be improved. Two case study applications involve COVID area-time
data, one for 32 London boroughs (and 96 weeks) since the start of the COVID epidemic, the other
for a shorter time span focusing on the epidemic phase in 144 areas of Southeast England associated
with the Alpha variant. In both applications, the proposed methods produce a better in-sample fit
and out-of-sample short term predictions. The spatial dynamic implications are highlighted in the
case studies.
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1. Introduction

The context for modelling spatio-temporal infectious disease data is set by three major
considerations. The first is the extent of instability in the data, with stable infection levels
characterising endemic infections, but instability in infections that have epidemic phases.
The second is the geographic variation in the infection trajectories, for example, some areas
experienced earlier epidemic upturns. The third is the infection spillover from adjacent
areas (when the spatial context involves a lattice framework such as administrative areas).

Many models of infectious data focus primarily on modelling and forecasting a single
epidemic and its components (i.e., modelling the exponential ascent and subsequent de-
scent). One widespread approach uses phenomenological models [1] and is usually based
on national infection counts—these are typically fitted using nonlinear least squares with
normality assumed for errors. These models are difficult to extend to multiphase epidemic
data, which is when the observation span includes multiple epidemics [2,3]. However, as
has become apparent with the COVID outbreak, there is a need for modelling multiphase
epidemic data with intervening phases of relatively low infection.

Compartmental models [4] represent infectious disease in terms of separate com-
partments, with epidemic evolution via differential equations. They rely on assumed or
estimated parameters to estimate an epidemic curve, but typically cannot explicitly model
endemic and epidemic dynamics, especially for multiple waves [5].

Some models, typically also applied to national infection data, adopt theaAutore-
gressive integrated moving average (ARIMA) strategy [6–8]. These involve preliminary
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differencing or transformation of the data in order to achieve stationarity and also assume
normal errors. Thus, essential features of the data are lost in the analysis.

It is argued in the research here that greater flexibility is provided if nonstationarity
is explicitly present in the model and not “differenced away” by preliminary and often
complex data manipulation. In explicitly allowing for nonstationarity, the model developed
below provides an indicator of which phase or “regime” is predominant at a particular
point in the infection time series. This is a form of regime-switching or alternation. Since
this model typically reflects better the balance between epidemic and endemic tendencies
than existing models, the in-sample fit is expected to improve and short-term extrapolations
will also generally produce more accurate forecasts—this is demonstrated in two applied
case studies.

Regime-switching has been used in other studies [9,10], though here it is implemented
with a smooth mechanism governing regime alternation, rather than discrete switching
of regimes. Discrete state switching applies to models assuming a latent Markov chain
approach such as [11]. Studies also assume normal outcomes based on differencing popula-
tion rates in successive time units. This assumption might become problematic for small
infection counts when the areas have small populations.

Moreover, accounting for spatial differentiation in trends and epidemic upturn timing
is important as well as modelling the multiphase aspects. There are so far few models
that have attempted to explicitly model multiphase infection data for multiple areas. In a
spatially disaggregated situation, infection counts during particular periods (e.g., between
epidemic phases) may be small, and conventional approaches (e.g., transforming or differ-
encing data converted to population rates and also assuming normality) are inappropriate.
The models used here are appropriate to the form of the space–time count data. The models
used are part of a broader “disease mapping” approach appropriate to count data and
applicable to often small area infection counts, particularly in endemic phases [12,13].

Specifically, we develop here a model appropriate to area-specific multiphase count
data, assuming Poisson sampling, albeit allowing for overdispersion in the form of a nega-
tive binomial. The approach provides a spatio-temporal regime-switching model adapted
to small-area disease counts. As well as this feature, the model here includes disease
spillover effects between neighbouring areas, a feature not present in many spatiotem-
poral infection models. The model outputs supply a wide range of information about
infectious disease spread and waning, for example, parametric indicators of the relative
balance between epidemicity and endemicity in each area and spillover infections from
neighbouring areas. These indicators are not available in other models applied to area–time
infection counts.

The model here has the benefit (unlike approaches based on ARIMA strategies) of
avoiding the need to achieve stationarity by differencing and transformation. The analysis
is done on a natural and interpretable scale, namely the infection counts [5].

The output of the model proposed here provides important details regarding the
spatial dynamics of epidemics. It provides details about differential epidemic trajectories
between areas, for example, in terms of where early epidemic upturns (or early downturns
from epidemic peaks) are concentrated. The model also allows area-specific one-step
ahead forecasts of epidemic counts, which are important for policymakers concerned with
developing localised strategies for epidemic containment.

2. Relevant Literature

There have been a considerable number of spatio-temporal studies of disease patterns,
generally adopting a Bayesian perspective [12,14]. Spatio-temporal models for infection
counts [15,16] are a particular sub-theme. These incorporate the themes of the broader
disease mapping literature, such as the gains through borrowing strength and the need
to reflect spatial correlation in disease; for example, see Andrews et al. [17] on spatial
clustering in COVID rates. Space–time models also need to incorporate the spatial dif-
fusion or spillover related to behaviours such as commuting [18,19]. It is also especially
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useful in policy terms to be able to extrapolate the infectious disease evolution beyond the
observation span, as illustrated in some studies of the COVID epidemic [20–23].

Low-order autoregression is a feature of several recent spatio-temporal studies of
infection data. For example, Paul and Held [24] and Shand et al. [25] adopt first-order
autoregression (AR1) models, where autoregressive coefficients on counts or rates in the
previous period are spatially varying. The model of Paul and Held includes a spatial
lag on infection counts in adjacent areas that allows for neighbourhood spillover effects
in infection; related approaches are considered by Martines et al. [26] and Griffith and
Li [27]. In infections spread by human contact, it is implausible that higher counts or
rates in one period generate smaller infection levels in the next period, and so a positive
constraint on the AR1 coefficient is justified. Stationarity may also be assumed [25,28] with
an AR1 coefficient under 1, but the analysis below argues that flexibility to pronounced
epidemic fluctuations in infection counts is likely to be gained by allowing nonstationarity.
Nonstationarity is an option in the Bayesian analysis of AR1 models [29,30].

A particular feature of epidemic time series is that a period of relatively stable infection
levels (which can be viewed as an endemic phase) is followed by a sudden sharp phase
of increasing infection levels. After the epidemic peak, there is a period of descending
rates and a return to stability. Hence, it is argued here that greater flexibility and improved
prediction will follow if the autoregressive scheme is allowed to adapt to these pronounced
fluctuations with temporary departures from stationarity but returning to stationarity as
rates descend and infections resume endemic levels.

In this paper, we consider a mixture-link model for infection counts that allows
adaptivity to both explosive phases and to stable endemicity, with higher AR1 coefficients
in epidemic phases. This is a form of regime-switching. We also allow for neighbourhood
spillover, which is also governed by the adaptive switching mechanism.

A Bayesian estimation approach is used. Assuming an identity link in the count
regression, AR1 coefficients exceeding 1 reproduce sharply increasing infection levels
during an explosive phase, whereas AR1 coefficients under 1 are associated with stability.
Compared to existing models such as [24,25], the observational model will then better
reflect the balance between epidemic and endemic tendencies and so provide a better fit,
and short-term extrapolations will also generally produce more accurate forecasts.

3. Case Studies

We consider two case study applications involving area–time data for COVID-19
infection counts. These provide differing spatial perspectives and involve different variants
underlying the epidemic peaks. The use of two studies provides stronger evidence that a
better fit due to the proposed models is not due to the particularities of one dataset alone.

The first case study considers the 32 London boroughs and focuses on the sudden
growth in COVID infections due to the Omicron variant at the end of 2021. The link-
mixture approach is applied to data from the start of the epidemic in March 2020 through
to early 2022 for the London boroughs (96 weeks of infection totals) and shows better fit
and improved short-term forecasts over models without regime alternation.

The second case study considers data for a much wider regional framework, namely
Southeast England consisting of 144 areas as opposed to 32 areas in the first case study. This
study considers a shorter time span, the weeks up to and including the peak of infections
due to the Alpha variant at the end of 2020.

4. Methods
4.1. Autoregression for Area–Time Infection Counts

Consider area–time infection count data yit for areas i = 1, . . . , N and times 1, . . . , T,
and assume these are negative binomial (NB), yit ∼ NB(µit, Ψ). The negative binomial
model is a generalisation of the Poisson density and appropriate to count data which
may be overdispersed relative to the Poisson, for example, COVID infection counts in
the endemic phase may even include zeroes, whereas in the epidemic phase much higher
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counts occur. Hence, the data are overdispersed with variance exceeding the mean. The
NB parameterisation is

p(y|µ, Ω) =
(y + Ψ− 1)!
y!(Ψ− 1)!

(
µ

µ + Ψ

)y( Ψ

µ + Ψ

)Ψ

.

Assume an AR1 model on previous infection counts in the same area. Additionally,
effects of predictors Xit, and unobserved area effects ui, may be represented by a term

ηit = Xitβ + ui.

Then, for a basic model, conditioning on the first period’s data, we adopt an identity link

µit = ρiyi,t−1 + exp(ηit), t = 2, . . . , T (1)

providing positivity in ρi is ensured.
Including lags on infection counts in nearby areas reflects infection spillover due,

for example, to social interactions between residents in neighbouring areas, or to cross-
boundary commuting [19]. Let hij measure spatial interactions between areas i and j,
and wij = hij/ ∑j hij be row standardised spatial weights, with ∑j wij = 1. Then spatial
spillover, also with lag 1, can be represented [24] by adding a spatially averaged term
λi ∑j wijyj,t−1 to the above basic model. Then, one has

µit = ρiyi,t−1 + λi ∑j wijyj,t−1 + exp(ηi), (2)

providing positivity in ρi and λi is ensured.
Assuming that ρi and λi are positive is justified epidemiologically, since—for infections

spread by human contact or interaction—higher current totals of infectees in an area yi,t−1,
or its vicinity, ∑j wijyj,t−1, are expected to cause higher future infections. A negative effect
of existing infection levels on future infections is therefore implausible.

4.2. Link Specification

One then requires an appropriate link function relating ρi and λi to relevant parameters.
For example, assume spatially correlated conditional autoregressive random effects f1i and
f2i [31] involved in predicting ρi and λi, and assume these are zero-centred. The study ([24],
p. 1121) adopts a log link by default so that with intercept terms α1 and α2, one has

log(ρi) = α1 + f1i,
log(λi) = α2 + f2i.

(3)

A log link allows for explosive effects (ρi and/or λi exceeding 1) but does not neces-
sarily select explosive behaviour. If most of the epidemic series consists of stable infection
levels (endemicity), then the estimated ρi and λi are likely to be below 1.

For infectious diseases with endemic recurrence now predominant, such as HIV in
developed nations, a stationary autoregressive effect may be seen as appropriate. See, for
example, Shand et al. [25] who consider time variations in HIV in US counties. For an AR1
model on lagged infections, this implies a logit link with ρi and λi are constrained between
0 and 1. Thus, with the same overall model (2), and spatial effects f3i and f4i, one has

logit(ρi) = κ1 + f3i,
logit(λi) = κ2 + f4i,

(4)

Neither of the models in [24] or [25] includes a regime-switching mechanism.
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4.3. Choosing between Epidemic or Endemic Phases (Link Mixing)

However, for infectious diseases such as COVID, switching between epidemic and
endemic phases is relevant to the effective modelling of wide fluctuations. Hence, a logit
link is relevant when infections are at a low and/or stable level, whereas a log link allowing
ρi > 1 and λi > 1, is more flexible in periods with explosive growth in infections (e.g., due
to a new virus or new variants of that virus). An example is the rapid increase in COVID
infections linked to the emergence of the Omicron variant, as considered in the first case
study.

Here, we consider a mixture model facilitating time-variations in which link is predom-
inant so reflecting the current infection phase. Other forms of mixing between links have
been considered in other types of applications (not involving infectious disease counts)
or extra parameters introduced into modelling links. For example, Lang [32] considers
a mixture of the canonical symmetric logistic link and one or more asymmetric forms in
modelling ordinal and binary outcomes, whereas Czado and Raftery [33] consider right
and/or left tail modifications to standard links.

Here, we consider a situation not researched before (as far as the authors are aware),
namely choosing between log and logit links. Thus, for weights ωt between 0 and 1, it is
here proposed that

ρit = ωtexp(α1 + g1i) + (1−ωt)
exp(κ1+g1i)

1+exp(κ1+g1i)
,

λit = ωtexp(α2 + g2i) + (1−ωt)
exp(κ2+g2i)

1+exp(κ2+g2i)
,

(5)

where ρit and λit now vary by area i and time t, and g1i and g2i are spatially correlated
conditional autoregressive random effects. The ωt are in effect measuring stability or insta-
bility in infection rates and so are taken as common to both own area and the neighbouring
area lags, ρit and λit, respectively. For ωt high and approaching 1, infections are typically
rapidly increasing, whereas for low ωt, stable endemicity is indicated. Low ωt may also be
better for characterizing the descent phase after epidemic peaks.

There is no reason why spatial patterning in autocorrelation should be the same in
epidemic or endemic phases, so a variation on the preceding model allows for differing
spatial effects between phases, namely

ρit = ωtexp(α1 + g1i) + (1−ωt)
exp(κ1+g3i)

1+exp(κ1+g3i)
,

λit = ωtexp(α2 + g2i) + (1−ωt)
exp(κ2+g4i)

1+exp(κ2+g4i)
.

(6)

4.4. Alternation Mechanism

The ωt in (5) and (6) are modelled as time-specific beta variables

ωt ∼ Beta(q1t, q2t), (7)

where q1t and q2t are positive parameters. The ωt are between 0 and 1 and so provide
smooth alternation between endemic and epidemic phases. The specification in (7) provides
a simple approach (and parsimonious in parameterisation) to regime alternation in a
situation with multiple epidemics. More elaborate smooth transition schemes have been
used [34] but are typically framed for the case of a single transition between regimes,
whereas multiple transitions are involved in multiphase epidemics.

In contrast to smooth alternation, discrete switching mechanisms using binary switch-
ing indicators as in Markov chain switching [10,11] imply the unequivocal distinction
between endemic and epidemic phases with, for example, one week classified as endemic
and the next week as epidemic. These may be heavily parameterised, for example, the
model in [11] has latent binary indicators Zits according to area, time, and season (in a
model for influenza cases).
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Relevant covariates if available, possibly time-lagged, may be used in predicting the ωt via
beta regression. Regression for the mixing variables can be handled by the parameterisation

ωt ∼ Beta(Mtπt, Mt[1− πt]),

with πt being probability parameters (explained by the covariates), and Mt
positive parameters.

4.5. Other Model Features

The models in (2) may be extended to include time and area–time varying effects,
such as seasonal effects, or unobserved area–time random effects δit. These represent local
trends not fully captured by autoregressive effects on lagged infection levels. Thus, for
representations (3) and (4), one has

µit = ρiyi,t−1 + λi ∑j wijyj,t−1 + exp(ηi + δit), (8)

whereas for representations (5) and (6), one has

µit = ρityi,t−1 + λit ∑j wijyj,t−1 + exp(ηi + δit). (9)

4.6. Summary Epidemic Indicators

Under both (5) and (6), focusing on area variations in ρit and λit during periods with
explosive growth will indicate which areas have been more subject to such growth. These
indicators will tend to be highest in the periods just before the epidemic peak when cases
are growing fastest.

A number of summary epidemic indicators can be derived. Thus, the summary
coefficients ρt and λt, obtained by averaging ρit and λit over areas, give an overall impres-
sion of infection growth or endemic phases. The ρit and λit can also be compared to the
threshold of 1 to give a probability indication of explosive growth in different areas. Thus,
define indicators

rx
it = I(ρit > 1),

lx
it = I(λit > 1),

from which area–time exceedance probabilities can be estimated. Also, the sums Rx
t = ∑i rx

it
and Lx

t = ∑i lx
it show total areas with explosive infection growth in each period.

To assess effectiveness of spatial predictions (i.e., area-specific predictions), one may
compare observed growth rates in cases yi,t+1/yi,t with modelled growth rates µi,t+1/µi,t This
comparison is particularly relevant in epidemic phases or in assessing short-term forecasts.

4.7. Model Specification

The forms (8) and (9) are adopted in the case studies below. The spatial effects
( f1i, f2i), ( f3i, f4i) and (g1i, g2i, g3i, g4i) involved in defining the autoregression coefficients
are taken to follow the conditional autoregressive (CAR) scheme of [31]. It is assumed that

ηit = Xitβ + ui,

where ui are mean-centred CAR spatial effects as in [31]. It is assumed that the area–time
effects δit follow a first-order random walk δit ∼ N

(
δi,t−1, σ2

δ

)
, with initial conditions δi1

taken as fixed effects, δi1 ∼ N(0, 1). For identification, an intercept is omitted from Xitβ
and covariates are centred. A single covariate is used in both case studies; the mid-2020
population estimates are divided by 100,000.

Gamma priors with shape one and rate 0.01 are adopted on inverse variance param-
eters, the parameters {q1t, q2t}, and on the negative binomial overdispersion parameter
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Ω. Normal N(0, 100) priors are assumed on fixed effects {α1, α2, κ1, κ2, β1}. We consider
one-step ahead predictions. The predictive means are taken as

µi,T+1 = ρiTyi,T + λiT ∑j wijyj,T + exp(ηit + δi,T+1),

and include the updated value δi,T+1 ∼ N
(
δiT , σ2

δ

)
.

5. Analysis and Estimation

We apply the link-mixture models specified in Equations (5) and (6), and the mean as
in (9), these constituting models 3 and 4, respectively. Two simpler options are the log link
as in (3), constituting model 1, and the other (as model 2) is the logit link as in (4). Models 1
to 4 are denoted M1, M2, M3, and M4, respectively. Bayesian estimation is adopted and
implemented via the BUGS program [35]. Two chains of 20,000 iterations are taken with
inferences from the last 10,000 and convergence checks as in [36].

Fit is measured by the widely applicable information criterion (WAIC) [37]. The WAIC
is a measure of goodness of fit with a penalty for complexity (more complex models receive
a greater penalty). Lower values of the WAIC indicate a better fit. The advantages of the
WAIC over other fit measures used in Bayesian inference are discussed by Lambert [38].
The performance of predictions P(yrep,it

∣∣yit) =
∫

P
(
yrep,it

∣∣θ)P(yit|θ)dθ (where θ denotes all
parameters) is measured by the Dawid–Sebastiani score (DSS) and by the ranked probability
score (RPS) [39]. These two criteria are explicitly designed to assess the predictive success
of models for count time series and are now incorporated in the R software package (R
Foundation for Statistical Computing, Vienna, Austria) [40]. Both these criteria are lower
for better fitting models.

Let Yt denote region-wide totals at period t (i.e., total infections for all areas combined).
Assume the models are fitted to T time periods with period T + 1 as the holdout. One-
step ahead predictions for T + 1 are assessed by whether these predictions include actual
infection counts at T + 1 and by the RPS for one-step ahead predictions.

Code and data are provided as Supplementary Materials.

6. Case Study 1: London Boroughs, 32 Areas, 96 Weeks

The data for the first study consisted of weekly totals of new COVID cases in the
32 boroughs of London. The time span considered starts (t = 1) at the week ending Sunday
8 March 2020, with a final observation (t = 96) for the week ending Sunday 2 January 2022.

The upturn due to the new Omicron variant is apparent in the last few weeks of the
series. The peak infections were at week 94 (with 169,322 cases, compared to 65,771 in
week 93), after which a downturn started, with 155,181 cases at week 96. At the peak of
the London Omicron wave, the UK Office of National Statistics estimated that around
8.8% of Londoners had COVID-19 ([41], Table 1e). In contrast, between weeks 1 and 30,
most weeks recorded under 5000 new cases across London, and weeks 52–66 had under
5000 new cases—see Figure 1, which plots cases from weeks 44 to 96.

We take weeks 1–95 as the observed data, with week 96 as the holdout. There were
155181 cases in that week as infection levels due to Omicron started to tail off from the peak
in week 94. Table 1 compares the four models in terms of fit to the data and prediction
accuracy within the observed span. Table 1 also compares their out-of-sample predictions
to week 96.
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Table 1. Comparative Model Fit, London Boroughs (N = 32, T = 96).

Fit to Observed Data (T = 95)

WAIC RPS DSS

Model 1 32,267 185,300 24,683
Model 2 31,689 180,500 23,930
Model 3 29,292 111,024 22,467
Model 4 29,727 111,345 23,177

One-Step Ahead Prediction, Actual Count: 155,181

95% Interval for YT+1 RPST+1

Mean 2.5% 97.5%

Model 1 193,600 168,700 224,800 96,920
Model 2 192,600 168,300 224,300 95,520
Model 3 162,897 154,613 171,439 40,823
Model 4 163,584 154,018 175,048 42,923
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Figure 1. COVID cases, London, weeks 44–96.

Regarding fit to the observed data, the WAIC, RPS, and DSS criteria are all lower for
the link-choice models (models 3 and 4) than for the default log and logit link models
(models 1 and 2 in Equations (3) and (4), respectively).

Figure 2 plots out one of the fit measures, the RPS, by week. It shows worse predictions
under models 1 and 2 (M1 and M2 are the red and blue lines in Figure 2). Models M1 and
M2 show worse fit in an upturn due to the Alpha variant, which produced a peak infection
count of 93798 for the week ending 3 January 2021 (week 44 of the series).
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Models 3 and 4 also have greater accuracy in one-step ahead prediction in terms of the
coverage of the 95% predictive interval for Yrep,T+1 of the actual value and the RPS for week
T + 1. The 95% predictive interval for T + 1 under model 4 is (154,018, 175,048) including
the true value of 155,181, and the one-step ahead RPS is 42,923. The predictive interval
under model 3 also includes the true value. In contrast, models M1 and M2 over-predict
YT+1, their 95% predictive intervals for Yrep,T+1 do not include the actual value, and the
RPS measures of predictive fit are much worse.

The posterior means ρi under M1 (which are time constant) vary from 0.13 to 0.25,
whereas the mean λi varies from 0.19 to 0.72. There is therefore no indication in which areas
epidemic growth occurred. In contrast, under models 3 and 4, the ρit and λit parameters
will exceed 1 in weeks with a very high growth in cases.

Int. J. Environ. Res. Public Health 2022, 19, x  9 of 17 
 

 

Figure 2 plots out one of the fit measures, the RPS, by week. It shows worse predic-

tions under models 1 and 2 (M1 and M2 are the red and blue lines in Figure 2). Models 

M1 and M2 show worse fit in an upturn due to the Alpha variant, which produced a peak 

infection count of 93798 for the week ending 3 January 2021 (week 44 of the series). 

 

Figure 2. Ranked probability score by week; models compared. 

Models 3 and 4 also have greater accuracy in one-step ahead prediction in terms of 

the coverage of the 95% predictive interval for 𝑌𝑟𝑒𝑝,𝑇+1 of the actual value and the RPS 

for week 𝑇 + 1. The 95% predictive interval for T + 1 under model 4 is (154,018, 175,048) 

including the true value of 155,181, and the one-step ahead RPS is 42,923. The predictive 

interval under model 3 also includes the true value. In contrast, models M1 and M2 over-

predict 𝑌𝑇+1, their 95% predictive intervals for 𝑌𝑟𝑒𝑝,𝑇+1 do not include the actual value, 

and the RPS measures of predictive fit are much worse. 

The posterior means 𝜌𝑖 under M1 (which are time constant) vary from 0.13 to 0.25, 

whereas the mean 𝜆𝑖 varies from 0.19 to 0.72. There is therefore no indication in which 

areas epidemic growth occurred. In contrast, under models 3 and 4, the 𝜌𝑖𝑡 and 𝜆𝑖𝑡 pa-

rameters will exceed 1 in weeks with a very high growth in cases. 

From the latter parameters (only available under models M3 or M4), one may identify 

the upturn weeks in which areas have epidemic growth. Table 2, accordingly, shows the 

20 weeks with the highest values of 𝑅𝑡
𝑥 under M4. In a few weeks (such as weeks 2 and 

94), all 32 boroughs have nonstationary growth, but Table 2 shows that such growth is 

concentrated in a relatively few weeks in the observation span of 95 weeks. 

Table 2. Weeks with Highest Growth in Cases, Total Areas (from 32) with 𝜌𝑖𝑡 > 1. 

Week (t) Posterior Mean Total Areas 2.5% 97.5% 

94 32 32 32 

2 32 32 32 

3 32 30 32 

42 32 30 32 

41 30 26 32 

4 30 25 32 

30 27 19 32 

69 27 18 32 

Figure 2. Ranked probability score by week; models compared.

From the latter parameters (only available under models M3 or M4), one may identify
the upturn weeks in which areas have epidemic growth. Table 2, accordingly, shows the
20 weeks with the highest values of Rx

t under M4. In a few weeks (such as weeks 2 and
94), all 32 boroughs have nonstationary growth, but Table 2 shows that such growth is
concentrated in a relatively few weeks in the observation span of 95 weeks.
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Table 2. Weeks with Highest Growth in Cases, Total Areas (from 32) with ρit > 1.

Week (t) Posterior Mean Total Areas 2.5% 97.5%

94 32 32 32
2 32 32 32
3 32 30 32
42 32 30 32
41 30 26 32
4 30 25 32
30 27 19 32
69 27 18 32
31 25 16 32
72 22 11 30
27 21 9 31
70 20 10 29
93 20 9 29
66 14 1 30
65 4 0 15
67 3 0 12
32 3 0 9
34 2 0 7
24 2 0 10
71 1 0 4

Figure 3A,B plot out the posterior mean ωt under M4 for weeks 50–95 and the averages
ρt of the ρit. For these weeks, the ωt and ρt correlate highly (over 0.99) with actual growth
rates in London-wide total cases Yt/Yt−1, emphasizing how well the parameters reproduce
the actual infection data. For 6 of these 45 weeks, the London-wide ρt under M4 has a
posterior mean exceeding 1 (i.e., rapid case growth in epidemic periods), with the highest
ρt being 1.81 for week 94. These results confirm the utility of the link-mixture mechanism
in reproducing actual infection count fluctuations.
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Figure 3. (A) posterior mean omega, London boroughs, (B) posterior mean ρt.

Spatial Dynamics

The course of infection in particular areas is a major concern. Figure 4 maps out
boroughs according to the probabilities rx

it in week t = 93 (the week preceding the Omicron
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infection peak in London at week t = 94), where rx
it are the probabilities of epidemic growth

in different areas at particular time points. A spatial concentration of epidemic growth is
especially apparent in Southeast London, with the moran.test facility in R yielding a Moran
I spatial coefficient of 0.43 with p-value under 0.0001.
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The predicted area-specific changes in cases between weeks 93 and 94 (when the
omicron related epidemic peaked) correlate closely, confirming the model’s utility in
representing spatial dynamics. Thus, the correlation between µi,94/µi,93 and yi,94/yi,93 over
the 32 areas is 0.79. Similarly, in the short-term predictions to week 96, the correlation
between µi,96/µi,95 and yi,96/yi,95 over the 32 areas is 0.90.

Other spatial aspects of the model, such as the assumed spatial correlation in unob-
served area effects ui and the spatial correlation in the autoregressive parameter random
effects, are confirmed. For the g1i and g2i in the M3 model, we obtain Moran coefficients
of 0.33 and 0.07 with respective 95% predictive intervals (0.18, 0.48) and (−0.01, 0.18). So,
spatial correlation is stronger in determining the ρi than the λi. The Moran for the spatial
CAR effects ui is 0.44 with a 95% interval (0.06, 0.77).

7. Case Study 2: Southeast England, 144 Areas, 20 Weeks

The data for this study relates to the broader southeast of England, encompassing
144 local authority areas in three standard regions (London, East, and Southeast). The
time span consists of 21 weeks from the week ending 9 August 2020 through to the week
ending 27 December 2020. This period includes a peak in cases related especially to the
Alpha variant, namely week 21 with 210,099 cases, whereas in weeks 1–17 there were under
50,000 cases per week. We consider observations for the first 20 weeks, with week 21 held
out from estimation. We compare the models in terms of their fit to the observed data
(weeks 1–20) and one-step ahead predictions to week 21 when cases peaked.

Table 3 shows, as for the London study, that models 3 and 4 provide a better fit and
predictions to the observed data. Table 4 shows the RPS by week for the four models.
Models M1 and M2 have a worse predictive fit in weeks with rapid shifts in case numbers
(large increases or falls, as in weeks 19 and 15).
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Table 3. Comparative Model Fit, Southeast England (N = 144, T = 21).

Fit to Observed Data (T = 20)

WAIC RPS DSS

Model 1 27,579 118,685 22,317
Model 2 27,613 118,148 22,384
Model 3 25,439 65,663 19,348
Model 4 25,346 65,092 19,145

One-Step Ahead Prediction, Actual Count: 210,099

95% Interval for YT+1 RPST+1

Mean 2.5% 97.5%

Model 1 195,244 181561 210,088 27,025
Model 2 195,545 181644 210,548 27,223
Model 3 202,268 192260 213,112 24,062
Model 4 204,026 194169 214,482 23,661

Table 4. Ranked Probability Score (RPS) (Posterior Means by Week and Model).

Week M1 M2 M3 M4 Total Cases,
Greater Southeast, Yt

Relative Increase in
Cases Compared to

Previous Week

Ratio of RPS
M1 to M4

2 541 536 423 429 2161 1.23 1.26
3 655 657 508 513 2641 1.22 1.28
4 848 851 669 678 3972 1.50 1.25
5 914 917 692 698 4458 1.12 1.31
6 1379 1367 637 637 4030 0.90 2.16
7 1469 1471 1060 1044 6846 1.70 1.41
8 2135 2138 1608 1527 11,365 1.66 1.40
9 2464 2474 1770 1723 17,034 1.50 1.43

10 2453 2462 1826 1823 20,523 1.20 1.35
11 3955 3976 2591 2554 29,633 1.44 1.55
12 5140 5077 2939 2921 30,263 1.02 1.76
13 4566 4564 3307 3279 34,546 1.14 1.39
14 5327 5319 3649 3676 45,007 1.30 1.45
15 10,898 10,875 3729 3412 38,227 0.85 3.19
16 8410 8374 3311 3027 34,345 0.90 2.78
17 4976 4992 3737 3615 41,090 1.20 1.38
18 11,534 11,427 5598 5693 67,090 1.63 2.03
19 31,660 31,474 10,671 10,405 127,905 1.91 3.04
20 19,360 19,197 16,937 17,439 154,518 1.21 1.11

As to tracking extreme increases associated with the Alpha variant, Figure 5A,B
plot the M4 posterior means by a period of the statistics Rx

t and Lx
t , the total number of

areas with slopes ρit or λit exceeding 1 (consistent with epidemic growth). These both
peak in week 19, at 44.5 and 40.8, respectively (out of a total of 144 areas), implying
that the sharp growth in cases is from both local transmission and broader geographic
diffusion. These statistics closely correlate (0.86 and 0.87, respectively) with observed
growth ratios Yt/Yt−1, confirming the utility of derived model indicators in reproducing
actual infection dynamics.
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Figure 5. (A) Average number of own area slopes exceeding 1, Rx
t . (B) Average number of spatial lag

slopes exceeding 1, Lx
t .

Models 3 and 4 also have better predictive out-of-sample performance for week 21
than M1 and M2. For example, the 95% predictive interval for the region-wide total at
T = 21, namely Yrep,T+1 under model 4 is (194,169, 214,482) comfortably including the actual
value of 210,099. In contrast, models M1 and M2 tend to underpredict the future value.

As for the previous case study, spatial dynamics are of major importance. We find that
all the random effects relevant in the best-fitting M4 are confirmed as spatially correlated:
the Moran I for ui g1i, g2i, g3i, and g4i are, respectively, (with 95% intervals) 0.26 (0.06, 0.47),
0.32 (0.13,0.62), 0.45 (0.24, 0.71), 0.51 (0.29,0.74), and 0.44 (0.24,0.64).

Figure 6 shows the spatial pattern of epidemic probabilities in week 19 when there
was a near doubling of cases. As for Figure 4, there is spatial clustering in infection growth
with a Moran statistic of 0.44 (with highly significant p-value). Such clustering supports
features of the model such as allowing for neighbourhood infection spillover.
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8. Discussion

The literature on epidemic modelling has paid little explicit attention to methods for
spatially disaggregated infection data in a situation of multiple epidemic phases with inter-
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vening spells of endemic infection. Many studies involve a single region or nation [9,10].
The present paper has proposed a methodology for spatially disaggregated infection counts
including both regime alternation in situations with multiple epidemic phases and neigh-
bourhood spillover in infection. The advantages of the methods presented here have been
shown in two case studies, distinct in the epidemic virus considered and in their spatial
framework.

Existing models for area–time infection counts mostly include no mechanism to distin-
guish epidemic from endemic phases, and hence short-term forecasts using them will tend
to be less accurate than the methods proposed here. Approaches based on phenomenologi-
cal models (e.g., logistic curves) or compartmental models, are difficult to adapt to multiple
epidemic phases or to spatially disaggregated data, whereas ARIMA models generally use
data differencing and transformation rather than analyse the data as they are. They are also
difficult to extend to multiple areas, i.e., to a spatio-temporal situation.

In contrast, the method proposed in this paper adapts to nonstationarity in cases
and to spatially disaggregated data. For infection count time series with epidemic phases,
stationarity is a restrictive assumption and allowing nonstationarity is appropriate [42]. The
model proposed here includes novel features such as a mechanism to represent epidemic
against endemic phases, both in the aggregate (region-wide) and for individual areas
and applying both to local infection spread and infection diffusion from neighbouring
areas. The model can be seen as a spatio-temporal regime-switching model. We avoid
transformation used in some spatio-temporal infection models, e.g., [43], and retain counts
as a natural metric [5].

A number of diagnostic statistics are presented (with relevance to interpreting the time
course of an infectious disease) and shown in the case studies to closely reproduce actual
infection trends. An example is the match between the diagnostics in Figure 3A,B with
actual growth in London cases, with a similar close correlation in the Greater Southeast
case study.

Another result of these novel features is that the link-mixture model produces a
better representation of spatial dynamics and improved short-term forecasts. Forecasts of
infection change at area-specific levels (such as the 32 areas in the first case study) correlate
positively with actual changes in cases.

The case studies in this paper have used relatively large areas (e.g., averaging
170 thousand in the London case study), but the approach used remains appropriate
for smaller neighbourhoods (e.g., areas with around 10,000 population), where small infec-
tion counts are likely to be involved. A generalised Poisson model with Bayesian smoothing
mechanisms to borrow strength remains suitable at lower spatial disaggregation. The ap-
proach of this paper may also be used with other outcomes, possibly usually less frequent
than cases, such as infection-related deaths.

Possible extensions or variations of the approach proposed above may be considered.
One is to make the mixing variables ωt area-specific, namely ωit, though at the expense
of extra parameterisation and possibly weakened identification. Another, as suggested
above, is to introduce covariates to explain the disease course. This could be done via the
Xit in ηit, or in a beta regression for the ωt. Covariates might be infection-related such as
the proportions of infections due to a new variant. Intervention or environmental variables
may also be included in this regression. For example, there is increasing evidence of links
between COVID infection and weather conditions [44].

Another potential extension is to multiple outcomes (e.g., cases and hospitalizations),
for example, using multivariate CAR spatial effects in (5) and (6). This type of model might
include the time-lagged dependence of hospitalisations on cases.

The methodology proposed here may have application beyond infectious disease
counts, particularly to longitudinal spatial count data involving considerable time fluctu-
ations. In spatial applications, it is relevant when positive feedback from neighbouring
locations is anticipated on substantive grounds [45]. Possible examples include urban
crime [46] and spatial innovation diffusion [47].
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9. Conclusions

Many epidemic time series—COVID being a current example—show periods of rela-
tively stable infection levels (characterisable as endemicity), followed by phases of rapidly
increasing infection levels. After the epidemic peaks, there is a period of descending rates
and a return to stability. Hence some mechanism is needed to alternate repeatedly between
epidemic and endemic phases or “regimes”.

The regime-alternation specification used in this paper is relatively simple, applicable
both to local infection spread and spread from neighbouring areas and can be adapted to
multiple epidemic phases. It is parsimonious in parameter terms, whereas considerably
heavier parameterisation may be used in those spatio-temporal regime-switching studies
that have been carried out using discrete Markov switching [11]. Heavy parameterisation
may lead to improved in-sample fit but does not necessarily produce improved out-of-
sample predictions such as short-term infection forecasts [48].

Spatio-temporal infection data also raise the issue of neighbourhood infection spillover,
which is not included in some spatio-temporal infection models, e.g., [11,43]. In the analysis
above, we introduce regime alternation into an autoregressive space–time framework to
reflect pronounced fluctuations in infection levels, while also allowing for neighbourhood
spillover in infection, which is itself governed by regime alternation.

We show how the proposed method provides improved fit and short-term predictions
compared to other spatio-temporal infection models that do include infection spillover but
have no adaptation to epidemic phasing [24,25]. Detailed results from the two case studies,
which have different variants involved in epidemic peaks and different spatial frameworks,
confirm the utility of the model.

In the near future, recurrent epidemic phases of COVID may occur as a result of new
variants even if the disease takes on endemic features. In such a situation, appropriate
modelling techniques provide relevant research contributions to monitoring and containing
the impacts of COVID and the above paper is intended as one such contribution.

The case studies in this paper both concern COVID, whereas other regime-switching
applications include dengue [9] and influenza [11]. Hence, a full evaluation of the method
here should include application to other infectious diseases with evaluation including
out-of-sample predictions.
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