
9 Genes & Cancerwww.genesandcancer.com

www.genesandcancer.com� Genes & Cancer, Volume 13, 2022

Using quantitative immunohistochemistry in patients at high 
risk for hepatocellular cancer

Sobia Zaidi1, Richard Amdur2, Xiyan Xiang1, Herbert Yu3, Linda L. Wong4, Shuyun 
Rao1, Aiwu R. He5, Karan Amin1, Daewa Zaheer2, Raj K. Narayan6, Sanjaya K. 
Satapathy7, Patricia S. Latham8, Kirti Shetty9, Chandan Guha10, Nancy R. Gough1 
and Lopa Mishra1,2

  1�The Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research and Cold Spring Harbor Laboratory, 
Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY 11030, USA

  2Department of Surgery, The George Washington University, Washington, DC 20037, USA
  3Department of Epidemiology, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
  4Department of Surgery, University of Hawaii, Honolulu, HI 96813, USA
  5Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
  6Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11030, USA
  7Sandra Atlas Bass Center for Liver Diseases and Transplantation, Department of Medicine, North Shore University Hospital/
Northwell Health, NY 11030, USA

  8Department of Pathology, The George Washington University, Washington, DC 20037, USA
  9Division of Gastroenterology and Hepatology, University of Maryland, Baltimore, MD 21201, USA
10Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
Correspondence to: Lopa Mishra, email: LMishra1@northwell.edu

Nancy R. Gough, email: ngough@bioserendipity.com
Keywords: liver cancer; immunohistochemistry; diagnostic model; cirrhosis; transforming growth factor beta
Received: January 28, 2022	 Accepted: May 20, 2022	 Published: June 06, 2022

Copyright: © 2022 Zaidi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License 
(CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT
Hepatocellular carcinoma (HCC) is the primary form of liver cancer and a major 

cause of cancer death worldwide. Early detection is key to effective treatment. Yet, 
early diagnosis is challenging, especially in patients with cirrhosis, who are at high risk 
of developing HCC. Dysfunction or loss of function of the transforming growth factor β 
(TGF-β) pathway is associated with HCC. Here, using quantitative immunohistochemistry 
analysis of samples from a multi-institutional repository, we evaluated if differences 
in TGF-β receptor abundance were present in tissue from patients with only cirrhosis 
compared with those with HCC in the context of cirrhosis. We determined that TGFBR2, 
not TGFBR1, was significantly reduced in HCC tissue compared with cirrhotic tissue. We 
developed an artificial intelligence (AI)-based process that correctly identified cirrhotic 
and HCC tissue and confirmed the significant reduction in TGFBR2 in HCC tissue compared 
with cirrhotic tissue. Thus, we propose that a reduction in TGFBR2 abundance represents 
a useful biomarker for detecting HCC in the context of cirrhosis and that incorporating 
this biomarker into an AI-based automated imaging pipeline could reduce variability in 
diagnosing HCC from biopsy tissue.

INTRODUCTION

A third of the global cancer deaths are attributed 
to primary liver cancer [1]. Hepatocellular carcinoma 
(HCC) is the most common primary liver cancer. HCC 
due to viral hepatitis has been declining; however, the 

incidence of HCC has been increasing due to the global 
increase in metabolic risk factors, such as diabetes, 
obesity, and hyperlipidemia [1–3]. HCC is rarely detected 
in early treatable stages. Most HCC occurs against a 
background of cirrhosis [3, 4]. Biomarkers that predict 
HCC development in patients with cirrhosis are critical, 
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not only for effective diagnosis but also for prognosis and 
understanding the molecular basis of disease for rational 
therapeutic intervention [5].

Currently, recommended surveillance methods for 
HCC in patients with cirrhosis is biannual abdominal 
ultrasound screening with or without serum α-fetoprotein 
(AFP) testing [2, 3, 6]. However, ultrasound has limited 
sensitivity (62% overall and 77% in non-obese individuals) 
for early detection of HCC [7, 8], and the sensitivity drops 
to ~21% in obese patients [9]. High circulating AFP 
concentrations correlate with tumor burden, metastases, 
overall survival, and post-transplant recurrence [10–16]. 
However, close to 40% of patients lack circulating AFP, 
limiting the utility of this protein as an effective biomarker 
of HCC [17].

In cases where non-invasive imaging results are 
ambiguous, HCC is diagnosed by histologic features 
of biopsy tissue. Accuracy of diagnosis is improved by 
immunohistochemical (IHC) analysis for established 
biomarkers, such as glypican 3 (GPC3), heat shock protein 
70 (HSP70), and glutamine synthetase (GS) [18–20]. 
However, the molecular complexity of HCC presents 
challenges finding reliable biomarkers for all patients [21]. 
Furthermore, the diagnosis is based on the pathologist’s 
interpretation, which can vary depending on the location 
of the sample of tissue analyzed, sample processing, and 
pathologist. Especially in clinical studies with images 
from multiple institutions, an automated pipeline for 
image processing and analysis could reduce variability in 
diagnosing HCC from biopsy tissue.

Changes in the abundance of transforming growth 
factor β (TGF-β) pathway components are associated 
with liver disease, including chronic liver disease, viral 
hepatitis, fibrosis, and HCC [22–26]. Qualitative studies 
indicate that TGF-β increases in chronic liver disease 
[23], whereas variable differences in the receptor subunits 
TGFBR1 and TGFBR2 have been reported [24–26]. RNA 
analysis of tissue from patients with chronic hepatitis C, 
compared with tissue from patients with cholelithiasis, 
revealed an increase in TGFB1 transcripts and a decrease 
in TGFBR2 transcripts [25]. High-intensity staining for 
TGF-β1, TGFBR2, and SMAD1, SMAD2, or SMAD3 
correlated with fibrotic disease severity and inflammation 
[26]. These differences may relate to the etiology of the 
liver disease or whether the patients were developing 
HCC in a background of cirrhosis. Thus, we proposed that 
changes in TGF-β receptors could be biomarkers of HCC 
and that quantification of the changes in TGFBR1 and 
TGFBR2 could be used to predict the presence of HCC 
in cirrhotic tissue.

In this study, we used immunohistochemical 
analysis to explore the diagnostic potential of TGFBR1 
and TGFBR2 as biomarkers to differentiate HCC from 
cirrhosis. To overcome variability in patient populations 
and sample preparation, we used tissue samples from 
biorepositories at 3 institutions: George Washington 

University (GW), the University of Maryland (UMD), 
and the University of Hawaii (UH). Sensitivity analysis 
for each set of samples was performed to eliminate 
potential sub-group effects. Tissue samples were obtained 
from biorepositories of pathological specimens from 
patients with HCC or patients with cirrhosis without 
HCC. Pathological specimens in the biorepositories were 
collected from patients undergoing liver transplantation 
(LT), liver resection, or liver biopsy. We validated the 
findings using automated image analysis based on a 
model created with deep-learning algorithms and artificial 
intelligence (AI). Finally, we tested the diagnostic 
potential of TGFBR1 and TGFBR2 staining intensity 
individually and together by logistic regression modeling 
to determine sensitivity, specificity, and accuracy of the 
model at multiple thresholds.

RESULTS

TGFBR1 and TGFBR2 abundance in tissue slides 
from cirrhosis-only patients or patient with HCC

IHC staining intensities for TGFBR1 and TGFBR2 
were lower in HCC tissue than in tumor-adjacent tissue 
(TAT) or in tissue from cirrhosis-only patients (Figure 
1A). We manually quantified the intensity of staining 
for each protein by assigning H-scores to liver tissue 
samples collected from TAT, HCC, and cirrhosis in the 
discovery set from GW and UMD (Figure 1B and 1C). 
The mean and standard deviation (SD) of the H-score 
for TGFBR1 in HCC tissue (n = 43) were 165.0 ± 56.6, 
in TAT (n = 41) were 232.9 ± 36.6, and in cirrhosis-
only tissue (n = 28) were 196.1 ± 43.8. For TGFBR2, 
the mean and SD were 105.8 ± 56.9 for HCC tissue 
(n = 43), 202.3 ± 55.5 for TAT (n = 40), and 145.2 ± 
77.5 for cirrhosis-only tissue (n = 28). HCC tissue had 
a significantly reduced TGFBR1 H-score compared to 
TAT (p = 9.6 × 10−9) or cirrhosis-only tissue (p = 0.013). 
HCC tissue also had a significantly reduced TGFBR2 
H-score compared to TAT (p = 3.6 ×10−11) or cirrhosis-
only tissue (p = 0.028).

To validate these findings, we evaluated a separate 
set of samples from patients at UMD and that were labelled 
at UMD, validation set 1 (Figure 1B, 1C). The mean and 
SD for TGFBR1 H-scores were 106.4 ± 45.1 for HCC 
tissue (n = 11), 173.6 ± 33.4 for TAT (n = 11), and 252.8 ± 
31.7 for cirrhosis-only tissue (n = 9). The reduced staining 
of TGFBR1 in HCC tissue was significant compared 
with that in TAT (p = 0.0013) or compared with that in 
cirrhosis-only tissue (p = 2.4 × 10−7). The mean and SD of 
the TGFBR2 H-scores were 183.6 ± 69.2 for HCC tissue 
(n = 11), 227.3 ± 55.6 for TAT (n = 11), and 251.7 ± 38.2 
for cirrhosis-only tissue (n = 9). The difference of TGFBR2 
staining intensity between HCC tissue and TAT was not 
significant (p = 0.14) but the difference between HCC 
tissue and cirrhosis-only tissue was significant (p = 0.018).
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We evaluated a third set of samples, validation set 2, 
which were from patients at UH that were labeled at GW 
or UH (Figure 1B). The patients from UH all had HCC 
(Figure 1C). Therefore, only analysis of TAT and HCC 
tissue was possible. The mean and SD of the TGFBR1 
H-scores were 216 ± 67.3 for HCC tissue (n = 10) and 
202.5 ± 57.8 for TAT (n = 12) in the samples labelled at 
GW. For the samples labeled at UH, TGFBR1 H-scores 
were 143.5 ± 58.7 for HCC tissue (n = 17) and 172.9 

± 52.5 for TAT (n = 17). The differences in H- scores 
between HCC tissue and TAT for samples labelled at 
either location were not significant (p = 0.64 for those 
labeled at GW and p = 0.15 for samples labelled at UH). 
For TGFBR2, the mean and SD of the H-scores were 
130.4 ± 93.3 for HCC tissue (n = 12) and 220.8 ± 58.6 
for TAT (n = 13) for samples labelled at GW and 106.2 
± 63.3 for HCC tissue (n = 17) and 168.8 ± 46.9 for TAT 
(n = 17) for samples labelled at UH. TGFBR2 staining 

Figure 1: IHC analysis of TGFBR1 and TGFBR2 in liver tissue from cirrhotic patients with or without HCC. (A) 
Representative images of TGFBR1 and TGFBR2 labeling in patient tissue from GW. Asterisk marks tumor; arrow marks tumor-adjacent 
tissue (TAT). (B)  H-score plots of TGFBR1 and TGFBR2 labeling intensity for the discovery set samples, validation set 1 samples, and 
validation set 2 samples. Samples in validation set 1 were from patients at UMD and were stained at UMD and evaluated at GW. Samples in 
validation set 2 were from patients at UH and were stained either at UH or GW and then were evaluated at GW. (C) Details of the samples 
in the discovery set, validation set 1, and validation set 2. Statistical significance between tumor-adjacent tissue and HCC and among tumor-
adjacent tissue, cirrhosis and HCC were determined with two-tailed t-tests or one-way ANOVA (*p < 0.05; **p < 0.005).
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was significantly less in HCC tissue than in TAT labelled 
at either location (p = 0.013 for samples labelled at GW 
and p = 0.0034 for samples labelled at UH). Additionally, 
compared with the samples labelled at UH, the samples 
labelled at GW had higher mean H-scores for both 
TGFBR1 and TGFBR2 in both HCC tissue and TAT.

Validation of TGFBR2 as significantly reduced in 
HCC by AI-based image analysis

As an independent validation approach, we used 
AI‑based image analysis to automatically assign a H-score 
for TGFBR1 or TGFBR2 (Figure 2A–2C). After training 
the TGFBR1 and TGFBR2 algorithms on selected samples 
lacking large regions of necrotic tissue, H-scores were 
assigned using the algorithm on the remaining samples. 
A pathologist assessed the accuracy of each algorithm 
by comparing the AI-assigned H-score with a manually 
assigned score. This assessment indicated a higher error 
rate in the AI-based assignment of TGFBR1 values 
(3.08%) compared with TGFBR2 values (1.28%).

The mean and SD of the AI-assigned H-scores for 
TGFBR2 were 162.68 ± 63.66 in HCC tissue (n = 62) 
and 203.44 ± 59.33 in cirrhosis-only tissue (n = 39) 
(Figure 2B). This reduction of TGFBR2 intensity in HCC 
tissue was significant (p = 0.0017). In contrast, the mean 

and SD of the AI-assigned H-scores for TGFBR1 were 
209.22 ± 57.14 in HCC tissue (n = 50) and 230.28 ± 
54.2 in cirrhosis-only tissue (n = 22), and this was not a 
significant difference (p = 0.15) (Figure 2B).

Evaluation of TGFBR2 staining intensity in patient-
matched HCC tissue and tumor-adjacent tissue

We also compared the intensity of TGFBR1 and 
TGFBR2 staining in patient-matched samples of HCC 
and TAT (Supplementary Figures 1–3). Not all samples 
had scores for the receptors in both HCC and TAT 
(Table 1). Out of 69 samples with TGFBR1 staining in 
both sites, 74% had a lower H-score in HCC than in TAT. 
Out of 67 samples with TGFBR2 staining in both sites, 
84% (56 out of 67) had a lower H-score in the HCC part 
of the sample. Using a higher threshold for the difference 
between the sites, we determined the paired samples that 
had a H-score for the TAT that was 10% higher than that 
in the HCC tissue. Using these more stringent criteria, 
65% of the samples had higher TGFBR1 staining in the 
TAT and 78% had higher TGFBR2 staining. Of those 
samples that had a lower H-score in the HCC tissue (51 
for TGFBR1 and 56 for TGFBR2), TGFBR1 staining in 
the TAT exceeded that in the HCC tissue by more than 
10% in 45 (88%) of matched samples and TGFBR2 

Figure 2: AI-based analysis of TGFBR1 and TGFBR2 staining intensity in HCC and cirrhotic tissue. (A) Overview of 
the workflow. (B) H-scores for TGFBR2 (HCC, n = 62; Cirrhosis, n = 39) and TGFBR1 (HCC, n = 50; Cirrhosis, n = 22) obtained by 
AI‑based analysis. (C) Details of the samples provided for the AI-based analysis. Statistical significance was determined by two-tailed t-test 
(**p < 0.005).
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staining met this threshold in 52 (96%) of the matched 
samples.

Statistical analysis of TGFBR1 and TGFBR2 
staining intensity as biomarkers for HCC diagnosis

Using the HCC tissue and cirrhosis-only tissue 
results from the discovery set and the subset of samples 

in validation set 2 that were labelled at GW (a total of 
81 patient samples with H- scores), we calculated a 
mean H-score of 182.0 ± 57.7 (SD) for TGFBR1 and of 
124.6 ± 73.0 for TGFBR2 across diagnostic groups. Both 
were normally distributed without outliers (Figure 3A). 
Comparing the mean H-scores for patients with cirrhosis 
only versus those with HCC, we found that staining 
for both TGFBR1 and TGFBR2 was slightly but not 

Figure 3: Development of diagnostic models for TGFBR1 and TGFBR2 labeling intensity in tissue sections. (A) 
Frequency histograms for H-scores of TGFBR1 and TGFBR2 stratified by diagnosis. Cirrhosis, blue; HCC, red. (B) Calibration of a logistic 
model including both TGFBR1 and TGFBR2 for predicting HCC versus cirrhosis.

Table 1: Analysis of TGFBR1 and TGFBR2 staining intensity in patient-matched HCC and  tumor-
adjacent tissue (TAT)
Samples TGFBR1 TGFBR2
Total 85 83
Samples with both HCC and TAT H–scores 69 67

Samples with HCC < TAT 51 56

Samples with TAT 10% > HCC 45 52

Percentage of HCC < TAT out of samples with H-scores in both 
HCC and TAT tissue

74% of 69 84% of 67

Percentage of samples with TAT 10% > HCC out of samples 
with H-scores in both HCC and TAT tissue

65% of 69 78% of 67

Percentages of samples with TAT 10% > HCC out of samples 
with HCC < TAT

88% of 51 93% of 56
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significantly higher for the patients with cirrhosis only 
(TGFBR1 mean 196.1 ± 44.6 versus 174.6 ± 62.6, p = 
0.10; TGFBR2 mean 145.2 ± 78.9 versus 113.7 ± 67.9, 
p = 0.06). Based on these results, we tested H- scores 
for TGFBR1 ranging from 140 to 200 as thresholds for 
predicting cirrhosis only versus HCC (Table 2) and we 
tested H-scores ranging from 114 to 145 as TGFBR2 
H-score thresholds (Table 3). H-score thresholds that 
performed best were 190 for TGFBR1 with sensitivity 
0.58, specificity 0.50, and overall prediction accuracy 
of 0.56; and 130 for TGFBR2 with sensitivity 0.62, 
specificity 0.61, and overall accuracy 0.62.

Next, we used multivariable logistic regression to fit 
a model using H-scores from both TGFBR1 and TGFBR2 
scores with HCC versus cirrhosis as the dependent 
variable. Neither TGFBR1 nor TGFBR2 had a significant 
independent contribution to the model for predicting if 
a patient had cirrhosis only versus HCC: The TGFBR1 

adjusted odds ratio (aOR) for cirrhosis versus HCC = 
1.006 [95% confidence interval (CI): 0.997–1.016],  
p = 0.21; TGFBR2 aOR = 1.005 [95% CI: 0.998–1.013], 
p = 0.16). The model had an area under the receiver 
operating curve (AUROC) of 0.67.

Using the regression model to calculate each 
patient’s probability of cirrhosis, we found that the mean 
probability of a patient having cirrhosis only differed 
between the diagnostic groups (0.41 [95% CI: 0.35–0.46] 
in cirrhosis alone versus 0.33 [95% CI: 0.30–0.37] in 
HCC (p = 0.017). We examined various cut points in the 
probability distribution for having HCC and determined 
the model’s sensitivity, specificity, and overall prediction 
accuracy at each probability threshold. At a probability 
level of 0.4, sensitivity was 0.76, specificity was 0.61, 
and overall accuracy 0.71 (Table 4). We assessed the 
calibration of the logistic regression model by dividing 
the probability distribution into quintiles and found that 

Table 2: Predictive power of TGFBR1 labeling intensity in correctly predicting the presence of 
cirrhosis only

Threshold
Value 140 150 160 170 180 190a 200

Sensitivity 0.30  
(0.18–0.43)

0.30  
(0.18–0.43)

0.40  
(0.26–0.53)

0.47  
(0.34–0.61)

0.55  
(0.41–0.68)

0.58  
(0.45–0.72)

0.62  
(0.49–0.75)

Specificity 1 (1–1) 0.89  
(0.78–1.01)

0.79  
(0.63–0.94)

0.71  
(0.55–0.88)

0.50  
(0.31–0.69)

0.50  
(0.31–0.69)

0.46  
(0.28–0.65)

Positive 
predictive value

1 (1–1) 0.84  
(0.68–1.01)

0.78  
(0.62–0.93)

0.76  
(0.61–0.90)

0.67  
(0.53–0.81)

0.69  
(0.55–0.82)

0.69  
(0.56–0.82)

Negative 
predictive value

0.43  
(0.31–0.55)

0.40  
(0.28–0.53)

0.41  
(0.28–0.54)

0.42  
(0.28–0.56)

0.37  
(0.22–0.52)

0.39  
(0.23–0.55)

0.39  
(0.23–0.56)

Accuracy 0.54 
(0.43–0.65)

0.51  
(0.40–0.62)

0.53  
(0.42–0.64)

0.56  
(0.45–0.66)

0.53  
(0.42–0.64)

0.56  
(0.45–0.66)

0.57  
(0.46–0.68)

aOptimal threshold.

Table 3: Predictive power of TGFBR2 labeling intensity in correctly predicting the presence of 
cirrhosis only

Threshold
Value 115 120 125 130 135 140a 145

Sensitivity 0.51  
(0.37–0.64)

0.51  
(0.37–0.64)

0.55  
(0.41–0.68)

0.62 
(0.49–0.75)

0.7  
(0.57–0.82)

0.7  
(0.57–0.82)

0.72  
(0.6–0.84)

Specificity 0.61  
(0.43–0.79)

0.61  
(0.43–0.79)

0.61  
(0.43–0.79)

0.61 
(0.43–0.79)

0.54  
(0.35–0.72)

0.54  
(0.35–0.72)

0.54  
(0.35–0.72)

Positive 
predictive value

0.71  
(0.57 –0.85)

0.71  
(0.57 –0.85)

0.73  
(0.59 –0.86)

0.75  
(0.62–0.88)

0.74  
(0.62–0.86)

0.74  
(0.62–0.86)

0.75  
(0.63–0.86)

Negative 
predictive value

0.4  
(0.25 – 0.54)

0.4  
(0.25–0.54)

0.41  
(0.26 –0.57)

0.46 
(0.3–0.62)

0.48  
(0.31–0.66)

0.48  
(0.31–0.66)

0.5  
(0.32–0.68)

Accuracy 0.54  
(0.43–0.65)

0.54  
(0.43–0.65)

0.57  
(0.46–0.68)

0.62  
(0.51–0.72)

0.64  
(0.54–0.75)

0.64  
(0.54–0.75)

0.65  
(0.55–0.76)

aOptimal threshold.
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there was moderately good correspondence between the 
predicted probability of having cirrhosis only and the 
observed incidence (R2 = 0.62; linear equation y = 1.08 × 
–0.03) (Figure 3B). 

DISCUSSION

We found a significant reduction in TGFBR2 in 
tissue from patients with HCC compared with tissue 
from patients with only cirrhosis and that this reduction 
consistently occurred in regions near tumor tissue in 
patients with HCC. Furthermore, we established that this 
reduction was consistent across samples obtained from 
cohorts of patients at 3 institutions representing diverse 
etiologies and demographic groups. We also determined 
that only a subset of the patient cohorts exhibited a 
consistent significant reduction in TGFBR1 intensity both 
within a patient sample in regions near tumor tissue in 
patients with HCC and between patients when comparing 
those with HCC to those with only cirrhosis. Automated 
image analysis confirmed the findings. Analysis of HCC 
and TAT from the same slide showed a high frequency of 
reduced TGFBR1 and TGFBR2 staining in the HCC tissue 
with this relative difference most consistently found with 
TGFBR2 staining.

From these findings, we developed models based on 
various intensities of TGFBR2 staining and tested their 
ability diagnostically differentiate HCC from cirrhosis. 
Unfortunately, TGFBR2 staining intensity, alone or 
in combination with TGFBR1 staining intensity, was 
sufficiently variable that no threshold of staining intensity 
had sufficient predictive power to be used as a diagnostic 
for HCC. However, integration of such data into more 
complex models could improve diagnostic power. 

Although our analysis indicated that a simple 
value of TGFBR2 staining intensity is insufficient to 
detect HCC in the context of cirrhosis, our findings 

indicated that a relative reduction in staining of TGFBR2 
in the context of the high staining associated with 
cirrhotic tissue is an indication of HCC. Furthermore, 
an AI‑based image analysis reliably detected this 
reduction. The ability to generate an AI-based image 
analysis pipeline for quantitative IHC has implications 
for studies involving samples acquired and processed at 
multiple institutions. Biopsy tissue can provide clues to 
understanding the molecular pathology of the disease 
and guide enrollment of patients in clinical trials [27]. 
Because multiple sites often enroll patients in clinical 
trials, ensuring standardized sample processing and 
image analyses are critical to producing comparable 
results across cohorts of patients treated at different 
locations and different times. Our data showed that even 
with a protein with high variability, both within a biopsy 
and across patient samples, an AI-based automated image 
analysis pipeline could effectively provide a quantitative 
assessment of IHC results in liver biopsy tissue. Although 
our study found a low error rate for the AI-based pipeline 
based on the evaluation of a single pathologist, future 
studies are needed to confirm that this AI-based approach 
meets or exceeds the accuracy of sample evaluation by 
multiple pathologists. Such validated pipelines can 
overcome challenges in the use of tissues from multiple 
sites, which are associated with variabilities in tissue 
processing, antibody staining, and interpretations of 
histopathology.

Although most proteins that serve as biomarkers 
typically increase in the target condition, decreases in 
protein abundance are also indicators of disease. Indeed, 
differences in the activity of the TGF-β pathway are 
associated with the outcome of HCC patients. Analysis 
of genetic alterations in HCC reveal that some patients 
have a profile of activated TGF-β signaling and others 
with a profile of inactivated TGF-β signaling. Those with 
the inactivated TGF-β pathway signature have a worse 
prognosis [28]. Another study classified HCC patients 

Table 4: Predictive power of the model that incorporates both TGFBR1 and TGFBR2 staining 
intensity for predicting the presence of cirrhosis only

Threshold
Value 0.30 0.35 0.37 0.39 0.4a 0.45

Sensitivity 0.4  
(0.26–0.54)

0.6  
(0.46–0.74)

0.64  
(0.51–0.77)

0.72  
(0.60–0.84 

0.76  
(0.64–0.88)

0.84  
(0.74–0.94)

Specificity 0.71  
(0.55–0.88)

0.64  
(0.47–0.82)

0.61  
(0.43–0.79)

0.61  
(0.43–0.79)

0.61  
(0.43–0.79)

0.39  
(0.21–0.57)

Positive predictive 
value

0.71  
(0.55–0.88)

0.75  
(0.62–0.88)

0.74  
(0.61–0.87)

0.77  
(0.64–0.89)

0.78  
(0.66–0.89)

0.71  
(0.60–0.83)

Negative 
predictive power

0.40  
(0.26–0.54)

0.47  
(0.31–0.63)

0.49  
(0.32–0.65)

0.55  
(0.37–0.72)

0.59  
(0.41–0.77)

0.58  
(0.36–0.80)

Accuracy 0.51  
(0.40–0.62)

0.62  
(0.51–0.72)

0.63  
(0.52–0.74)

0.68  
(0.58–0.78)

0.71  
(0.60–0.81)

0.68  
(0.58–0.78)

aOptimal threshold.
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with a profile that depended on TGFBR2 into two groups 
and the group with the “late” TGF-β signature had worse 
prognosis [29]. Thus, the ability to quantify differences in 
TGFBR2 has prognostic value.

Our findings indicated that reduced TGFBR2 
abundance relative to that in the surrounding tissue is a 
biomarker for HCC in cirrhotic tissue. The data suggested 
that reduced TGFBR2 rather than TGFBR1 represents a 
more common mechanism for the loss of TGF-β signaling 
in HCC. Furthermore, the HCC-associated reduction in 
TGFBR2 is consistent with loss of the tumor-suppressor 
function of TGF-β signaling in hepatocytes [22].

Individuals at high risk of developing HCC benefit 
from regular surveillance by abdominal ultrasound. In 
cases where the suspicious nodules cannot be conclusively 
classified as HCC from non-invasive imaging, biopsy 
remains the standard. However, it can be difficult to 
differentiate between well and poorly differentiated 
HCC from morphological properties alone. IHC for 
biomarkers, such as GPC3, HSP70, ARG1 (Arginase 1), 
CD34, and GS, is used to improve accuracy [27]. For 
example, GPC3 positivity is associated with poorly 
differentiated tumors [30]. However, no single biomarker 
or morphological property is sufficient to diagnose high-
grade dysplastic nodules, well-differentiated HCC, and 
poorly differentiated HCC [31]. Future studies are needed 
to address if the reduction in TGFBR2 is associated with 
precancerous nodules or with well-differentiated or poorly 
differentiated HCC. Our findings support further analyses 
to determine if this reduction is an early occurrence that 
can be used diagnostically in combination with other 
morphological characteristics or biomarkers to detect 
HCC at early stages in high-risk patients. 

METHODS

Study design and participants

This multi-institutional study aimed to determine if 
differences in the abundance of the receptors for TGF-β 
were useful as biomarkers that could differentiate HCC 
from cirrhotic tissue in patient tissue samples. Tissue 
samples were obtained from pathology biorepositories 
at GW, UMD, and UH. IHC was performed on tissue 
samples for TGFBR1 and TGFBR2. Logistic regression 
modeling was used to correlate protein abundance with 
clinical attributes. An automated image analysis was 
developed with AIFORIA. The study included samples 
from 97 patients with HCC (including 1 HCC case from 
the cirrhosis group who developed HCC in the follow-up 
period), and from 53 cirrhosis patients without HCC for 
AI-based image analysis. Because the samples were from 
biorepositories, this study qualified for institutional review 
board exemption. Before processing the samples, all 
personal identification information and unique identifiers 
were replaced with project-specific codes.

Properties of biorepository specimens, including 
demographic and clinical data of HCC and 
cirrhosis-only cohorts

The HCC cohorts consisted of patients with 
pathologically diagnosed HCC per established histologic 
criteria. Pathological specimens of HCC were obtained 
from tissue taken from patients either undergoing 
hepatic resection or explant samples in patients who had 
undergone LT. In those who had undergone locoregional 
therapy prior to LT, HCC samples were selected from 
viable, non-necrotic tissue from 37 specimens at GW, 
43 specimens at UMD, and 18 specimens at UH. The 
cirrhosis cohorts consisted of patients with cirrhosis 
without HCC who underwent LT or liver biopsy. Cirrhosis-
only specimens were from GW (8 specimens) and UMD 
(45 specimens). Clinical and demographic characteristics 
were collected, and the number of tissue samples with 
quantifiable staining were recorded (Table  5). Clinical 
data included the following etiologies: viremic or cured 
hepatitis virus C (HCV) infection, hepatitis B virus (HBV) 
infection, alcohol-associated liver disease, and non-
alcoholic fatty liver disease (NAFLD). Etiologies were 
non-exclusive.

Immunohistochemistry

All samples were formalin-fixed paraffin-
embedded (FFPE). Samples were divided into sets for 
TGFBR1 and TGFBR2 staining. Samples with mixed 
cholangiocarcinoma were excluded from manual 
IHC analysis but were included for automated image 
analysis. Slides were deparaffinized in xylene followed 
by rehydration through graded alcohol and finally rinsed 
in distilled water. Heat-induced antigen retrieval was 
performed with citrate buffer (pH 6.0, #H-3300, Vector 
Labs) or EDTA solution (pH 9.0, #H-3301, Vector 
Labs) for 25 minutes at 95°C. Endogenous peroxidase 
activity was blocked with 3% H2O2 in methanol at 
room temperature. Subsequently, tissue sections were 
blocked with goat serum and stained with primary 
antibodies at room temperature for an hour. Primary 
antibodies recognized TGFBR1 (#31013, Abcam) or 
TGFBR2 (#61213, Abcam). Antibody binding was 
detected with biotinylated secondary goat anti-rabbit 
antibodies and ABC solution from the anti- rabbit 
kit (#PK-61-1, Vector Laboratories) followed by the 
EnVision™ FLEX Substrate Working Solution (Dako) 
for five minutes at room temperature. All sections were 
counterstained with hematoxylin, dehydrated in ethanol 
and xylene, and coverslipped. Staining was performed 
at GW, UMD, or UH using reagents and the protocol 
provided by GW.

Samples from HCC patients were classified into 
regions of HCC tissue and TAT or as mixed HCC and 
cholangiocarcinoma. Samples from patients without HCC 
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were classified as cirrhosis-only tissue. Pathologists at 
GW, blinded to the classification, interpreted the TGFBR1 
and TGFBR2 staining. Samples were assigned an H-score 
between 0 and 300 for TGFBR1 and TGFBR2 staining 
intensities [32]. H-score was determined by assigning 
each cell a staining intensity of 0 for no signal, 1 for weak 
signal, 2 for mild signal, and 3 for strong signal; then the 
percentage of cells at each intensity score was weighted by 
the intensity score and the sum of these weighted values 
were calculated:

H-score = 3 × (% of strongly labeled cells) + 2 × (% 
of moderately labeled cells) + 1 × (% of weakly labeled 
cells) + 0 × (% of cells with no labeling).

Samples that contained mixed HCC and 
cholangiocarcinoma or samples that were distorted or 
damaged were not quantified. Differences between mean 
H-scores of TGFBR1 or TGFBR2 in HCC tissue and TAT 
or in HCC tissue and cirrhosis-only tissue were evaluated 
by two-tailed paired t-test.

H-scores for TGFBR1 and TGFBR2 staining were 
compared within samples for regions of HCC tissue and 
TAT. A threshold of a 10% difference in H-score was 
used to compare differences in staining within individual 
samples from patients with HCC.

Development of AI-based image analysis

Slides labelled with TGFBR1 or TGFBR2 were 
digitized using a Panoramic P1000 whole slide scanner 
(3DHistech, Budapest, Hungary) at 20×. Images were 
stored in a proprietary format (NDPI) with a pixel in the 
image corresponding to a 0.227 × 0.227 μm area in the 
sample.

Images were compressed to a JPEG file format 
(Enhanced Compressed Wavelet, ECW, ER Mapper; 
Intergraph, Atlanta, Georgia, USA) with a quality factor 
of 80. The compressed virtual slides were uploaded to a 
whole-slide image management server (WebMicroscope; 
Fimmic Oy, Helsinki, Finland).

For the digital image analysis of the samples, image 
analysis software platform (WebMicroscope) was used. 
This platform uses deep learning–based machine-learning 
algorithms to create computer vision applications. The 
model for the differentiation of HCC and cirrhotic tissues 
consists of two algorithms. The first algorithm analyzes 
the whole image to identify and quantify the area of the 
regions of HCC within the sample and then quantifies 
the percentage area representing different intensity 
of  labeling. The second algorithm detects the regions 

Table 5: Clinical and demographic characteristics of patients from each site and HCC or cirrhosis 
status of samples with TGFBR1 and TGFBR2 staining
Patient information GW (n = 47) UH (n = 18) UMD (n = 88)
Median age 60 65 58.5
Sex, n (%)
  Male 37 (78.7) 15 (83.3) 61 (69.3)
  Female 10 (21.3) 3 (16.7) 27 (30.7)
Race (%)
  White 31.9% 16.7% 64.8%
  Black 34.0% 5.6% 23.9%
  Asian 31.9% 44.4% 2.2%
  Mixed or other 2.2% 33.3% 9.1%
TGFBR1 or TGFBR2 staining, n/total (%)a

  HCC for TGFBR1 37/45 (82.2) 18/18 (100) 42/86 (48.8)
  Cirrhosis for TGFBR1 8/45 (17.8) 0 44/86 (51.2)
  HCC for TGFBR2 35/43 (81.4) 18/18 (100) 43/88 (48.9)
  Cirrhosis for TGFBR2 8/43 (18.6) 0 45/88 (51.1)
  HCC for TGFBR2 35/43 (81.4) 18/18 (100) 43/88 (48.9)
  Cirrhosis for TGFBR2 8/43 (18.6) 0 45/88 (51.1)
Main etiologies (%)b

  HCV, viremic 36.2 0 20.4
  HCV, cured 4.3 22.2 11.4
  HBV 31.9 5.6 1.1
  Alcohol 44.7 22.2 36.4
  NAFLD 25.5 11.1 13.6

aSome samples excluded due to poor quality of the tissue section. bSome patients presented with more than one etiology.
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of cirrhotic tissue and quantifies the percentage area of 
different intensity of labeling.

To train the algorithm to recognize cirrhotic tissue 
from HCC tissue, the training set consisted of whole-slide 
images from 20 patients that were selected on a case-
by-case basis to ensure that the slide contained mostly 
tumor or cirrhotic tissue without large regions of necrotic 
tissue. Slides with areas defined as cirrhosis were from 
samples from individuals with cirrhosis and without a 
diagnosis of HCC. Slides with areas defined as HCC were 
from individuals diagnosed with HCC. The output of this 
algorithm is the “parent layer,” representing cirrhotic, 
HCC, or adjacent tissue. Using these 20 selected slides, a 
second algorithm was trained to identify arbitrarily defined 
intensities of IHC labeling: negative, weak, medium, and 
strong. The output of this algorithm is the “intensity layer,” 
which is then integrated with the parent layer to define 
labeling intensity for TGFBR1 or TGFBR2 within the 
areas defined as cirrhotic, HCC, or TAT. Separate models 
were developed and trained for TGFBR1 and TGFBR2.

Assessment was performed in >40% patient slides to 
assure the sensitivity and specificity of the system. For each 
sample, the H-scores were calculated for both manual and 
AI-based results and compared. The TGFBR1 AI model 
was tested using 71 whole-slide images for the parent layer 
with annotations totaling 302.48 mm2 and 17 whole-slide 
images for the intensity layer with annotations totaling 
20.41 mm2. From a random set of 40% of the samples, 
the pathologist validated the AI-based analysis for the 
accuracy of the annotation of different regions (cirrhosis, 
HCC, or TAT) in the same slide by the algorithms used. 
The percentage of inaccurate annotations in the AI-based 
analysis (those deemed incorrect by the pathologist) were 
1.82% for the parent layer and 3.08% for the intensity 
layer. The TGFBR2 AI model was trained using 45 whole-
slide images for the parent layer with annotations totaling 
223.26 mm2 and 18 whole-slide images for the intensity 
layer with annotations totaling 37.31 mm2. The error in the 
AI-based annotations based on a randomly selected 40% 
of images evaluated by the pathologist was 0.92% for the 
parent layer and 1.28% for the intensity layer.

Analysis of the diagnostic value of manually 
assigned TGFBR1 and TGFBR2 H-scores

The distribution of the intensity of staining for 
TGFBR1 and TGFBR2 in samples from the discovery 
set and validation set 2 labelled at GW were checked for 
outliers and non-normality. Significant differences in the 
means of the H-scores between diagnostic groups (HCC 
or cirrhosis) were determined using two-tailed between-
group t-test.

To assess the diagnostic usefulness of TGFBR1 or 
TGFBR2 labeling intensity in differentiating HCC from 
cirrhosis, we evaluated a range of H-score thresholds for 
each marker, testing the sensitivity, specificity, positive 

predictive value, negative predictive value, and total 
prediction accuracy for detecting cirrhosis only versus 
HCC at each threshold. We used multivariable logistic 
regression to create a prediction model for HCC versus 
cirrhosis only that incorporated both TGFBR1 and 
TGFBR2 labeling intensity:

Risk = intercept + beta1 × (TGFBR1 H-score) +  
beta2 × (TGFBR2 H-score).

The final model was as follows:

Risk = −2.4106 + 0.00619 × (TGFBR1 H-score) + 
0.00543 × (TGFBR2 H-score).

This model was used to calculate the probability 
of having cirrhosis only versus HCC for each subject for 
whom both TGFBR1 and TGFBR2 was detectable: 

Prob(Cirrhosis) = exp(risk)/(1 + exp(risk)). 

Calibration of this model was assessed by comparing 
observed versus predicted cirrhosis only versus HCC 
diagnosis within quintiles of the probability distribution. 
For perfect calibration, we expect a slope of 1, and an 
intercept of 0, with the points spread across the full range 
of probabilities from 0% to 100%.

Statistical tests used SAS (Version 9.4, Cary, NC) 
with p < 0.05 considered significant.
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