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Activation of self-reactive CD8+ T cells induces a peripheral tolerance mechanism that
involves loss of CD8 expression. Because genetic deficiency of Fas and Fasl causes the
accumulation of double-negative (DN; CD3+ TCR-ab+ CD4- CD8-) T cells that have been
proposed to derive from CD8+ cells, we decided to explore the role of Fas and FasL in self-
antigen-induced CD8 downregulation. To this end, we quantified Fas and FasL induction
by different stimuli and analyzed the effects of Fas/FasL deficiency during a protective
immune response and after exposure to self-antigens. Our data describes how Fas and
FasL upregulation differs depending on the setting of CD8 T cell activation and
demonstrates that Fas/FasL signaling maintains CD8 expression during repetitive
antigen stimulation and following self-antigen encounter. Together, our results reveal an
unexpected role of Fas/FasL signaling and offer a new insight into the role of these
molecules in the regulation of immune tolerance.
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INTRODUCTION

Fas (CD95) and FasL play essential roles in immune function that include induction of apoptosis
and modulation of T cell activation (1). In mice, Fas deficiency causes abnormal accumulation of
antigen-specific T cells during chronic (but not acute) viral infections and after T cell activation
under steady state conditions (2–4). In addition, loss of function (LOF) mutations in the genes that
encode Fas and FasL cause ALPS (autoimmune lymphoproliferative syndrome), a
lymphoproliferative disease associated with pathological autoimmunity (5). Therefore, Fas and
FasL are thought to contribute to the control of lymphoid proliferation and the maintenance of
immune tolerance.

It has been proposed that lack of Fas-mediated apoptosis represents the main mechanism behind
lymphoid cell accumulation in patients with ALPS (4, 6). However, Fas also plays complex non-
apoptotic roles in T cells, where, depending on the context, it can promote or inhibit activation and
effector differentiation (7–10). A prominent feature of humans and mice with Fas or Fasl LOF
mutations is the accumulation of an unusual population of CD3+ TCR-ab+ T cells that lack CD4
and CD8 (double negative; DN) (11). Because their accumulation is associated with Fas deficiency,
DN T cells are thought to represent products of failed T cell apoptosis (1, 4, 12, 13). However, two
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lines of evidence argue against this being the only mechanism for
DN T cell accumulation: (a) in non-autoimmune mice, T cell-
specific deficiency of Fas did not cause the accumulation of DN T
cells (14); (b) a point mutation that avoided Fas palmitoylation,
and therefore its recruitment into lipid rafts, abolished Fas-
mediated apoptosis, but did not cause an increase in DN T
cells (9). Consequently, the capacity of T cells to undergo Fas-
mediated apoptosis and the accumulation of DN T cells do not
seem to be mechanistically connected. This aspect of DN T cell
biology holds particular relevance considering their possible role
in autoimmunity (15, 16), allograft rejection (17), and anti-
tumor immunity (18).

A wealth of evidence indicates that DN T cells derive from
CD8ab+ T cells: (a) CD8+ and DN T cells share Vb usage and
CDR3 sequences (19); (b) mice deficient in b2-microglobulin or
MHC-I molecules have reduced numbers of DN T cells (20–22);
(c) the Cd8a locus is hypomethylated in DN T cells, indicating
previous transcriptional activity (23, 24); (d) CD8+ T cells lose
CD8 when they encounter cognate antigen presented as self (25,
26); (e) DN T cells can upregulate CD8 when they undergo
homeostatic proliferation under lymphopenia (27). Importantly,
generation of DN T cells is not limited to situations in which Fas/
FasL function is compromised, as an increased abundance of DN
T cells has been reported in a number of chronic inflammatory
conditions that include systemic lupus erythematosus (15),
primary Sjögren’s syndrome (28), and psoriasis (29).
Therefore, regulation of CD8 expression may represent an
underestimated mechanism of controlling CD8 T cell function
(30–32), particularly in the setting of self-antigen encounter and
chronic inflammation, and the accumulation of DN T cells in
patients or animals that lack Fas or FasL suggests that signaling
through these molecules regulates CD8 expression. In this work,
we addressed this question, using a genetic approach, to
determine the role of Fas/FasL in the regulation of CD8
expression during protective and tolerance-inducing
immune responses.
MATERIALS AND METHODS

Mice
B6.MRL-Faslpr/J (B6.lpr), B6Smn.C3-Faslgld/J (B6.gld), C57BL/6-
Tg(TcraTcrb)1100Mjb/J (OT-I), and C57BL/6-Tg(CAG-OVAL)
916Jen/J (Act-mOVA) mice were purchased from The Jackson
Laboratory (Bar Harbor, Maine, USA). B6.lpr OT-I, B6.gld OT-I,
and B6.lpr/gld OT-I were generated by breeding. Mice were
housed in SPF conditions on a 12 hour light/dark cycle and
had ad libitum access to food and water. All experiments
involving mice were approved by the Animal Care and Use
Committee of the Instituto Nacional de Ciencias Médicas y
Nutrición Salvador Zubirán (IRE-1725).

In Vitro T Cell Activation
Bone marrow-derived dendritic cells (BM-DCs) were
differentiated from WT, B6.lpr, or B6.gld bone marrow cell
suspensions by culturing them in full RPMI (10% FBS) in the
Frontiers in Immunology | www.frontiersin.org 2
presence of GM-CSF (20 ng/mL; Peprotech) during 8 days. BM-
DCs (5 x 104), loaded with the indicated concentration of
SIINFEKL, were cultured in U-bottom 96-well plates with 2 x
105 CD8+ T cells isolated using CD8a+ T Cell Isolation Kit II
(Miltenyi Biotec) from OT-I mice in B6 (WT), B6.lpr, or B6.gld
background. For activation with antibodies, 1.25 x 106 OT-I cells
were cultured in 48-well plates coated with anti-CD3 and anti-
CD28 (2 µg/mL). For quantification of gene expression by RT-
qPCR, live T cells were sorted and lysed in TRIzol. Total RNA
was reverse transcribed using the High-Capacity cDNA Reverse
Transcription Kit (Applied Biosystems) and qPCR was
performed using SYBR Green PCR Master Mix (Applied
Biosystems). Results were normalized using Actb and are
expressed as DCt.

Adoptive Transfer
OT-I cells were adoptively transferred by i.v. injection. One-day
after, 104 c.f.u. of Listeria monocytogenes expressing recombinant
OVA (LM-OVA; a generous gift from Dr. Michael J. Bevan,
University of Washington) were injected i.v (33). For exposure to
self-antigens, OT-I cells were adoptively transferred (i.v.) into
Act-mOVA or B6 (control) mice. Transferred cells were
analyzed in spleens of recipient mice at the indicated days
after injection.

Flow Cytometry
Labeled antibodies were purchased from Tonbo, Biolegend, and
eBiosciences. (Supplemental Table 1). For staining, 1 x 106 cells
were incubated with antibodies (1:100), at room temperature, for
30 min. Cells were washed twice and resuspended in PBS + 2%
FCS and acquired in a FACS Aria II instrument (BD
Biosciences). Data was analyzed using FlowJo software.

Statistics
Statistical tests were calculated using Microsoft Excel and
GraphPad Prism. The statistical test used and P values are
indicated in each figure. In general, for comparison between
two groups, paired or non-paired Student’s t test was used. To
compare more than 2 groups, one-way ANOVA was used. P
values <0.05 were considered significant.
RESULTS

The Kinetics of Fas and FasL Expression
Vary According to the Activation Stimulus
Expression of Fas and FasL on naïve CD8 T cells is minimal, but
levels of both molecules increase following cell activation (34,
35). To determine the kinetics with which these receptors are
induced by activation on CD8+ T cells, we isolated OT-I cells and
activated them in vitro using plate-bound anti-CD3 and anti-
CD28, or in the presence of BM-DCs loaded with the ovalbumin-
derived peptide SIINFEKL. As shown in Figure 1A, activation of
CD8 T cells with BM-DCs induced robust transcription of Fas
that initiated 24 h after cell activation and reached an ~8 fold
increase at 72 h. In contrast, cell activation with anti-CD3 and
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anti-CD28 did not induce a detectable increase in Fas expression
at the mRNA level. Transcription of Fasl was promoted by both
types of cell activation, but appeared earlier and reached higher
levels in cells stimulated by anti-CD3 and anti-CD28. When
analyzed at the protein level, expression of surface Fas and FasL
reflected the regulation at the mRNA level (Figures 1B, C). Fas
was induced more strongly by BM-DCs and its levels increased
gradually during the observed period of time, whereas FasL was
similarly induced by BM-DCs and the combination of anti-CD3
and anti-CD28. These results indicate that in CD8+ T cells, Fas
and FasL expression is regulated, at least partially, at the
transcriptional level, and is affected by signals present during
cell activation.

Fas-FasL Signaling Maintains
CD8 Expression Levels During
Cell Re-Stimulation
Genetic deficiency of Fas or Fasl causes massive accumulation of
TCR-ab DN T cells, suggesting that signaling through these
molecules may contribute to CD8 expression (9, 10, 36, 37).
Previous work from our group has shown that CD8 expression is
lost in CD8 T cells transferred into mice that locally or
ubiquitously express the CD8+ T cell cognate antigen as self
(25, 26). In that context, several aspects could contribute to CD8
loss. These include factors related to antigen presentation (32,
38) and to the repetitive nature of the antigen encounter (39, 40).
To explore this process, and in particular to analyze whether
signaling through Fas and/or FasL plays a role in maintaining
CD8 expression, we designed an in vitro system that would allow
Frontiers in Immunology | www.frontiersin.org 3
us to evaluate the role that repetitive cognate antigen stimulation
and signaling through Fas and FasL may exert on CD8
expression during T cell activation. To this end, we took
advantage of B6.lpr and B6.gld mice. B6.lpr mice are
homozygous for a mutation in Fas, caused by the insertion of
the ETn retrotransposon that abolishes the expression of the
gene (41). B6.gldmice have a point mutation near the C-terminal
region of FasL that affects its ability to bind Fas (42). Thus, B6.lpr
cells lack Fas and B6.gld cells express a FasL variant that cannot
engage Fas. This allowed us to compare the activation of OT-I
cells in the presence of WT BM-DCs or BM-DCs lacking Fas
(B6.lpr) or functional FasL (B6.gld). By crossing OT-I mice with
B6.lpr and B6.gld mice, we obtained OT-I cells deficient in Fas
and FasL. These cells allowed us to analyze CD8+ T cell
activation in cell culture systems devoid of signaling through
Fas and FasL (Figure 2A). To observe the effects of repetitive
antigen encounter, we setup a two-step stimulation system,
where we incubated OT-I cells in the presence of cognate
antigen-loaded BM-DCs during 48 h and then we replated the
OT-I cells with fresh BM-DCs. We analyzed CD8 expression on
OT-I cells after the initial stimulation (activation) and after 72 h
of re-stimulation.

We considered CD8 expression as percentage of CD8 positive
cells within OT-I cells (% CD8+) and as CD8 abundance per cell
(CD8 mean fluorescence intensity; MFI). As shown in Figure 2B,
cells maintained CD8 expression during the initial 48 h
activation period, and lack of BM-DC!T cell signaling
(through Fas or FasL) did not affect CD8 expression. Likewise,
activation of B6.gld OT-I cells in the presence of B6.gld BM-DCs,
A

B C

FIGURE 1 | Fas and FasL expression kinetics. CD8+ OT-I cells were activated in vitro using bone marrow-derived dendritic cells (BM-DCs; circles) loaded with
SIINFEKL (1 mM) or with plate-bound anti-CD3 and anti-CD28 (triangles). At the indicated time points, cells were lysed for RNA extraction (A) or stained for flow
cytometry (B, C). (A) Fas and Fasl relative expression (DCt). (B) Fas and FasL expression is shown as fraction of positive cells (%) and mean fluorescence intensity
(MFI) of positive cells. (C) Representative histograms of (B). Each symbol (A, B) represents one experiment done with pooled cells from 2-3 mice. Solid lines indicate
mean; dotted line indicate the expression level of unstimulated cells (0).
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A

B

D

C

FIGURE 2 | Fas-FasL signaling maintains CD8 expression during re-stimulation. CD8+ OT-I cells were activated in the presence of BM-DCs loaded with SIINFEKL (1
mM). After 48 hours (activation), CD8 expression levels were quantified by flow cytometry in an aliquot of the cells. The rest were placed in a new plate with fresh
BM-DCs (in the presence of SIINFEKL). CD8 expression was reevaluated after 72 hours (120 h re-stimulation). (A) Experimental strategy indicating the presence of
Fas-FasL signaling in the different cell culture conditions. (B, C) CD8 expression after the initial activation (48 h) and after re-stimulation (120 h). Wild-type (WT) or
mutant (M; B6.lpr or B6.gld) OT-I cells were activated in the presence of WT or M BM-DCs, as indicated. Percentage of CD8+ cells (left) or CD8 expression per cell
(mean fluorescence intensity; MFI; right) on OT-I cells is shown. Each symbol represents one experiment done with pooled cells from 2-3 mice. Circles represent the
conditions where OT-I cells and BM-DCs were WT; triangles when the mutant cells were B6.gld; squares when the mutant cells were B6.lpr. Dotted lines indicate
mean of WT cells; shaded area represents range of WT cells. **P < 0.01; ***P < 0.001 (one-way ANOVA). (D) Representative contour plots of OT-I cells after 48 and
120 hours of activation and re-stimulation, respectively.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Flores-Mendoza et al. Fas/FasL Signaling Regulates CD8
or B6.lpr OT-I cells with B6.lpr BM-DCs (no Fas or FasL
signaling; Figure 2A) had no effect on CD8 levels during the
initial 48 h stimulation period (Figure 2B).

Re-exposure to cognate antigen had no effects on CD8
expression on WT OT-I cells, activated and re-stimulated by
WT or by mutant (M) BM-DCs, indicating that BM-DC!T cell
signaling through Fas or FasL does not play an essential role in the
modulation of CD8 expression during T cell activation or re-
stimulation (Figure 2C). In contrast, complete lack of Fas/FasL
signaling, was associated with a modest, albeit consistent and
statistically significant decrease in CD8 expression, quantified as
the fraction of CD8+ cells or as CD8 levels per cell (Figures 2C, D).

Because Fas and FasL have been shown to modulate TCR
signaling (7, 8), we analyzed the role of cognate peptide
concentration during OT-I activation and re-stimulation. CD8
T cell stimulation with higher concentrations of SIINFEKL
tended to decrease the expression of CD8 and of the TCR, but
only after re-stimulation. This effect was more marked in the
absence of Fas and FasL signaling (Supplemental Figure 1). This
suggests that signaling through Fas and/or FasL signaling may
decrease the strength of TCR signaling during repetitive
encounters with cognate antigen.

Loss of Fas/FasL cis Signaling Does Not
Affect CD8 Loss In Vivo
The results from our in vitro experiments showed unaltered CD8
expression in the presence of one-way BM-DC!T cells Fas or
FasL signaling. To determine whether the absence of Fas or FasL
on CD8 T cells affected the behavior of OT-I cells adoptively
transferred into mice that ubiquitously express their cognate
antigen, we co-transferred WT OT-I (CD45.1) and B6.gld or
B6.lpr OT-I (CD45.2) into CD45.1/2 Act-mOVA mice in a 1:1
ratio (Figure 3A). As expected, the presence of OVA was
associated with a contraction of transferred antigen-specific
cells. However, absence of Fas and FasL affected CD8 T cell
contraction in a different manner. Whereas lack of FasL did not
affect self-antigen-induced contraction and actually tended to
increase the number of OT-I cells at day 7 post-transfer, lack of
Fas was associated with a significant decrease in the number of
live OT-I cells suggesting that signaling through Fas may in fact
promote cell survival in CD8 T cells exposed to self-antigen
(Figure 3B). When we analyzed CD8 downregulation, our
results in this in vivo setting were analogous to the ones
obtained in our in vitro re-stimulation system. B6.gld as well as
B6.lpr OT-I cells downregulated CD8 in a normal manner, not
different than the WT OT-I cells they were cotransferred with
(Figures 3C, D).

These experiments demonstrate that Fas and FasL expression
on T cells is dispensable for self-antigen-induced contraction of
CD8 T cells. In fact, lack of T cell expression of Fas caused an
unexpected drop in the numbers of live OT-I cells transferred
into Act-mOVAmice, suggesting that signaling through Fas may
directly or indirectly promote T cell survival in this setting. In
concordance with the results of our in vitro experiments, when
Fas or FasL deficiency was limited to T cells, CD8
downregulation induced by self-antigen was not affected.
Frontiers in Immunology | www.frontiersin.org 5
Fas/FasL Signaling Maintains Cell
Numbers and CD8 Expression During
Encounter With Self-Antigens
Collectively, the presented in vitro and in vivo data indicated that
complete absence of Fas/FasL signaling was associated with loss
of CD8 expression during repetitive antigen encounter, but that
partial interruption of this signaling pathway had modest or no
obvious effects. To confirm these observations, we generated
double mutant (DM; B6.lpr/gld) OT-I mice and co-transferred
WT and DM OT-I cells (1:1 ratio; Figure 4A) into WT recipient
mice and infected them with OVA-expressing Listeria
monocytogenes (LM-OVA). At Day 7, we quantified the
abundance of WT and DM cells and analyzed their expression
of CD8. As shown in Figure 4B, DM cells were modestly more
abundant (P=0.016) at the peak of clonal expansion (DM : WT
ratio 1.45 ± 0.22), consistent with the role of Fas/FasL in re-
stimulation-induced cell death (4). However, CD8 expression
remained high in WT and DM cells (Figure 4C). Thus, in the
course of a protective immune response, during pathogen-driven
T cell activation, Fas/FasL signaling is not necessary for
maintaining CD8 expression, but modestly curbs clonal
expansion. To analyze the role of Fas/FasL signaling during
encounter with self-antigens, a situation that promotes CD8
downregulation (25, 26), we co-transferred WT and DM OT-I
cells into Act-mOVA mice. In this context, lack of Fas and FasL
was associated with a marked drop in cell numbers and at Day 7
post-transfer the ratio of DM : WT cells was 0.48 ± 0.03 (Figure
4D). Importantly, in concordance with our in vitro experiments,
the fraction of cells that maintained CD8 expression was
significantly lower within DM OT-I cells (WT 44.0% ± 3.5 vs.
DM 21.89% ± 1.1, P=0.001) (Figure 4E). This was probably not
associated with increased activation, as CD44 upregulation was
similar in WT and DM cells (Figure 4F).

Because of the contrasting effects of Fas/FasL signaling during
productive and tolerance-inducing immune responses, we
analyzed the kinetics of Fas and FasL expression in WT OT-I
cells in both scenarios. As shown in Figure 4G, expression of Fas
increased gradually and peaked at Day 5 in OT-I cells activated
in the context of LM-OVA infection. In contrast, Fas expression
reached an earlier and higher peak in cells exposed to self-
antigens. Analogously, induction of FasL was higher in cells
exposed to self-antigens.
DISCUSSION

Fas and FasL play complex roles in the immune system. Present
in a large variety of cells, the regulation of their expression and
the consequences of their engagement vary greatly depending on
the cell context in which they appear. Here, we have analyzed the
effects of complete absence of Fas/FasL signaling in two different
settings, during an infection with an intracellular bacterial strain
and during the encounter of ubiquitous antigen presented as self.
Because in both systems we used cells with the same antigenic
specificity, our experimental design eliminated differences in
TCR affinity, a factor commonly relevant during the
March 2021 | Volume 12 | Article 635862
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comparison of self- and pathogen-derived antigens (T cells
usually have lower affinity toward self-antigens than against
external antigens), and allowed us to observe the behavior of
OT-I cells during a protective and a tolerogenic immune
response and to determine whether the absence of Fas/FasL
signaling affects CD8 expression in those circumstances.

We observed that the context in which CD8 T cells are primed,
affects the expression of both Fas and FasL. In vitro experiments
showed that CD8+ T cell activation via BM-DCs induced higher
expression of Fas (but not FasL) than activation of the same cells
with plate-bound anti-CD3 and anti-CD28. Although these two
systems are different and it is not possible to weigh the influence of
Frontiers in Immunology | www.frontiersin.org 6
TCR affinity, the fact that BM-DCs induced much higher
expression of Fas, suggests that signals different to CD28 and
CD3 (e.g. DC-derived cytokines and/or surface molecules) may
promote transcription of Fas (43). This hypothesis is supported by
previous findings that showed that T cell activation with
concanavalin A induced higher levels of Fas than activation
through CD3 (34). Our in vivo experiments further confirmed
this and showed that exposure to self-antigen elicits a much
stronger and earlier expression of both Fas and FasL than
encounter to the same antigen in the context of bacterial infection.

In previous work we have shown that exposure of CD8+ T cells
to self-antigen induces an inactivation program that includes the
A

B

D

C

FIGURE 3 | T cell-specific deficiency of Fas or FasL does not affect CD8 loss during self-antigen exposure. Wild-type CD45.1 (WT) or mutant CD45.2 (B6.gld or
B6.lpr) OT-I cells were adoptively transferred (1:1 ratio) into CD45.1/2 mice that ubiquitously express ovalbumin (Act-mOVA), or into control CD45.1/2 mice. Seven
days later, transferred cells and CD8 expression were analyzed. (A) Experimental layout, indicating the symbols that represent each cell type (in B, C) and the signals
received by each cell during exposure to self-antigens. (B) Abundance of transferred cells, shown as the percentage of CD45.1 (WT) or CD45.2 (B6.gld or B6.lpr)
cells within live Va2+ T cells (left), or as M:WT ratio (right). (C) Fraction of transferred cells positive for CD8. Each symbol (B, C) represents one mouse. Solid lines
indicate mean. Shaded area indicates range of WT cells. (C) Representative dot plots showing transferred cells (left) and CD8 expression (right) in a WT and an Act-
mOVA mouse. ***P<0.001; ****P<0.0001 (one-way ANOVA). **P<0.01 (unpaired t test).
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downregulation of CD8 expression (25–27). Because we never
observed CD8 downregulation during in vitro activation and CD8
loss was only observed in tissues locally expressing the cognate
antigen (25), we hypothesized that repetitive encounter with
antigen –as occurs in vivo during self-antigen encounter- may
play a role in this process and that signaling through Fas or FasL
may regulate CD8 loss. We found that in WT CD8+ T cells,
repetitive in vitro activation did not affect CD8 levels and,
importantly, that absence of Fas or FasL on the APC had no
effects. Our interpretation to this observation was that cis signaling
Frontiers in Immunology | www.frontiersin.org 7
(Fas and FasL on the same cell) or trans signaling (Fas and FasL on
different T cells) could avoid CD8 downregulation because the
OT-I cells did not require Fas or FasL signals originated from the
APC in the presence of cis signaling. The importance of cis
engagement for signaling or as competition for ligands
presented in trans, has been observed in other T cell co-
receptors, for example PD-1, PD-L1 and CD80, HVEM and
BTLA, or Notch and Delta (44–49) and also in Fas-FasL during
the process of memory development (36). This seems to be the
case, because when Fas-deficient OT-I cells were activated in the
A

B

D E

F G

C

FIGURE 4 | Fas-FasL signaling maintains CD8 expression during self-antigen encounter. (A) Experimental layout, indicating the symbols that represent each cell
type (in B–F) and the signals received by each cell during exposure to self-antigens. (B, C) WT (CD45.1/2) and double mutant (DM; B6.lpr/gld; CD45.2) OT-I cells
were adoptively transferred (1:1) into CD45.1 mice. The next day, mice were infected with ovalbumin-expressing Listeria monocytogenes (LM-OVA). At Day 7 post-
infection, mice were sacrificed and cell abundance and CD8 expression were analyzed. (B) Abundance of transferred cells, shown as the percentage of WT or DM
cells within live Va2+ T cells (left), or as DM : WT ratio (right). (C) CD8 expression on transferred cells. (D–F) WT and DM cells were adoptively transferred (1:1) into
mice that ubiquitously express OVA (Act-mOVA) and analyzed 7 days later. (D) Abundance of transferred cells. (E) CD8 expression on WT and DM cells. (F) CD44
expression (gMFI) in endogenous (E) and transferred cells. Each symbol represents one mouse. Solid lines indicate mean. * P<0.05 (one-way ANOVA). ***P ≤ 0.001;
****P<0.0001 (paired t test). (G) Fas (left) and FasL (right) expression kinetics (mean ± SEM) in WT OT-I cells during LM-OVA infection (black circles) or self-antigen
exposure (empty squares). n.s., not significant.
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presence of Fas-deficient BM-DCs (or FasL deficient T and DCs
were used), CD8 levels decreased. These experiments suggested
that Fas/FasL signaling, during repetitive antigen encounter,
maintains CD8 expression. To determine the role of TCR
signaling strength in this process, we activated OT-I cells with
varying concentrations of SIINFEKL, in the presence or absence of
Fas/FasL signaling. We observed that lack of Fas/FasL signaling
increased the magnitude of CD8 and TCR downregulation
induced by high antigen concentrations. These data indicate that
Fas/FasL may modulate TCR signaling, particularly during
repetitive encounter with high affinity antigens. Further, the fact
that Fas (and not FasL) deficiency was associated with higher levels
of OT-I death during adoptive transfer into Act-mOVA mice
suggests that signaling through Fas may modulate TCR signaling
in this context thus limiting cell death caused by exposure to
persistent antigen.

Exclusive absence of Fas or FasL T cell signaling did not affect
CD8 downregulation. In contrast, complete absence of Fas/FasL
signaling significantly increased CD8 to DN T cell conversion.
This effect could not be attributed to defective apoptosis, because
as mentioned earlier, absence of Fas (either alone or combined
with FasL deficiency) did not cause an accumulation of OT-I
cells. Moreover, in concordance with Hao et al., that
demonstrated that FasL blockade is necessary for the
accumulation of DN T cells in the presence of T cell-specific
Fas deficiency (14), we observed that whereas absence of FasL did
not promote DN T cell generation when present as an isolated
defect, it did robustly in the presence of the concomitant absence
of Fas. This suggests that DN T cell expansion in germline
mutants is a complex phenomenon where lack of Fas and FasL
contribute differently. It also poses the question of whether
genetic variants affecting FasL reverse signaling or the crosstalk
between Fas and FasL signaling pathways could modify disease
expression in patients with ALPS. This may be particularly
relevant in cases where specific mutations are associated with
heterogeneous phenotypes (50).

Our findings reveal an unexpected role for Fas/FasL signaling
during peripheral tolerance: expression of Fas and FasL is
robustly induced by self-antigen encounter and cis signaling
through this receptor pair may protect self-reactive cells from
deletion and from CD8 downregulation, perhaps by annulling
Fas/FasL signaling from APCs to T cells as has been proposed in
other systems (2). In contrast, absence of Fas/FasL had no effects
on CD8 expression during a protective immune response
induced by a bacteria. Why does absence of Fas and FasL
affect so differently the fate of cells in two settings that share
the CD8 T cells and the antigen? The fact that Fas and FasL
induction differs greatly in these two types of antigen encounter
suggests that Fas/FasL signaling may be more relevant for T cells
in the context of self-antigen encounter than during responses
that induce a strong clonal expansion. Numerous studies have
reported that Fas and FasL exert costimulatory effects on T cells
(8, 51–54). It is possible that in this system, the absence of Fas
and FasL-derived costimulation impairs OT-I proliferation. It
also raises the question of whether CD8+ and DN T cells depend
differently on Fas/FasL costimulatory properties, as it has been
Frontiers in Immunology | www.frontiersin.org 8
reported that TCR signaling strength is an important modulator
of FasL costimulatory and inhibitory effects (55). In patients with
ALPS, CD4 and CD8 T cells exhibit abnormal phenotypes
reminiscent of terminally differentiated exhausted T cells seen
in conditions where T cells are chronically stimulated. This
phenotype, also observed in their DN T cells, along with
evidence that links the TCR repertoire in CD8+ and DN T
cells, suggests that self-antigen encounter drives CD8 to DN T
cell conversion in ALPS and emphasizes the importance of Fas in
keeping in check self-reactive CD8 T cells (56, 57).

Because in our in vivo system we used a unique high affinity
antigen, we were not able to consider the role of antigen affinity,
which represents a variable that could contribute to the
lymphoproliferation observed in mice that lack Fas or FasL in
the presence of a diverse repertoire. Together, the evidence
indicates that Fas/FasL signaling promotes CD8 expression on
self-reactive T cells exposed to self-antigen, but that the degree of
clonal deletion is regulated by other factors, perhaps controlled at
the level of TCR signaling and therefore regulated by affinity
toward the antigen. This hypothesis that would predict that the
absence of Fas or FasL would favor the loss of CD8 and the
accumulation of low-affinity self-reactive cells. In support of this,
we observed that changes in the concentration of SIINFEKL
during in vitro re-stimulation were inversely correlated with
CD8 expression.

Because humans and mice with Fas or FasL LOF mutations
lack a functional molecule in all cells, the net result is lack of
signaling through Fas and through FasL. When we used double
mutant (B6.gld/lpr) OT-I cells, we completely blocked all Fas and
FasL signaling in T cells. However, it would be important to
distinguish between the effects of Fas and FasL engagement.
Theoretically, Fas-deficient OT-I cells could be adoptively
transferred into FasL deficient recipient mice, to observe the
effects of T cell FasL signaling in the absence of Fas signaling (or
the inverse experimental setup). The main caveat of these
systems is that Fas-deficient cells express FasL and thus induce
apoptosis in Fas-bearing cells. Therefore, adoptive transfer of
Fas-sufficient T cells into Fas-deficient animals could result in
apoptosis of the transferred cells and alter the process of CD8
downregulation. On the other hand, an advantage provided by
our system is the opportunity to dissect the individual
contribution of Fas/FasL signaling exclusively in the context of
the CD8 T cell and avoid the implications of its deficiency in
other cell types.

In summary, Fas and FasL expression are differentially
induced on CD8 T cells depending on the conditions that
prevail during their priming. High expression of Fas and FasL
induced during self-antigen presentation could regulate CD8
expression and cell survival and therefore contribute to the
regulation of T cell responses to self-peptides.
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