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Abstract

Preserving good health in old age is of utmost importance to alleviate societal, economic and health care-related
challenges caused by an aging society. The prevalence and severity of many infectious diseases is higher in older
adults, and in addition to the acute disease, long-term sequelae, such as exacerbation of underlying chronic
disease, onset of frailty or increased long-term care dependency, are frequent. Prevention of infections e.g. by
vaccination is therefore an important measure to ensure healthy aging and preserve quality of life. Several vaccines
are specifically recommended for older adults in many countries, and in the current SARS-CoV-2 pandemic older
adults were among the first target groups for vaccination due to their high risk for severe disease. This review
highlights clinical data on the influenza, Streptococcus pneumoniae and herpes zoster vaccines, summarizes recent
developments to improve vaccine efficacy, such as the use of adjuvants or higher antigen dose for influenza, and
gives an overview of SARS-CoV-2 vaccine development for older adults. Substantial research is ongoing to further
improve vaccines, e.g. by developing universal influenza and pneumococcal vaccines to overcome the limitations of
the current strain-specific vaccines, and to develop novel vaccines against pathogens, which cause considerable
morbidity and mortality in older adults, but for which no vaccines are currently available. In addition, we need to
improve uptake of the existing vaccines and increase awareness for life-long vaccination in order to provide
optimal protection for the vulnerable older age group.
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Low birth rates and higher life expectancy are trans-
forming the age pyramid in Europe towards a much
older population. Between 2010 and 2020 the share of
the population older than 65 years of age increased by 3
percentage points in the EU (from 17.6 to 20.6%) and is
projected to further increase to more than 31% by 2100.
The share of those older than 80 years is projected to
have a 2.5-fold increase (5.9% to 14.6%) from now until
2100 [1]. This leads to challenges of societies, economies
and health care systems on many levels. Preserving good

health in old age is of utmost importance to alleviate
some of these challenges, but of course also for the well-
being and quality of life for every individual person. This
review focusses on vaccines to prevent infectious disease
in older adults. The incidence of many infections is
higher in older compared to younger adults [2] and mor-
bidity as well as mortality due to infectious diseases is
increased in this age group. In addition to the immediate
impact of the disease many older persons do not recover
fully after an acute episode of infection and chronic co-
morbidities might be exacerbated. These phenomena
have been described for influenza, pneumococcal disease
and herpes zoster and can lead to long-term sequelae
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such as onset or increase of frailty, impairments in activ-
ities of daily living and even loss of independence [3–5].
Prevention of infections e.g. by vaccination is therefore
an important measure to ensure healthy aging and pre-
serve quality of life.

Influenza
Influenza causes approximately 15,000-70,000 deaths an-
nually in Europe, mainly in older adults [6], and compli-
cations such as exacerbations of underlying pulmonary
disease or bacterial co-infections further increase the
burden of disease [5, 7]. Vaccination against influenza is
recommended in many countries for everybody, but is
particularly relevant for older adults and other risk
groups. Historically, influenza vaccines (TIV, trivalent
influenza vaccine) contained two influenza A strains
(H1N1 and H3N2) and one B strain (Yamagata or
Victoria lineage). Influenza viruses are highly variable
with antigenic shift (exchange of RNA segments leading
to novel strains, e.g. H5N1) leading to pandemics and
antigenic drift (point mutations) necessitating annual ad-
justments of the seasonal vaccines. Based on world-wide
surveillance data WHO defines the exact composition
for the annual vaccine each year. As both B lineages
have co-circulated for several years, quadrivalent influ-
enza vaccines (QIV) containing two A and two B strains
have been developed and are now in widespread use [8].
Most influenza vaccines are produced by an egg-based
manufacturing process, in which candidate vaccine vi-
ruses are propagated in fertilized hen´s eggs. Alterna-
tively, influenza vaccine viruses can be grown in
mammalian cell culture. Standard influenza vaccines are
either split virus vaccines, which comprise disrupted
viral envelopes, or subunit vaccines, for which the viral
nucleocapsid is removed in further purification steps [9].
In addition, recombinant influenza vaccines use
hemagglutinin proteins expressed in insect cells using a
baculovirus system.

Immunogenicity
Immunogenicity of standard TIV is lower in older com-
pared to young adults [10] and frailty and co-morbidities
further decrease vaccine-induced immune responses [11,
12]. It has also been reported that influenza-specific
antibody titers decline faster in older persons leading to
loss of seroprotection until the following season, or even
towards the end of the same season for some influenza
strains [13, 14]. Antibodies against the viral
hemagglutinin are widely used as surrogate of protection
in the context of influenza vaccination [15], but might
not be an ideal measure in older adults, as vaccinees
with low titers may be still protected and vice versa [16].
It has been shown that memory B cells and plasmablasts
are retained in older adults, despite lower antibody titers

compared to young adults even after repeated vaccin-
ation. Impaired differentiation from memory B cells to-
wards plasma cells might be responsible for this
phenomenon [17]. In addition to antibodies, cell-
mediated immune responses are also important to com-
bat influenza virus infection and T cell parameters (e.g.
IFN-γ and IL-10 production, Granzyme B activity) might
be better predictors of clinical protection [18–20].

Clinical efficacy and effectiveness
In placebo-controlled trials enrolling young adults TIV
is up to 70% effective against laboratory-confirmed influ-
enza [21, 22], but lower efficacy has been observed in
older adults [23, 24]. Meta-analysis of influenza vaccine
immunogenicity, efficacy and effectiveness is difficult as
different vaccine formulations are used (split vs. sub-
unit), vaccine composition changes from year to year,
clinical endpoints are variable (influenza-like illness,
laboratory-confirmed influenza, hospitalization, etc.) and
history of exposure (infection and prior vaccination)
may vary between cohorts. Despite these uncertainties
there is consensus that standard influenza vaccines are
less immunogenic and efficient in older compared to
younger adults and that improved vaccines for the older
population are necessary.

Strategies for improvement
An obvious strategy to improve immunogenicity of vac-
cines might be to increase the amount of antigen per
dose. A higher antigen dose should result in increased
uptake and presentation by antigen-presenting cells and
therefore in stronger activation of adaptive immune
cells. In the US, Canada, Brazil, Australia and the UK, a
trivalent high-dose influenza vaccine has been used for
several years (HD-TIV). This vaccine contained 60μg
hemagglutinin for each strain instead of the standard
15μg. HD-TIV was shown to induce higher anti-
hemagglutinin antibody concentrations and seroprotec-
tion rates, as well as increased numbers of influenza-
specific T cells in older adults compared to TIV [25, 26].
Clinical efficacy of HD-TIV compared to standard TIV
in older adults was summarized in meta-analyses, which
reported a lower risk to develop laboratory-confirmed
influenza (relative risk 0.76) [27] and a higher relative ef-
ficacy against pneumonia (rVE 24.3%), hospitalization
for influenza (rVE 17.8%), and influenza-like illness (rVE
19.5%) [28].
An alternative strategy to improve vaccine-induced

immune responses is the use of adjuvants in order to
protect cohorts, which develop unsatisfactory immune
responses after standard immunization (e.g. older
adults). Aluminum salts have been used in human vac-
cines for approximately 100 years in combination with
various, but not with influenza antigens. As one of the
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first modern adjuvants the oil-in-water emulsion MF59,
which comprises squalene and the surfactants Tween 80
and Span85 was licensed as an adjuvant in seasonal in-
fluenza vaccines for older adults in 1997 (adjuvanted
TIV, aTIV). It has also been approved for other age
groups including children (6-24 months) and in pan-
demic influenza vaccines. MF59 induces proinflamma-
tory chemokines and cytokines at the site of injection
thereby recruiting innate immune cells and facilitating
efficient antigen uptake, enhances differentiation of den-
dritic cells in the lymph nodes, and is involved in shap-
ing the germinal center reaction [29, 30]. Antibody
responses following aTIV are slightly higher compared
to TIV (summarized in [31, 32]), and the CD4+ T cell re-
sponse is elevated [33]. Interestingly, antibodies elicited
by aTIV recognize drifted influenza strains more effi-
ciently as antibodies against additional epitopes within
the influenza hemagglutinin are induced [34, 35]. A
meta-analysis reported greater efficacy of aTIV in pre-
venting laboratory-confirmed influenza (adjusted odds
ratio 0.37; 95%CI: 0.14–0.96) and hospitalizations due to
pneumonia/influenza (adjusted risk ratio 0.75; 95% CI:
0.57–0.98) compared to standard TIV [36].
Clinical effectiveness of HD-TIV and aTIV were re-

cently compared directly in two studies. A retrospective
cohort study, which analyzed data of persons above 65
years during the 2016/2017 and the 2017/2018 influenza
seasons reported that HD-TIV provided better protec-
tion from respiratory-related hospitalizations compared
to aTIV, with a pooled relative vaccine effectiveness
(rVE) of 12% (95% CI, 3.3%-20%) [37]. In contrast, in a
similar study effectiveness against any influenza-related
medical encounter was higher for the adjuvanted triva-
lent vaccine (rVE 7.7%; 95%CI: 2.3%-12.85) compared to
the high-dose trivalent vaccine during the 2017/2018 in-
fluenza season. Similar results were obtained for the fol-
lowing season [38]. The challenges in comparing
different studies investigating efficacy and/or effective-
ness of influenza vaccines have been mentioned above.
Both high-dose and adjuvanted influenza vaccines have

recently been modified to contain four instead of three
different influenza strains (HD-QIV and aQIV) and have
been licensed in many countries. Recent studies con-
firmed higher immunogenicity of HD-QIV compared to
standard QIV [39] and non-inferiority to HD-TIV [40]
as well as a satisfactory safety profile. Immunogenicity
and safety of aQIV have been shown to be similar to
aTIV in older adults [41].
Annual vaccination against influenza is recommended

for all adults in many countries, but most recommenda-
tions emphasize the particular importance for vulnerable
groups, such as older adults. Several countries specific-
ally recommend the high-dose and/or adjuvanted influ-
enza vaccines for older adults. In previous years these

guidelines were complicated by the fact that these “im-
proved” vaccines were only trivalent, whereas the stand-
ard vaccine had already been available in a quadrivalent
formulation. For the season 2021/2022 HD-QIV and
aQIV will be available in many countries and are in-
cluded in specific national recommendations for older
adults. As examples, Germany issued its first recommen-
dation for a specific vaccine, namely the HD-QIV, for
the 2021/2022 season [42]. In the UK, aTIV or HD-TIV
was recommended for older adults during the 2020/
2021 season [43], whereas for the 2021/2022 season
aQIV or HD-QIV should be used [44]. In contrast, the
Advisory Committee on Immunization Practices in the
US did not recommend a specific vaccine formulation
for the older population for 2020/2021 despite the fact
that adjuvanted and high-dose quadrivalent formulations
were expected to be available [45], and specific recom-
mendations for 2021/2022 were not yet available at the
time of publication.

Future developments
Next-generation influenza vaccines are being developed.
One approach is the use of alternative adjuvants, which
might overcome the diminished responsiveness of the
aged immune system. As mentioned above, MF59 is
used successfully in influenza vaccines and other
squalene-based adjuvants have also been tested (summa-
rized in [46]). AS03 has been used in the pandemic in-
fluenza vaccine of 2009 and induced higher antibody
concentrations and seroprotection levels in older adults
compared to a whole-virus vaccine or a non-adjuvanted
split vaccine [47, 48]. In both studies the amount of anti-
gen in the adjuvanted vaccine was substantially lower
than in the comparator vaccines. Superior clinical effi-
cacy of seasonal TIV adjuvanted with AS03 compared to
standard TIV could be demonstrated for protection
against influenza A, and particularly A/H3N2 infection,
but not against infection with any influenza strain. In
addition this study showed higher efficacy against hos-
pital admission for pneumonia and all-cause death in de-
scriptive estimates [49]. AF03 (squalene-based
emulsion), Advax-CpG55.2 (inulin + TLR9-agonist),
GLA-SE (emulsion of TLR4-agonist) and several other
TLR-agonists and alternative emulsions have been tested
in combination with influenza antigens and there are
many more potential adjuvants, such as e.g. cytokines, T
cell stimulating adjuvants, DNA-based adjuvants etc.,
which might be good candidates to boost vaccine-
induced immune responses in older adults, but have not
yet been tested in this age group. More extensive reviews
on adjuvants for influenza vaccines can be found else-
where [30, 50]. After the rapid success of mRNA vac-
cines against COVID-19 (see below), several
manufacturers started or intensified development of
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mRNA vaccines against influenza. The use of mRNA
vaccines against influenza was first suggested in 2012
and it has been shown that this vaccine candidate offers
protection from influenza in animal models including
aged mice [51]. Compared to “traditional” influenza vac-
cine manufacturing in eggs or cell culture, mRNA vac-
cines could be produced much faster in large quantities.
This is particularly relevant for influenza vaccines, as a
later decision for a specific seasonal vaccine composition
could improve the match between vaccine and circulat-
ing virus strains. In July 2021 Moderna started the first
Phase I/II clinical trial with a seasonal influenza mRNA
vaccine in humans (NCT04956575).
Influenza-specific antibodies show some degree of

cross-reactivity towards related viral strains and
influenza-specific T cells can recognize conserved epi-
topes. However, clinical data show that a mismatch be-
tween vaccine strains and circulating virus strains
decreases efficacy and effectiveness of influenza vaccines.
Overall influenza vaccine effectiveness is usually 40-60%
in years with adequate matching of vaccine and circulat-
ing virus strains [52]. But as an example, in the 2014/
2015 season vaccine effectiveness was only 19% against
influenza and only 6% against H3N2 strains [52]. The
circulating influenza A H3N2 strains had changed sig-
nificantly (antigenic drift) after selection of the vaccine
strains [53] leading to a pronounced mismatch in this
year. Similar effects were observed in the seasons 2004/
2005 and 2005/2006 [54]. Adjuvants can improve the
production of cross-reactive antibodies which recognize
drifted strains (summarized in [55]), but universal influ-
enza vaccines would be desirable to address the im-
mense antigenic variability of influenza viruses and to be
prepared for novel, potentially pandemic influenza
strains. Various approaches, such as antigens based on
the conserved stem-region of hemagglutinin, chimeric
hemagglutinin proteins, peptides and nucleic acid plat-
forms, are currently tested in clinical trials. While cross-
reactive or broadly reactive antibodies contribute to a
broader or potentially universal protection, T cells also
play a crucial role. CD4+ T cells contribute to an effi-
cient immune response in several ways. They have direct
effector functions e.g. cytokine secretion and cytolysis in
the lung, are important for rapid innate responses and
provide help to B cells, which ensures optimal antibody
production, as well as to CD8+ T cells. The cytotoxic CD8+

T cells recognize and eliminate infected cells, thereby limit-
ing virus spread in the body. Many of the vaccine candidates
for universal influenza vaccines utilize antigens and/or tech-
nologies, which aim to elicit robust T cell responses. A com-
prehensive summary of these approaches has recently been
published [56]. It is very likely that adjuvants and/or vaccine-
delivery platforms will be essential for optimal vaccine re-
sponses, particularly in the older population [57–59].

Pneumococcal disease
Streptococcus pneumoniae (pneumococcus) can be clas-
sified into more than 90 distinct serotypes based on their
polysaccharide capsule of which only a limited number
are pathogenic [60]. Antimicrobial resistance of S. pneu-
moniae is an increasing problem [61]. Clinical presenta-
tion of S. pneumoniae infection can be non-invasive
(otitis media, sinusitis, conjunctivitis, pneumonia) or in-
vasive (bacteremic pneumonia, meningitis, sepsis). Inci-
dence of invasive pneumococcal disease (IPD) as well as
pneumococcal pneumonia increases with age. S. pneu-
moniae is the most frequently isolated pathogen causing
community-acquired pneumonia (CAP) in older adults.
In the US nearly 30,000 cases of invasive pneumococcal
disease (IPD) and over 500,000 cases of non-bacteremic
pneumococcal pneumonia were estimated to occur every
year in persons older than 50 years, resulting in more
than 25,000 pneumococcus-related deaths [62]. Bacterial
co- or secondary infections are frequently observed in
influenza patients. The exact numbers of co-infections
vary greatly in different studies; a meta-analysis reported
bacterial infections in 11% to 35% of influenza patients
with S. pneumoniae being the most common pathogen
accounting for 35% (95% CI: 14%-56%) of all bacterial
co-infections [63].
Two types of vaccines are available against S. pneumo-

niae; polysaccharide vaccines (PPV), which contain the
purified bacterial capsule polysaccharides, and conju-
gated vaccines (PCV), for which the polysaccharides are
conjugated to carrier proteins. The serotype coverage of
the different vaccines is summarized in Table 1.
Purified polysaccharides are T cell-independent anti-

gens, and as such elicit a distinct immune response.
Without T cell help, B cell activation and differentiation
happen independently of germinal centers resulting in
short-term antibody production, a lack of B cell memory
and mainly IgM and IgG2 responses [64, 65]. Infants are
not able to mount efficient immune responses against
polysaccharide antigens in the first two years of life.
Therefore, the PPV-23 vaccine is not suitable for young
children and has only been licensed for adults despite
the fact that non-invasive and invasive pneumococcal
disease is highly prevalent in infants. PPV-23 has been
recommended and utilized in many countries for the
older population for several decades. Carrier proteins,
which are chemically conjugated to the polysaccharides
facilitate T cell-dependent immune responses where
carrier-specific T cells provide T cell help for
polysaccharide-specific B cells [65]. Class switch and
avidity maturation can take place, memory B cells are
generated, and the conjugate vaccines (PCV) are im-
munogenic in infants. PCV-7 was introduced in the late
1990s/early 2000s for young children, but was not li-
censed for adults. The incidence of IPD in the target age
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group declined substantially after introduction of this
vaccine. As PCV does not only prevent disease, but also
carriage of S. pneumoniae, the incidence of IPD also de-
creased in older adults, presumably due to reduced
transmission from children to older adults [66]. A cer-
tain degree of serotype replacement was observed in all
age groups in the following years leading to the develop-
ment of PCV-10 and PCV-13, which contain additional
serotypes and replaced PCV-7 in the childhood vaccin-
ation programs of many countries. PCV-13 was the first
PCV, which was also licensed for adults and is now used
in many countries for the older population. Serotype re-
placement can still be observed and development of
PCVs containing even more serotypes is ongoing (see
below).

Immunogenicity
Two different methods are used to quantify
polysaccharide-specific antibodies and to determine im-
munogenicity of the pneumococcal vaccines. ELISA-
based methods detect IgG antibodies but no other anti-
body classes and early ELISA methods were often unspe-
cific. Improved protocols solved this problem, but some
older studies need to be interpreted with caution [67].
Functional antibodies can be measured by opsonophago-
cytosis assays (OPA). In young children, these two assays
show a strong correlation, but this is not the case in
older adults and immunocompromised patients [68]. It
has been concluded from several studies [69–73] that
OPA-measurements are probably a more reliable correl-
ate of protection and that they should be utilized despite
the fact that they are more complex and expensive and
less standardized than ELISA methods.
With age, immunogenicity of PPV-23 decreases, as

shown by reduced opsonophagocytic activity, alterations
in class and subclass usage as well as in somatic hyper-
mutation [74–76]. Currently, PPV-23 and PCV-13 are
available for older adults, but many studies comparing

immune responses to PPV and PCV in this age group
were already performed with PCV-7. Some studies re-
ported higher antibody levels (ELISA and OPA) for
PCV-7 [77], whereas others did not detect significant
differences between antibodies elicited by PCV-7 or
PPV-23, respectively [78–80]. This might be explained
by the fact that the patient populations were
heterogenous, most studies were relatively small and
previous vaccination with PPV-23 impacts the response
to PCV-7. Frailty further impairs antibody responses
after pneumococcal vaccination [78]. More recent stud-
ies compare PPV-23 and PCV-13 and systematic meta-
analyses show higher antibody levels for the majority of
serotypes and non-inferiority for the others after vaccin-
ation with PCV-13 [81, 82]. Early studies showed that a
second dose of PCV-7 one year after either PPV-23 or
PCV-7 might be beneficial for antibody responses and
particularly for their long-term maintenance [77, 79] and
a more recent meta-analysis concluded that prior vaccin-
ation with PPV-23 did not influence the immunological
response to PCV-13 [81].

Clinical efficacy and effectiveness
Efficacy and effectiveness of pneumococcal vaccines have
been mainly studied for IPD and in some studies for
pneumococcal pneumonia. In an extensive meta-analysis
pooled vaccine efficacy/effectiveness (VE) of PPV-23
against IPD and pneumococcal pneumonia was calcu-
lated for different types of studies and ranged from 73%
against IPD in clinical trials to below 50 % in cohort
studies (Table 2). The authors suspected a high risk of
bias in the diagnosis of pneumococcal pneumonia for
several studies, which they excluded from their analysis.
However, these studies had been included in previous
meta-analyses which failed to demonstrate a protective
effect against pneumonia [84–87]. Clinical efficacy of
PCV-13 was tested in a large Phase IV randomized,
placebo-controlled trial including more than 84,000

Table 1 Serotypes included in pneumococcal polysaccharide (PPV) and conjugate (PCV) vaccines

1 licensed, but not for older adults
2 licensed for older adults
3 in development
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older adults. In the per-protocol analysis PCV-13 was
45.6% (95% CI: 21.8-62.5%) effective against first epi-
sodes of community-acquired pneumonia (CAP) caused
by vaccine-type strains and 75.0% (95% CI: 41.1-90.8%),
against vaccine-type IPD, respectively [88]. It is still con-
troversially discussed which pneumococcal vaccination
strategy provides optimal protection against disease, as
data on clinical efficacy of schedules combining PPV and
PCV or repeated doses of either vaccine are lacking.
Antibody responses to PCV-13 are stronger and can po-
tentially be boostered by additional doses, but due to
high vaccination rates in the pediatric population and
the accompanying herd immunity effects, prevalence of
the PCV-13 serotypes in older adults decreases and
other serotypes might become more clinically relevant.
PPV-23 covers additional serotypes, but there are con-
cerns that PPV might induce tolerance or hyporespon-
siveness upon repeated vaccination, similar to the
meningococcal polysaccharide vaccine [89]. Vaccination
recommendations are very heterogenous in Europe,
where various countries recommend either PCV-13 or
PPV-23, or PCV-13 followed by PPV-23. This combin-
ation aims to exploit the advantages of both vaccines.
The sequential use of both vaccines was also recom-
mended in the US for several years, but since 2019 only
PPV-23 is generally recommended and the addition of
PCV-13 should be considered for the individual patient
in a shared decision process [90]. The uncertainties and
inconsistencies in national recommendations might con-
tribute to the fact that vaccination coverage for pneumo-
coccal vaccine is still low in many countries [91–94].

Strategies for improvement and future developments
As mentioned above development of next-generation
conjugated vaccines containing additional serotypes is
ongoing. Early stage clinical trials showed that safety and
immunogenicity of a 15-valent and a 20-valent conju-
gated vaccine (Table 1) were similar to that of PCV-13
in older adults [95, 96]. PCV-15 has been tested in Phase
III trials in adults over 50 years of age and younger
adults with various risk factors (NCT03950622,
NCT03480802, NCT03950856, NCT03615482,
NCT03547167, NCT03615482) demonstrating immuno-
genicity when administered alone or concomitantly with
influenza vaccine or followed by the 23-valent polysac-
charide vaccine and has very recently been licensed in
the US [97]. Phase III trials for PCV-20 are ongoing in
older adults (NCT03835975, NCT04875533,

NCT03760146, NCT04526574). As serotype prevalence
differs between children and older adults, partially due
to serotype replacement processes, it might be advisable
to consider the option of including different serotypes in
vaccines for the different age groups.
The use of adjuvants has been successful for various

protein-based vaccines, but has not yet moved beyond
early development for polysaccharide or conjugate vac-
cines. Alum does not improve immune responses to T-
cell independent antigens or conjugates [98, 99], and
various TLR agonists failed to increase antibody re-
sponses when co-administered with pneumococcal poly-
saccharides [100]. Several adjuvants, such as IC31 (TLR-
9 agonist + antibacterial peptide) or a combination of
MPL and synthetic cord factor formulated as an oil-in
water emulsion showed promising results in mouse
models [101, 102], but have not yet been tested
clinically.
Universal vaccines against S. pneumoniae would be

needed to fully overcome the risk of serotype replace-
ment. A whole-cell vaccine candidate and various indi-
vidual protein or peptide vaccines, most of them
utilizing pneumococcal histidine triad protein D (PhtD),
detoxified pneumolysin derivative (PlyD) and pneumo-
coccal surface protein (PspA) or combinations of those
are developed. Many of these vaccine candidates com-
bine the antigens with different adjuvants. Several of
these vaccine candidates show promising immunogen-
icity and safety profiles in early clinical studies and even
more are still in pre-clinical development [103–111].

Herpes zoster
Primary infection with varicella-zoster virus (VZV) usu-
ally occurs in childhood and manifests as chickenpox
(varicella). Life-long viral latency is established in sen-
sory ganglia, and reactivation of VZV, which can occur
throughout life, is usually controlled by T cell responses
(cell-mediated immunity, CMI) and therefore asymp-
tomatic. In situations with reduced CMI, e.g. under im-
munosuppression or with increasing age, reactivations
can manifest as herpes zoster (HZ) if the virus spreads
through the sensory nerve to the corresponding derma-
tome. This results in a typically unilateral, frequently
painful, segmented skin rash. A substantial increase of
the HZ incidence with age (2/1,000 person-years at age
50; 6–8/1,000 person-years at 60; 8–12/1,000 person-
years at age 80) was reported in a systematic review,
which included 130 studies from various countries [112].

Table 2 Pooled vaccine efficacy/effectiveness (VE) of PPV-23 against IPD and pneumococcal pneumonia (data from [83]).

clinical trials VE [%] (95%CI) cohort studies case-control studies

IPD 73% (10-92) 45% (15-65) 59% (35-74)

pneumococcal pneumonia 64% (32-80) 48% (25-63) n.d.

n.d. not done
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Pain occurring or persisting more than 3 months after
onset of the rash is referred to as post-herpetic neuralgia
(PHN), and is a frequent complication of HZ. PHN is
often associated with severe pain, which is very difficult
to manage therapeutically and can last for several
months resulting in considerable impact on activities of
daily living and quality of life [113, 114]. The incidence
of PHN also increases with age from 18% in HZ patients
older than 50 years to 33% in HZ patients older than 80
years [115]. HZ and PHN are prominent examples how
an acute episode of infection can lead to long-term se-
quelae including loss of independence and
institutionalization. Vaccination against HZ aims to re-
store the VZV-specific immune response, which was
generated during the primary infection, in order to pre-
vent the clinical consequences of viral reactivation.
A live-attenuated vaccine based on the Oka Merck

virus strain is available to prevent primary infection with
VZV in children, and the same strain (14-fold higher
dose) was also used in older adults to prevent HZ. As a
live-attenuated vaccine, it is not suitable for immuno-
compromised patients, who are at high risk for HZ, but
it has a favorable reactogenicity and safety profile in im-
munocompetent persons including older adults. A
second-generation vaccine against HZ contains the viral
envelope glycoprotein E (gE) and the adjuvant system
AS01B, which consists of 3-O-desacyl-4´-monopho-
sphoryl lipid A (MPL, a derivative of lipopolysaccharide)
and QS-21, a saponin found in the bark of the tree Quil-
laja Saponaria, formulated in liposomes, which act as
antigen delivery systems. This combination enables up-
take of the antigen via endocytosis, activates innate im-
mune cells via the TLR-4 pathway and targets
subcapsular macrophages in the lymph node [116–120],
leading to efficient activation of adaptive immune re-
sponses [121]. The adjuvanted vaccine was licensed and
is now used in Europe, Canada, the US, Japan and many
other countries.

Immunogenicity
Both vaccines induce antibody and cellular immune re-
sponses, but T cell mediated immunity (CMI) is consid-
ered to be essential for protection against herpes zoster,
whereas only a minor role is attributed to antibodies.
Immunogenicity was investigated in sub-cohorts of the
pivotal Phase III trials for both vaccines. It has been
shown that baseline VZV-specific T cell responses de-
cline with age and are lower for persons ≥70 compared
to those 60-69 years of age, whereas baseline antibody
levels are independent of age and did not correlate with
CMI [122]. Upon vaccination with the live-attenuated
vaccine VZV-specific T cell responses increase and al-
though the magnitude of these responses decreases over
time, particularly within the first year, CMI remains

above baseline levels for the observation period of three
years. Similar observations were made for VZV-specific
antibodies. VZV-CMI is significantly lower in subjects
≥70 compared to the 60-69 years-old cohort, but no
age-related differences in antibody responses were ob-
served. Despite an inverse correlation of VZV-CMI with
the likelihood of developing HZ this study was not able
to identify a surrogate marker or threshold level of pro-
tection [122]. Upon vaccination with two doses of the
recombinant adjuvanted vaccine VZV-CMI (measured
by gE-specific CD4+ T cells producing at least two cyto-
kines) increases in more than 90% of the recipients and
remains above the CMI-response threshold in 57% three
years later. Specific CD4+ T cells persist substantially
above pre-vaccination values even 9 years after vaccin-
ation [123]. A slightly lower proportion of vaccine recip-
ients ≥70 remains above this threshold compared to
younger participants confirming previous data on a
moderate age-associated decline of T cell, but not anti-
body responses [124–126]. CD8+ T cell responses were
rarely detected in this study. Antibody levels also in-
crease substantially and remain over baseline for at least
three years. Only minimal differences were observed be-
tween age groups at any time point. In contrast to the
study with the live-attenuated vaccine, a moderate posi-
tive correlation between humoral and CMI responses
was observed after vaccination with the recombinant
vaccine [127]. Direct comparisons of T cell and antibody
responses induced by the two vaccines are complicated
by the fact that the live-attenuated vaccine contains a
multitude of viral antigens whereas the recombinant vac-
cine includes only the glycoprotein gE. gE-specific CD4+

T cell responses are substantially higher following vac-
cination with the recombinant vaccine, but even total
VZV-specific T cell responses were not superior follow-
ing vaccination with the live-attenuated vaccine. In
addition, the recombinant vaccine induced preferentially
memory, but less effector T cells. The authors of this
study conclude that gE-specific memory Th1-
responses are relevant for protection and that high
peak memory T cell responses are necessary for long-
term persistence [128]. Antibody responses measured
by ELISA are also higher after vaccination with the
recombinant vaccine. Interestingly, the avidity of gE-
specific antibodies at baseline (i.e. before vaccination)
is much lower compared to antibodies specific for all
VZV-glycoproteins and vaccination with the recom-
binant, but not the live-attenuated vaccines substan-
tially improves avidity of the gE-specific antibodies. In
addition, induction of neutralizing antibodies is super-
ior after vaccination with the recombinant vaccine. In
summary, the quality of gE-specific antibodies seems
to be higher after vaccination with the recombinant
vaccine. The exact role of these highly functional
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antibodies for protection remains to be elucidated
[129].

Clinical efficacy and effectiveness
Vaccine efficacy in persons older than 60 years was 51%
against HZ and 67% against PHN in the pivotal Phase III
randomized, double-blinded, placebo-controlled trial for
the live-attenuated vaccine [130]. However, as men-
tioned above reduced T cell responses were observed in
the oldest participants, which was also reflected in lower
efficacy (60-69y: 64%; 70-79y: 41%; ≥80y: below 20%) in
the pivotal trial and in an additional study, which
showed higher efficacy of 70% in a younger cohort aged
50-59 years [122, 131]. The protective effect of the vac-
cine waned over time and was lost approximately 10
years after vaccination [132], but re-vaccination after 10
years results in a booster effect and restores immune re-
sponses [133].
The two pivotal phase III randomized, placebo-

controlled clinical trials for the recombinant, adjuvanted
vaccine included more than 30,000 participants older
than 50 or 70 years, respectively [134, 135]. No major
safety concerns were identified after two doses of vac-
cine administered 8 weeks apart. The majority of adverse
effects were temporary reactions at the site of infection
and systemic symptoms, such as headache, myalgia or
fatigue were relatively frequent, but mild. Clinical effi-
cacy against HZ was 97.2% (95% CI: 93.7-99.0) in per-
sons over 50 and 89.8% (95% CI: 86.8-94.5) in persons
over 70 years of age, respectively in the two phase III tri-
als. Combined analysis of all participants did not reveal
statistically significant differences between age groups
70-79 and ≥80 years [134, 135]. Despite a slight decline,
efficacy remained above 85% for the first four years after
vaccination and did not decrease further until 7 years
post-vaccination [136]. Post-herpetic neuralgia was very
rare in the vaccinated study cohort, with no cases in par-
ticipants younger than 70 years and a vaccine efficacy of
88.8% (95% CI: 68.7-97.1) in persons older than 70
[134].
Frailty status was determined for more than 90% of

the participants of the two studies, and as expected,
prevalence of frailty increased with age. Vaccine efficacy
against HZ was above 90% also in the frail and pre-frail
sub-cohorts [137]. Vaccine effectiveness was lower in an
observational post-licensure study, namely 70.1%
(95%CI: 68.6-71.5), but did also not decline with age
(65-79y vs. ≥80y). This study showed that the second
dose is required for optimal protection, but that a delay
to administer the second dose (>180 days after dose 1)
does not impair protection [138].
In contrast to the live-attenuated vaccine, the recom-

binant vaccine is suitable for immunocompromised pa-
tients. Safety and immunogenicity have been

demonstrated in patients after renal transplantation
[139], in HIV-positive patients [140] and in patients re-
ceiving chemotherapy or immunosuppressive treatment
for hematologic malignancies [141].

Future developments
A clear limitation of the live-attenuated vaccine is that
its use is contraindicated for patients under immunosup-
pression. An inactivated vaccine, which used a heat-
inactivated formulation of the Oka Merck virus strain
demonstrated 63.8% (95%CI: 48.4-74.6) and 83.7%
(95%CI: 44.6-95.2) efficacy against HZ or PHN, respect-
ively in a Phase III trial in hematopoietic stem-cell trans-
plant recipients [142]. However, four doses are required,
and with the licensure of the recombinant, adjuvanted
vaccine (see above), which is also suitable for immuno-
compromised patients it seems unclear how this vaccine
will be used. There is also ongoing development of an al-
ternative subunit adjuvanted vaccine (NCT03820414).

COVID-19
In the current SARS-CoV-2 pandemic older adults, per-
sons with underlying co-morbidities and obese individ-
uals have the highest risk for severe disease and death
from COVID-19 [143–145]. Reports of long-lasting
health sequelae after recovery from COVID-19 (“long
COVID”) are accumulating [146, 147], but this compli-
cation seems to be more frequent in younger patients.
Efficient vaccines are essential to control the pandemic
and older adults are an important target group for vac-
cination against SARS-CoV-2. Most national vaccination
programs prioritized old adults and this age group was
among the first recipients of SARS-CoV-2 vaccines. Sev-
eral vaccines against SARS-CoV-2 have been licensed in
different countries, clinical trials with additional vaccine
candidates are ongoing and a plethora of vaccine candi-
dates are in pre-clinical development [148]. This sum-
mary focusses on the SARS-CoV-2 vaccines currently
licensed in Europe, namely the mRNA-based vaccines of
BioNTech/Pfizer (Comirnaty) and Moderna (Spikevax)
and the adenoviral vectors of AstraZeneca (chimpanzee
adenovirus ChAdOx1; Vaxzevria) and Johnson&John-
son/Janssen (human Adenovirus-26; COVID-19 Vaccine
Janssen) and highlights their safety, immunogenicity, ef-
ficacy and effectiveness in older adults. With the excep-
tion of Vaxzevria, they are also licensed for emergency
use in the US. All four vaccines deliver genetic informa-
tion for the SARS-CoV-2 spike protein, which is then
produced by cells of the vaccinee. Comirnaty, Spikevax
and Vaxzevria are administered in a two-dose regimen.
COVID-19 vaccine Janssen is a single-dose vaccine. A
complete overview of SARS-CoV-2 vaccine development
is beyond the scope of this article and can be found else-
where [149].
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Immunogenicity
First-in-human clinical trials are usually performed in
young, healthy adults, but for SARS-CoV-2 vaccines
clinical development moved quickly towards the inclu-
sion of older adults. As an example, the phase I dose es-
calation trial for Spikevax was extended from the
original cohort (18-55 years) to also include participants
>55 and >70 years [150] and Comirnaty was also tested
early in the age groups 18-55 and 65-85 years [151].
Both studies demonstrated similar immunogenicity for
the different age groups. The phase I/IIa study for
COVID-19 vaccine Janssen included adults aged 18-55
or more than 65 years, respectively. Antibody and CD4+

T cell responses after one dose of vaccine were slightly
lower in the older age group. The age-associated de-
crease in immunogenicity was more pronounced for
CD8+ T cell responses, with cytokine-producing T cells
detectable in 51% of the younger and 36% of the older
cohort, respectively [152]. Phase II and III studies of all
vaccines also investigated immunogenicity and con-
firmed these results. Antibody levels and neutralizing ti-
ters, as well as T cell responses after vaccination with
Vaxzevria were similar in the age groups 18-55y, 56-69y,
and ≥70y [153]. Further immunogenicity trials including
older adults are still ongoing for the different vaccines,
and now also include the newly emerging virus variants.
Neutralizing antibodies against the original virus after
the first dose of BioNTech/Pfizer mRNA vaccine are
substantially lower in persons older than 80 years com-
pared to younger age-groups, and this effect is even
more pronounced for virus variants. However, the age-
associated differences were less prominent after comple-
tion of the two-dose vaccination series. In addition, dif-
ferences in B cell memory, somatic hypermutation and
T cell responses were observed comparing persons
younger or older than 80 years [154].
Safety of all vaccines has been investigated extensively.

This summary highlights age-related aspects and there-
fore mainly relies on the safety data from later stage
trails, which included more older participants. The safety
profile of the two mRNA vaccines Comirnaty and Spike-
vax are similar, with local pain at the site of injection be-
ing more frequent than redness and swelling. Fatigue,
headache, muscle pain and chills are the most frequent
systemic events [155, 156]. The reactogenicity profiles of
the vector vaccines Vaxzevria and COVID-19 vaccine
Janssen are similar, with pain and tenderness reported as
the most common local and fatigue and headache as the
most common systemic reactions [152, 153, 157]. Local
and systemic reactogenicity was higher after the second
than after the first dose of mRNA vaccines, but higher
after the first dose of Vaxzevria, compared to the second
dose of this vaccine. For all vaccines, reactogenicity was
lower in older compared to younger adults. Severe

adverse events were rare for all vaccines and mostly not
vaccine related. After introduction of the vaccines and
use in a large number of persons very rare severe ad-
verse events were observed including allergic reactions,
mainly against the mRNA vaccines [158, 159] and
thrombosis with thrombocytopenia syndrome (TTS)
after vaccination with the adenoviral vector vaccines
[160]. Rare cases of myocarditis have been reported in
adolescents and young adults (<30y) after vaccination
with mRNA vaccines [161]. These rare complications
are more relevant for younger adults and will therefore
not be discussed in detail.

Clinical efficacy and effectiveness
Phase III clinical trials to determine vaccine efficacy in-
cluded older adults, but particularly for the oldest age
groups the number of participants was usually not suffi-
cient for statistical analysis. For the BioNTech/Pfizer
vaccine, overall efficacy against symptomatic SARS-
CoV-2 infection was 95.0 % (95%CI: 90.0-97.9) after 2
doses with a 3-week interval. Vaccine efficacy did not
differ in the age groups 16-55y, >55y, and ≥65y. How-
ever, analysis of the oldest age group (≥75y) was not sta-
tistically significant with 5 cases of COVID-19 in the
placebo and zero cases in the vaccinated cohort, respect-
ively. In this study more than 40% of the participants
were older than 55 years, but less than 5% were over 70
years old [156]. Results were similar for the second
mRNA vaccine, Spikevax. Approximately 25% of the par-
ticipants in this pivotal phase III study were older than
65 years. The vaccine interval was 4 weeks between the
two doses and overall efficacy against symptomatic
SARS-CoV-2 infection was 94.1% (95%CI: 89.3-96.8)
after the second dose. For the different age groups effi-
cacy was 95.6% (95%CI: 90.6-97.9) and 86.4% (95% CI:
61.4-95.2) for participants younger or older than 65
years, respectively [155]. Additional analyses showed an
efficacy of 82.4% (95%CI: 46.9-93.9) for persons aged 65-
75y, and again no statistically valid results for the sub-
group older than 75 years of age, as no COVID-19 cases
occurred in the vaccinated group versus 7 cases in the
placebo group [162]. Clinical trial results for Vaxzevria
were reported as a summary of several studies with dif-
ferences in the age of participants, dosing of the vaccine
and time intervals between the two doses. After two full-
dose vaccinations, clinical efficacy against symptomatic
SARS-CoV-2 infection was 62.1% (95%CI: 41.0-75.7).
Only 12% of the participants were older than 55 years
and no age-stratified sub-analysis was provided [163]. As
a result, some countries recommended this vaccine only
for younger adults at the beginning of their vaccination
campaigns. In March 2021, press releases announced
79.9% efficacy against symptomatic disease in persons
older than 65 years for an ongoing Phase III trial in the
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US, but the full data are not published yet
(NCT04516746; [164]). In the pivotal trial for the single-
dose COVID-19 vaccine Janssen clinical efficacy against
moderate to severe COVID-19 disease was reported to
be 66.1% (95% CI: 55.0-74.8). There were no differences
between the age groups (younger or older than 60 years)
with 33% of the participants falling into the older age
group [152]. Vaccine efficacy against asymptomatic in-
fection is of particular interest from a public health per-
spective, because potential transmission of the virus
from vaccinated, asymptomatically infected individuals
might play an important role in overall spread of the
virus. In the phase III trials, different strategies were im-
plemented to detect asymptomatic infections. A sub-
cohort of the participants in the Vaxzevria studies was
monitored for asymptomatic infection by weekly self-
swabs and PCR testing, but efficacy was not statistically
significant after receiving two full-dose vaccinations
[163]. In contrast, the investigators of the COVID-19
vaccine Janssen determined antibodies against the viral
N protein 71 days after the vaccination. As this antigen
is not present in the vaccine, this assay identifies persons
who had been infected. Vaccine efficacy against asymp-
tomatic infection was 65.5% (95%CI: 39.9-81.1) in this
preliminary analysis [152]. The phase III trials with the
two mRNA vaccines announced to provide similar sero-
conversion data after a longer observation period.
Due to the limited supply of vaccines at the beginning

of national vaccination campaigns specific target groups
including health care workers and older adults were pri-
oritized and were the first to receive the vaccine. Effect-
iveness in “real life” has been and is still monitored in
many countries. Asymptomatic infections were mainly
monitored in health care workers as they are routinely
tested for active infection irrespective of vaccination.
High effectiveness of the mRNA vaccines was demon-
strated already after the first dose and further increased
after full vaccination [165, 166]. However, these studies
did not provide data for older adults. Nation-wide effi-
cacy data was first available from Israel, where the vac-
cination campaign with Comirnaty was rolled out
extraordinarily fast after licensure. Vaccine effectiveness
was reported against asymptomatic and symptomatic
SARS-CoV-2 infection, as well as for COVID-19 related
hospitalization and death for several age groups (16-44y;
45-64y; ≥65y). The lowest effectiveness was 85.9%
(95%CI: 80.2-89.9) for asymptomatic infection in the
oldest age group, all other outcomes were higher, most
of them above 95% [167]. The oldest age group was fur-
ther stratified, but no differences were observed between
the age groups ≥65y, ≥75y, and ≥85y. These findings
demonstrated excellent effectiveness against infection
and disease in all age groups, including the very old. A
Danish pre-print reported a vaccine effectiveness against

PCR-confirmed SARS-CoV-2 infection of 64% (95%CI:
14-84) in long-term care facility residents (median age
84y) and 90% (95%CI: 82-95) in health care workers
(median age 48y) more than 7 days after the second dose
of Comirnaty. It has to be pointed out, that this study in-
vestigated PCR-confirmed infections, not symptomatic
disease [168]. A study in Spanish long-term care facility
residents provided vaccine effectiveness estimates of 71%
(95% CI: 56–82%), 88% (95% CI: 75–95%), and 97%
(95% CI: 92-99%), against SARS-CoV-2 infections
(symptomatic and asymptomatic), COVID-19 hospitali-
zations and deaths, respectively. In this study both
mRNA vaccines were included [169]. Additional effect-
iveness studies were performed in other countries and
also with the adenovector vaccines, mostly confirming
these results. A comprehensive review of vaccine efficacy
and effectiveness can be found elsewhere [170].

Future developments
Many factors are relevant for optimal protection. There
is evidence that longer time-intervals between the two
vaccine doses are beneficial [171, 172] and that heterol-
ogous prime-boost schedules might induce superior im-
mune responses [173], but most of these studies are too
small to determine clinical efficacy of the different
schedules. Duration of protection and as a consequence
the need and optimal timing for additional vaccines
doses are currently a major focus of interest. First re-
ports are emerging that antibody and T cell responses
persist for several months after vaccination [174, 175],
but it is unclear how long clinical protection lasts. It is
impossible to study this question in the context of the
placebo-controlled clinical trials as in the meantime vac-
cination was offered to the participants who originally
received placebo. In July 2021 Israel reported that they
observed only 64% vaccine effectiveness against infection
and symptomatic infection in the previous weeks (com-
pared to>90% in the early reports; see above), while ef-
fectiveness against serious illness and hospitalization was
still 93% [176]. However, so far no scientific publications
are available confirming these data. Israel decided to
offer a third vaccine dose to persons older than 60 years,
who received their second dose at least 5 months earlier,
extending this recommendation soon thereafter to every-
body older than 50, and then 40 years. Other countries,
e.g. Germany also plan to administer third doses to
high-risk individuals, e.g. older adults starting in autumn
2021, while US authorities do not support a third dose
for immunocompetent individuals at the moment, but
prepare for the possibility that the need arises. At the
same time, WHO calls for halting administration of
third doses at a time when a large proportion of the
world´s population have not even received a first dose.
This discussion is further complicated by the fact that
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different virus variants arose over time and have to be
taken into account. At the time of the first clinical trials
the “original” virus was gradually replaced by the alpha
variant (B.1.117) and at the moment almost all cases e.g.
in Europe and the US are caused by the delta variant
(B1.617.2). Vaccine effectiveness differs for the variants,
particularly after the first dose [177], and therefore direct
comparisons of effectiveness at different time points
after vaccination are difficult. It is important to monitor
long-term protection specifically in high-risk popula-
tions, such as older adults, to make evidence-based deci-
sions. Modified vaccines, which incorporate the crucial
changes in the viral genome are being developed.
In future years, SARS-CoV-2 vaccines might become

part of national vaccination schedules for everybody, or
at least for risk groups. First studies are ongoing investi-
gating co-administration of SARS-CoV-2 vaccines with
other vaccines, such as influenza or pneumococcal vac-
cines (NCT04848467, NCT04790851), and development
of combination vaccines (e.g. SARS-CoV-2 and influ-
enza) has started [178].

Vaccines for all adults
Many countries recommend regular booster vaccinations
against tetanus and diphtheria, sometimes in combin-
ation with acellular pertussis and/or inactivated polio for
all adults. Other vaccines might be relevant in some
countries, e.g. against tick-borne encephalitis in endemic
areas. Most recommendations for these vaccines do not
mention older adults in particular, but some countries
e.g. in Europe Austria, Liechtenstein, France and
Portugal advocate shortened booster intervals for older
adults. Tetanus- and even more so diphtheria-specific
antibody concentrations are frequently below the levels
considered to be protective for adults, and are even
lower in older age groups [179–183]. In one of our stud-
ies in Austria, booster shots with a combined vaccine
containing diphtheria toxoid did not provide long-term
protection in almost half of the older participants [180,
184]. Tetanus- and diphtheria- specific antibody levels
vary greatly in different European countries. In general,
protection against tetanus is adequate in most countries,
whereas antibodies against diphtheria are below the pro-
tective level for a substantial fraction of the population
in some countries, and are decreasing with age [185]. A
detailed overview on vaccination against tetanus and
diphtheria can be found elsewhere [186]. Antibody re-
sponses after booster vaccination against tick-borne en-
cephalitis are also lower in old compared to young
adults and decline over time [187, 188]. Pertussis infec-
tion can be severe in older adults and increased numbers
of cases have been observed in the last years in this age
group [189–191]. To prevent not only severe cases in
adults but also transmission to newborns, who are too

young to be vaccinated, vaccination against pertussis is
important for adults. Regular booster doses of Tdap (tet-
anus, diphtheria, acellular pertussis) vaccine are well tol-
erated and immunogenic in young and older adults, but
antibody concentrations are lower in the older age
groups [179, 192]. However, only few countries recom-
mend regular booster immunization with combination
vaccines containing the pertussis component and some
recommend one booster dose during adulthood.
As mobility, financial resources and health of older

adults have improved over the last decades, long-
distance travel and as a consequence the need for travel
vaccines have become increasingly common for this age
group. Despite the fact that some tropical diseases, e.g.
Japanese encephalitis and typhoid fever are more fre-
quent and severe in older adults [193, 194], only limited
data are available on immunogenicity and efficacy of
travel vaccines in older age groups. Immunization guide-
lines rely primarily on studies with young adults. A de-
tailed review of travel vaccines for older adults is beyond
the scope of this article and can be found elsewhere
[195, 196]. The loss of naïve T and B cells is a hallmark
of immunosenescence, and an impaired generation of
memory responses has been reported in aged animals
[197, 198]. This suggests that responses to neo-antigens,
such as travel vaccines, might be particularly impaired in
old age. Antibody responses to Hepatitis A and B vaccin-
ation are already lower in middle-aged adults and non-
responders to Hepatitis B vaccine are more frequent in
older age groups [199–202]. It has to be emphasized that
vaccination against Hepatitis B is relevant for older
adults not only as a travel vaccine, but also in other set-
tings, such as for hemodialysis patients and household
contacts of infected patients. Immunogenicity and effi-
cacy of the live-attenuated yellow fever vaccine is high
even in older adults, but the risk for rare severe adverse
events increases with age. Yellow-fever vaccine-
associated viscerotropic disease mimics viral infection
and has a mortality of up to 60% [203]. A yellow fever
vaccine with an improved safety profile in the older
population would be desirable.

Conclusions and Outlook
Older adults are at increased risk for severe disease
caused by various pathogens and this is particularly evi-
dent in the current SARS-CoV-2 pandemic. The last 18
months have also shown that novel vaccines can suc-
cessfully be developed in a short period of time. Clinical
efficacy of COVID-19 vaccines is high, even in older
adults. Nevertheless, it seems that immunity and poten-
tially protection wanes faster in older age groups and
that additional doses will be required earlier in these co-
horts highlighting the importance of including specific
age- and risk-groups in clinical and observational
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studies. Several vaccines against other pathogens, such
as influenza, S. pneumoniae and herpes zoster are avail-
able for older adults, and vaccines that are recom-
mended for all adults (e.g. diphtheria, tetanus, pertussis)
are also relevant in old age. Modifications of the vac-
cines, such as higher antigen dose or adjuvants for influ-
enza vaccines, and optimization of vaccination schedules
are strategies to improve vaccine effectiveness for older
adults. However, vaccination coverage is still unsatisfac-
tory for many of these vaccines and systematic data on
vaccine uptake are not collected in all countries. Barriers
to vaccine uptake are manifold and include lack of ac-
cess, which can be caused by financial or other con-
straints, and personal decisions against vaccination
based on missing information or misinformation regard-
ing risk of disease and benefit of vaccination. To over-
come these issues documentation of vaccine uptake in
conjunction with data such as age and other risk factors
is crucial in order to identify gaps in coverage and de-
velop strategies to specifically target the relevant cohorts.
Vaccination documentation is important also on a per-
person scale in order to deliver vaccines at the right time
and to enable reminder systems.
There are still many pathogens, which cause high mor-

bidity and mortality in the older population, for which
no vaccines are available, but would be highly desirable.
The risk for nosocomial infections is high for older per-
sons due to an increased frequency of invasive proce-
dures, hospitalization or long-term care, and antibiotic
resistance of bacterial pathogens is an increasing prob-
lem in these settings. Staphylococcus aureus and Escheri-
chia coli, which are responsible for infections of
catheters, prostheses, or surgical wounds and Clostrid-
ium difficile, which is the most common cause of noso-
comial diarrhea are among the most relevant bacterial
nosocomial pathogens [204]. Several potential vaccines
have been clinically tested in different settings, but did
not fulfil expectations, and more recent vaccine candi-
dates are still in pre-clinical development. Vaccines
against other pathogens, such as Klebsiella pneumoniae,
Pseudomonas aeruginosa, Acinetobacter ssp., and Can-
dida spp. could have a substantial impact. Norovirus is
the most relevant viral nosocomial infection and out-
breaks in hospitals and long-term care facilities are fre-
quent. The disease is characterized by vomiting and
diarrhea and can be severe in older adults. In 2016 the
World Health Organization stated that the development
of a norovirus vaccine should be considered an absolute
priority, and vaccine development is ongoing [205]. A
detailed summary on vaccines for nosocomial infections
of older adults has recently been published [206]. Re-
spiratory syncytial virus (RSV) causes severe respiratory
infections in infants, but older, particularly frail persons
are also at high risk for severe disease. It is estimated

that 18,000 hospitalizations and 8,400 deaths per year
are caused by RSV in the UK, and most of these cases
occur in the older population [207]. RSV vaccine devel-
opment was impeded by the fact that the first RSV vac-
cine in the 1960s was associated with a risk for
antibody-mediated disease enhancement in infants. Sev-
eral novel vaccine candidates have been in clinical trials
over the last years, but failed to demonstrate clinical effi-
cacy despite encouraging safety and immunogenicity
data [208]. There are many more vaccine candidates
against a plethora of pathogens in various stages of de-
velopment, but a complete overview is beyond the scope
of this review.
Optimization of existing vaccines and vaccination

strategies as well as development of novel vaccines for
“old” (e.g. universal influenza or pneumococcal vaccines)
and “new” pathogens have the potential to substantially
improve health and quality of life in older adults. A de-
tailed knowledge about age-associated changes of the
immune system is essential in order to rationally design
vaccines which hopefully overcome these limitations,
and it is of utmost importance to consider age-related
aspects already early in the vaccine development
process (Table 3).
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