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Melanoma is one of the most aggressive cancers. Hypoxic microenvironment affects
multiple cellular pathways and contributes to tumor progression. The purpose of the
research was to investigate the association between hypoxia and melanoma, and
identify the prognostic value of hypoxia-related genes. Based on the GSVA algorithm,
gene expression profile collected from The Cancer Genome Atlas (TCGA) was used for
calculating the hypoxia score. The Kaplan–Meier plot suggested that a high hypoxia
score was correlated with the inferior survival of melanoma patients. Using differential
gene expression analysis and WGCNA, a total of 337 overlapping genes associated with
hypoxia were determined. Protein-protein interaction network and functional enrichment
analysis were conducted, and Lasso Cox regression was performed to establish the
prognostic gene signature. Lasso regression showed that seven genes displayed the
best features. A novel seven-gene signature (including ABCA12, PTK6, FERMT1,
GSDMC, KRT2, CSTA, and SPRR2F) was constructed for prognosis prediction. The
ROC curve inferred good performance in both the TCGA cohort and validation cohorts.
Therefore, our study determined the prognostic implication of the hypoxia score in
melanoma and showed a novel seven-gene signature to predict prognosis, which may
provide insights into the prognosis evaluation and clinical decision making.

Keywords: melanoma, hypoxia score, prognosis, gene signature, prediction model

INTRODUCTION

Melanoma is one of the highly malignant cutaneous neoplasms with a rising incidence
around the world (Hallberg and Johansson, 2013; Domingues et al., 2018), characterized by its
strong metastasis rate and poor prognosis (Nakamura and Fujisawa, 2018). Although surgery,
chemotherapy, immunotherapy, and radiation have been performed to treat malignant melanoma,
the efficacy of therapies remains limited (Domingues et al., 2018). Therefore, investigating the
underlying biological mechanism and identifying new therapeutic targets are demanded.

Tumor microenvironment (TME) refers to the biological environment where tumors initiate,
locate, and progress (Brandner and Haass, 2013; Roma-Rodrigues et al., 2019). The interaction
between tumor and its TME influence the survival, migration, and invasion of tumor cells
(Whiteside, 2008). Hypoxia is one of the essential features in the TME, which originates from
the proliferation of tumor cells and increased oxygen consumption (Manoochehri Khoshinani
et al., 2016). Tumor Hypoxia results in the activation of hypoxia-inducible factor (HIF), which
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mediates the expression of genes regulating metabolic pathways,
pH regulation, DNA replication, and protein synthesis (Al
Tameemi et al., 2019). Thus, tumor hypoxia contributes to
heterogeneous changes, genetic instability, angiogenesis, and
resistance to treatments, which has become an adverse prognostic
factor of tumor assessment (Walsh et al., 2014; Jing et al., 2019).
Many studies have suggested that hypoxia is related to poor
prognosis in solid tumors (Winter et al., 2007; Ward et al., 2013).
Likewise, hypoxia is a critical molecular program in melanoma,
promoting tumor growth, invasion, treatment resistance, and
relapse through the stabilization of HIF and the regulation
of hypoxia-related responses (Widmer et al., 2013; Qin et al.,
2016). In light of the essential role of hypoxia in melanoma, the
detection and assessment of tumor hypoxia plays a critical role in
clinical practice.

Assessment of the oxygen concentration, report of physiologic
processes involving oxygen markers, and evaluation of
endogenous molecules expression are considered as three
major groups to detect tumor hypoxia status (Walsh et al., 2014).
Deeply understanding the gene characteristics to estimate the
degree of hypoxia would help the prognostic evaluation and
treatment options. Immunohistochemistry (IHC) and plasma
protein assays were developed for determining hypoxia (Russell
et al., 2009; Khan et al., 2013). Recently, bioinformatics has been
utilized to determine broader signatures. Based on the 26-gene
hypoxia signature (Eustace et al., 2013), hypoxia status classifier
was administrated in head and neck cancer (Brooks et al., 2019),
and hypoxia score was implemented in lung adenocarcinoma
(Liu Z. et al., 2020). Up till now, the hypoxia score in melanoma
has not been investigated in detail.

Here, we calculated the hypoxia score for the analysis of gene
expression profiles of melanoma which were collected from The
Cancer Genome Atlas (TCGA, https://cancergenome.nih.gov).
The correlation between hypoxia and prognosis was investigated,
and hypoxia-associated molecules were determined. A seven-
gene signature was further conducted using the profiles from
TCGA and verified in the GSE54467, GSE53118, and GSE22153
dataset, providing novel insights for the assessment, treatment,
and prognosis of melanoma. The workflow presenting the design
of the present research was shown in Figure 1.

MATERIALS AND METHODS

Data Collection
The clinical information and RNA-sequencing data of skin
cutaneous melanoma (SKCM) were downloaded from the
TCGA database1.

Calculation of the Hypoxia Score
Hypoxia score was calculated based on the 26-gene hypoxia
signature (Eustace et al., 2013) and a gene set variation
analysis (GSVA) (Eustace et al., 2013; Hänzelmann et al., 2013).
GSVA is a GSE method which estimates variation of pathway
activity over a sample population in an unsupervised manner

1https://tcga-data.nci.nih.gov/

(Hänzelmann et al., 2013). Hence, we used the 26-gene hypoxia
signature and evaluated the GSVA score of each sample using
the GSVA algorithm. The GSVA score was recognized as the
hypoxia score, which represented the hypoxia status of each
sample. The cut-off value was identified according to the
method of best separation in R package survminer, and patients
were divided into high- and low-hypoxia score groups. Such
grouping aims to minimize the P value of the survival curve.
Additionally, T-test was used to judge the differences of clinical
indexes between groups.

Definition of Differentially Expressed
Genes (DEGs)
EdgeR package was used to identify DEGs between high- and
low-hypoxia score groups. The fold change (|fold change| ≥ 1.5)
and adj.p < 0.05 were considered significant. Pheatmap package
was used to generate the heatmap.

Identification of Hypoxia-Associated
Genes by the Weighted Gene
Co-expression Network Analysis
(WGCNA)
The top 9829 genes, based on standard deviation, were used for
further investigation. Co-expression networks were performed
by using the R package WGCNA (Langfelder and Horvath,
2008). Among all the soft threshold values, we chose the β that
showed the highest mean connectivity (β = 3). As the module
Eigengenes (ME) was recognized to define the interpretation of
gene expression profile, we associated the ME with the hypoxia
feature, which showed high and low hypoxia score. Module with
the highest correlation was selected, and genes of which were
named hypoxia-related genes.

The Protein-Protein Interaction (PPI)
Network and Functional Annotation
The overlapping genes between DEGs and hypoxia-related genes
were depicted by the online Venn diagram analysis2. We used
the STRING (version 11.0, Search Tool for the Retrieval of
Interacting Genes) and Cytoscape software (version 3.7.0) to
construct the PPI network (Shannon et al., 2003; Szklarczyk et al.,
2015). Molecular Complex Detection (MCODE) was utilized to
determine the interaction clusters. The R package clusterprofile
was used to perform functional enrichment analysis and KEGG
(Kyoto Encyclopedia of Genes and Genomes) pathway analysis
(Yu et al., 2012).

Survival Analysis and Construction of the
Hypoxia-Related Signature for
Melanoma
For survival analysis, we utilized Kaplan–Meier survival.
Survival-related genes in the multivariate Cox regression analysis
were inferred using the least absolutes shrinkage and selection
operator (LASSO) by the R package glmnet. Risk scores

2http://bioinformatics.psb.ugent.be/webtools/Venn/
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FIGURE 1 | The workflow of the research.

were obtained according to genes expression multiplied by a
linear combination of regression coefficient acquired from the
multivariate Cox regression, and patients were divided into a
high-risk group and low-risk group based on the optimal cut-off
point of risk score using the R package survminer. The Kaplan–
Meier analysis and the receiver operating characteristic (ROC)
curve were carried out using the R package ROCR.

Interaction Network Between the 7-Gene
Signature and the 26-Gene Hypoxia
Signature
To investigate the association between the 7-gene signature and
the 26-gene list, genes from these two gene lists were input to
the Gene-Cloud of Biotechnology Information (GCBI) analysis
platform3 for data analysis.

3https://www.gcbi.com.cn

External Validation of the
Hypoxia-Related Signature Model
The signature model was validated using the GSE54467,
GSE53118, and GSE22153 dataset derived from the Gene
Expression Omnibus (GEO) database4. Risk scores were
calculated using the same formula, and Kaplan–Meier and ROC
curve analyses were implemented.

RESULTS

Evaluation of the Degree of Hypoxia
Hypoxia scores were distributed between −0.699 to 0.659.
A total of 368 patients were divided into high- and low-
score groups based on the optional cut-off point of hypoxia

4https://www.ncbi.nlm.nih.gov/geo
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FIGURE 2 | Distribution of hypoxia score in melanoma. (A) Distribution of hypoxia score of patients with different TNM staging. (B) Distribution of hypoxia score of
patients with different T stage. (C) Distribution of hypoxia score of patients with or without lymph node metastasis. (D) Distribution of hypoxia score of patients with
or without distant metastasis. (E) Distribution of hypoxia score of patients younger than 65 and those older than 65 years of age. (F–I) Distribution of hypoxia score
of patients with BRAF mutant and BRAF wildtype, patients with NRAS mutant and NRAS wildtype, patients with MAP2K1 mutant and MAP2K1 wildtype, and
patients with KIT mutant and KIT wildtype, respectively. (J) Patients were divided into high- and low-hypoxia score groups based on the cut-off value. Patients with a
high hypoxia score showed a better prognosis compared to patients with a low score ((P) = 0.007). (K) Heatmap of the DEGs of high-hypoxia score group vs.
low-hypoxia score group. p < 0.05, |fold change| ≥ 1.5. DEGs, differentially expressed genes.

score (0.43, Supplementary Figure S1). As shown in
Figures 2A–E, no obvious differences in hypoxia scores
were detected in patients with different clinical features.
Additionally, mutations were common in melanoma,
including BRAF (50%), NRAS (30%), MAP2K1 (6%), and
KIT (2.6%). So, we also plotted the distribution of hypoxia
scores to the status of driver mutations and found they
were not significant (P = 0.375, P = 0.100, P = 0.765,
P = 0.145, Figures 2F–I).

The effects of hypoxia on prognosis were analyzed. The
Kaplan–Meier plot suggested that patients with high hypoxia
scores had a poor prognosis (P = 0.007, Figure 2J). To further
determine the correlation of gene expression with hypoxia scores,
we did differential gene expression analysis between high and low
hypoxia scores. Of the 415 differential expression genes (DEGs),
365 genes were upregulated, while 50 genes were downregulated.
Heatmaps in Figure 2K inferred distinct gene expression profiles
of cases belong to high- vs. low-hypoxia scores.
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FIGURE 3 | Determination of modules correlated with the hypoxia of melanoma in the WGCNA. (A) Analysis of the scale-free fit index and the mean connectivity for
various soft-thresholding powers. (B) Checking the scale free topology when β = 3. Correlation coefficient = 0.9, which showed scale-free topology. (C) Dendrogram
of genes clustered according to a dissimilarity measure (1-TOM). (D) Heatmap of the correlation between module Eigengenes and hypoxia. WGCNA, the weighted
gene co-expression network analysis.

Identification of the Most Relevant
Module Genes for Hypoxia in Melanoma
We selected the top 9829 (of 19658) after sorting by
the standard deviation (Figures 3A–C). The co-expression
network was constructed, and 13 modules were determined.
Correlation analysis between the module eigengenes and
hypoxia scores showed that the yellow module (Figure 3D,
Module–trait relationships = 0.43, P = 0.000) had the highest
association with the degree of hypoxia. Then, 802 genes in the
module were considered to be hub hypoxia-related genes for
further investigation.

Protein-Protein Interactions and
Functional Enrichment Analysis
A total of 337 genes were overlapped between DEGs and hypoxia-
related genes (Figure 4A). To explore the interplay among 337
overlapping genes, the STRING tool with confidence > 0.7 was
used to construct a PPI network. There were 10 modules in the

network, including 195 nodes and 1173 edges. Modules with 10
or more nodes were selected for further analysis (Figure 4B).
Based on the connection degree, we named these modules IVL,
and FLG modules, respectively. In the IVL module, 528 edges
involving 33 nodes were formed in the network. IVL, TGM1,
LOR, SPRR1B, and PPL were the remarkable nodes, as they had
the most connections with others. In the FLG module, FLG,
DSG1, DSG3, PKP3, PKP1, KRT14, and DSC1 occupied the
center of the module.

To better understand the biological significance, we conducted
enrichment analysis of the 337 overlapping genes. As shown
in Figure 4, a total of 27 terms of biological process
(BP), 8 terms of cellular component (CC), and 14 terms of
molecular function (MF) were enriched (P < 0.05). Top GO
terms comprised epidermis development, skin development
and epidermal cell differentiation (Figure 4C), serine type
endopeptidase activity, serine type peptidase activity, and
serine hydrolase activity (Figure 4D), and cornified envelope
and cell-cell junction (Figure 4E). Besides, KEGG analysis
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FIGURE 4 | Analysis of DEGs. (A) Venn diagrams showing the number of commonly genes in DEGs and yellow module. (B) PPI networks of overlapping genes.
A large node represented a higher degree. (C–E) Go enrichment analysis of biological process (BP), molecular function (MF), and cellular component (CC). (F) KEGG
pathway enrichment analysis of the overlapping genes. DEGs, differentially expressed genes; PPI, the protein-protein interaction; GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes.

suggested overlapping genes were enriched in Staphylococcus
aureus infection, estrogen signaling pathway, and IL-17 signaling
pathway (Figure 4F).

Determination of Prognostic Molecules
and a Prognostic Risk Model
We generated Kaplan–Meier survival curves to explore the
independent prognostic impact of 337 overlapping genes and
found that 29 genes were associated with prognosis in the
log-rank test (P < 0.05). A total of 7 genes identified with
the LASSO algorithms included ATP-binding cassette sub-
family a member 12 (ABCA12), protein tyrosine kinase 6
(PTK6), fermitin family member 1 (FERMT1), gasdermin C
(GSDMC), keratin 2 (KRT2), cystatin A (CSTA), and small
proline rich protein 2F (SPRR2F), and constructed as a seven-
gene signature model (Table 1). The risk score = 0.26084 ∗
Expression (ABCA12)+ 0.05797 ∗ Expression (PTK6)+ 0.14404
∗ Expression (FERMT1)+ (−0.44473) ∗ Expression (GSDMC)+
(−0.09102) ∗ Expression (KRT2) + (−0.02677) ∗ Expression
(CSTA) + 0.11245 ∗ Expression (SPRR2F). The roles of these
7 genes in melanoma and hypoxia responses were described in

TABLE 1 | The results of Univariate Cox regression analysis.

HR Z P

ABCA12 0.564 −3.171 0.002

PTK6 0.617 −2.687 0.007

FERMT1 0.626 −2.607 0.009

GSDMC 1.547 2.419 0.02

KRT2 1.460 2.105 0.04

CSTA 1.442 2.042 0.04

SPRR2F 0.682 −1.955 0.04

HR: hazard ratio.

Table 2. Also, we explored the relationships among genes from
the 7-gene signature and 26-gene list. Although genes from the 7-
gene signature were different from those of the 26-gene one, there
were common regulators associated with hypoxic responses,
including EGFR, ERBB2, and miR-125a (Figures 5A,B, Table 3).

Kaplan–Meier curve and ROC were utilized to assess the
prognostic capacity of the seven-gene signature model, and
similar procedures were performed in the external data. The
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TABLE 2 | The roles of 7 genes in melanoma and hypoxia response.

Gene Function Role in melanoma Role in hypoxia response

ABCA12 Membrane
transport

Associated with skin malignancies including melanoma Not reported

PTK6 Protein
phosphorylation

Identified as a prognostic biomarker for metastatic skin cancers
including malignant melanoma

Up-regulated by HIF-1α and HIF-2α

FERMT1 Keratinocyte
proliferation

Not reported Down-regulated in the condition of hypoxia

GSDMC Pyroptosis Present in malignant melanoma and associated with the metastasis Not reported

KRT2 Keratinization Not reported Not reported

CSTA Keratinocyte
differentiation

Not reported Up-regulated in hypoxic cells

SPRR2F Epidermis
development

Not reported Not reported

FIGURE 5 | Interaction network of molecules associated with the genes from the 7-gene signature and the 26-gene list. (A) Interaction network of genes associated
with the 7-gene signature and the 26-gene list. Colors indicated types of genes: light blue, input genes; orange, activated genes; red, expressed genes; green,
associated genes; dark blue, inhibited genes; yellow, the largest connection counts. Node size was adjusted according to the number of associated genes.
(B) Interaction network of miRNAs correlated with the 7-gene signature and the 26-gene list. Colors indicated types of molecules: light blue, input genes; purple,
targeted miRNAs; yellow, the largest connection counts. Node size was adjusted according to the number of associated miRNAs.

TABLE 3 | Common regulators and downstream effectors.

Targeted-genes in the
7-gene signature

Targeted-genes in the
26-gene list

EGFR PTK6 ALDOA, TPI1

ERBB2 PTK6 KRT17

MiR-125a FERMT1 VEGFA, ENO1, TPI1

results showed that genes in the signature model performed well-
predicting prognosis within the TCGA cohort (Figures 6A–G).
Figures 6H–K suggested that patients with low-risk scores had

significantly longer overall survival than those with high-risk
scores in TCGA, GSE54467, GSE53118, and GSE22153 dataset
(P < 0.001, P = 0.004, P = 0.017, P = 0.048). The AUCs
were 0.716 (95% CI: 0.661–0.771), 0.667 (95% CI: 0.541–0.792),
0.648 (95% CI: 0.419–0.878), and 0.628 (95% CI: 0.406–0.849),
respectively (Figures 6H–K).

DISCUSSION

Hypoxia, one of the hallmarks of TME, is a biological
condition present in most tumors (Jing et al., 2019). Tumor
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FIGURE 6 | Kaplan–Meier analysis, risk score analysis, and ROC analysis for the seven-gene signature. (A–G) Kaplan–Meier curves for overall survival of ABCA12,
CSTA, FERMT1, GSDMC, KRT2, PTK6, and SPRR2F. (H–K) Kaplan–Meier curves for overall survival of risk score and ROC analysis for the seven-gene signature in
TCGA cohort, GSE54467, GSE53118, and GSE22153. ROC, receiver operating characteristic; TCGA, The Cancer Genome Atlas.

hypoxia exacerbates progression and metastasis through both
physiological and genomic mechanisms (Akanji et al., 2019).
Investigating crucial features of tumor hypoxia environment may
facilitate clinical decision-making.

Previous studies identified several genes, long non-coding
RNAs and miRNAs as promising therapeutic biomarkers in
melanoma (Zhang et al., 2017; Wei et al., 2019; Xu et al.,
2019). However, the differentially expressed signatures were
explored between the normal and tumor samples, or between
the primary and metastatic tissues, and molecules associated with
the progression of cancer were not taken into consideration.
Notably, the focus of our study was to estimate the degree of
hypoxia according to the evidential basis for 26-gene hypoxia
signature (Eustace et al., 2013), and high hypoxia score was
demonstrated as a strong predictor of poor clinical outcome.
Subsequently, we identified the promising hypoxia-related genes
associated with prognosis.

Based on bioinformatics methods and databases, hypoxia
score was calculated, and patients were divided into high- and
low-score groups. DEGs were collected using differential gene
expression analysis. At the same time, WGCNA analysis was
performed to select the modules with the strongest relationship
between genes in the modules and the module traits. The
overlapping 337 genes of the above two clusters were determined
as the hypoxia strongly associated genes related to melanoma.
Functional analysis showed these 337 genes to be closely related
to the development of melanoma, like via cell-cell junction.
Cell junction was reported to be relevant for the metastatic
process (Knights et al., 2012). Also, the process of epidermis
development and epidermal cell differentiation were enriched.
Previous studies showed the hyperplastic epidermal region was
accompanied by aberrant expression of keratin 14, and melanoma
cells were able to increase expression of keratins 8, 19 (Kodet
et al., 2015). keratin 8, 14,19 were also observed in the FLG
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module from PPI network. These results showed that epidermis
surrounding melanoma performed hyperplastic features, and
indicated the possible interaction between melanoma cells and
keratinocytes. KEGG analysis highlighted the estrogen signaling
pathway and the IL-17 signaling pathway. Several studies pointed
out that the estrogen signaling pathway relied on the balance
between estrogen receptor (ER) α and ERβ expression, and
the levels of ERβ regulated the capacity of melanoma invasion
(Marzagalli et al., 2016; Rajabi et al., 2017). Additionally, IL-
17/IL-17RA pathway stimulated cell proliferation of mouse
B16F10 and human A375 and A2058 cell lines (Chen et al.,
2019). IL-17 and IL-23 immunohistochemistry expression were
increased in the melanoma tissues, possibly enhancing VEGF
expression and angiogenesis (Ganzetti et al., 2015). Therefore,
these analyses supported the hypothesis of the importance of
hypoxia microenvironment in the regulation of the biological
behavior of tumor cells and surrounding non-tumor cells.

Based on the log-rank test identifying the genes associated
with prognosis, LASSO was performed, and seven characteristic
variables were extracted. ABCA12 was upregulated in ovarian
carcinoma and colorectal cancer, which was recognized as a
promising candidate marker (Hlavata et al., 2012; Elsnerova
et al., 2016). Mutations in ABCA12 were related to malignant
melanoma (Natsuga et al., 2007). PTK6, a non-receptor type
tyrosine kinase, was involved in breast, pancreatic cancer and
metastatic skin cancer. It was recognized that PTK6 regulated
proliferation and migration (Gotoh et al., 2014; Ito et al., 2017;
Liu G. et al., 2020). FERMT1, encoding Kindlin-1, was correlated
with metastasis and poor prognosis in several solid tumors
(Liu et al., 2016; Sarvi et al., 2018). GSDMC functioned as
an oncogene, enhancing cell proliferation and tumorigenesis in
lung adenocarcinoma and colorectal carcinogenesis (Miguchi
et al., 2016; Wei et al., 2020). It presented high in malignant
melanoma but undetectable in normal epithelial cells, which
might be associated with the metastasis of cells (Xia et al., 2019).
CSTA, one of the tumor suppressors, had the anti-apoptotic
effect and maintaining cell-cell adhesion. It was upregulated in
several epithelial-derived malignancies, including squamous cell
carcinoma (Gupta et al., 2015; Ma et al., 2018). KRT2 was found
to form a mechanically resilient cytoskeleton and contribute to
the skin homeostasis (Fischer et al., 2016). SPRR2F, a cross-
linked envelope protein of keratinocytes, providing the protective
barrier function (Cabral et al., 2001). Although there was no
report of KRT2 and SPRR2F as a prognostic molecule of tumors,
KRT2 and SPRR2F might function as promising biomarkers in
melanoma. The consistency of our findings regarding ABCA12,
PTK6, FERMT1, GSDMC and CSTA with previous studies
suggested our method to be reliable, and thus supported the
reliability of these potential prognostic and therapeutic targets to
a certain extent.

Previous studies inferred that the expression of PTK6 were
up-regulated, and FERMT1 were down-regulated in response
to the hypoxia condition (Hlavata et al., 2012; Regan Anderson
et al., 2013; Lin and Liu, 2019). PTK6 expression depended
on both HIF-1α and HIF-2α, which were reported to have a
direct regulation of PTK6 transcription. In the analytic process
of investigating the effect of hypoxia on the vhl-deficient cells,

HIF-regulated genes were obtained. FERMT1 was one of the 214
downregulated DEGs. Additionally, the increased expression of
CSTA was detected in hypoxic A431 cells (Park et al., 2010).
Although there was no common gene between the 7- and 26-gene
signatures, a total of 3 genes, including epidermal growth factor
receptor (EGFR), erb-b2 receptor tyrosine kinase 2 (ERBB2), and
miR-125a, were identified as common regulators and effectors in
these two gene lists in a context-dependent manner. PTK6 was
reported to enhance EGFR signaling by direct phosphorylation of
EGFR and inhibition of its degradation (Li et al., 2012), and EGFR
might promote the cellular response to hypoxia by increasing
HIF-1α expression (Swinson and O’Byrne, 2006). Through the
split ubiquitin (Ub)-based membrane yeast two-hybrid assay,
EGFR was reported to be physically associated with aldolase
(ALDOA) and triosephosphate isomerase 1 (TPI1), respectively
(Deribe et al., 2009). However, the potential functions of ALDOA
and TPI1 need to be further explored. Furthermore, ERBB2,
also known as HER2, was recognized as a regulator of HIF-
2α and a driver of hypoxic responses (Jarman et al., 2019).
PTK6 was coamplified with ERBB2 to promote cell proliferation
(Xiang et al., 2008). Additionally, ERBB2 and keratin 17 (KRT17)
were found to locate in the same chromosome region, which
might have the following tumor associations (Zhang et al., 2013).
Apart from regulating the expression of genes, hypoxia-regulated
microRNAs (miRNAs) were identified. MiR-125a was a direct
target of HIF-1α and drove the reduction of vascular endothelial
growth factor A (VEGFA) (Dai et al., 2015; Pan et al., 2018).
Based on the map of human miRNA interactome, enolase 1
(ENO1), FERMT1, and TPI1 were observed in the interaction
sites of miR-125a and further examinations were demanded
(Helwak et al., 2013).

Saxena and Jolly summarized different extents of hypoxia
(Saxena and Jolly, 2019). Under acute hypoxia, HIF-1α levels
stayed high to regulate acute response, while HIF-2α levels
were stabilized later and played a crucial role during chronic
hypoxia. Besides, cyclic hypoxia enhanced the expression
of HIF-1α instead of HIF-2α. Several factors implicated in
these hypoxia conditions were determined, including HSP-
70, HAF, H3, H4, REST, and miR-429. Although genes
identified in our study have been reported to function in
hypoxic responses, there was no report of them to make a
distinction of conditions of hypoxia, and further experimental
verification is required.

Considering the accuracy of these prognostic genes,
a seven-signature model was established based on the
combination of genes. Cases in the low-risk group inferred
obviously better survival than patients in the high-risk group.
The prognosis predictive performance of the model was
relatively good not only in the TCGA melanoma cohort but
also in the GSE54467, GSE53118, and GSE22153 cohort.
Additionally, we investigated whether the clinical features
were correlated with the degree of hypoxia, and the results
showed that no apparent differences in hypoxia score were
observed. BRAF mutation was found to increase HIF-
1α expression and influenced survival in previous studies
(Kumar et al., 2007; Zerilli et al., 2010). KIT mutant was
reported to require HIF-1α to transform melanocytes into
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melanoma cells (Monsel et al., 2010). In our cohort, the hypoxia
score in the BRAF-mutant or KIT-mutant group was slightly
higher than that of the wildtype group, but it was not statistically
significant. It could be because of an inevitable limitation, the
sample size. There were two other limitations to our study.
Firstly, data were collected from TCGA, where the potential for
selection bias could not be excluded, but we validated the results
in the GEO database and demonstrated the reliability to some
extent. Secondly, analysis in our study was descriptive, further
research in vitro and in vivo could enhance our understanding
of the critical genes.

In conclusion, we applied the hypoxia score to determine the
degree of hypoxia in TME and identified the prognostic role of
hypoxia score. Furthermore, using bioinformatics and machine
learning methods, we determined the seven-gene prognostic
signature as a potential prognostic predictor and therapeutic
targets for melanoma.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: https://www.ncbi.nlm.
nih.gov/geo/, GSE53118; https://www.ncbi.nlm.nih.gov/geo/,
GSE54467; https://www.ncbi.nlm.nih.gov/geo/, GSE22153.

AUTHOR CONTRIBUTIONS

XZ, FL, YY, and JX contributed to the design of this study. YS, LY,
and YY contributed to the analysis of this study. YS contributed to
drafting the text and preparing the tables and figures. All authors
participated in the data collection, critical review, revision of
this manuscript, contributed to the article, and approved the
submitted version.

FUNDING

This research is supported by a grant from The National Natural
Science Foundation of China (81673060).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2020.570530/full#supplementary-material

Supplementary Figure 1 | The process of finding optimal cut-off value to divide
the patients into high- and low-hypoxia score groups.

REFERENCES
Akanji, M. A., Rotimi, D., and Adeyemi, O. S. (2019). Hypoxia-inducible factors as

an alternative source of treatment strategy for cancer. Oxid. Med. Cell Longev.
2019:8547846. doi: 10.1155/2019/8547846

Al Tameemi, W., Dale, T. P., Al-Jumaily, R. M. K., and Forsyth, N. R. (2019).
Hypoxia-modified cancer cell metabolism. Front. Cell Dev. Biol. 7:4. doi: 10.
3389/fcell.2019.00004

Brandner, J. M., and Haass, N. K. (2013). Melanoma’s connections to
the tumour microenvironment. Pathology 45, 443–452. doi: 10.1097/PAT.
0b013e328363b3bd

Brooks, J. M., Menezes, A. N., Ibrahim, M., Archer, L., Lal, N., Bagnall, C. J., et al.
(2019). Development and Validation of a Combined Hypoxia and Immune
Prognostic Classifier for Head and Neck Cancer. Clin. Cancer Res. 25, 5315–
5328. doi: 10.1158/1078-0432.Ccr-18-3314

Cabral, A., Voskamp, P., Cleton-Jansen, A.-M., South, A., Nizetic, D., and
Backendorf, C. (2001). Structural Organization and Regulation of the Small
Proline-rich Family of Cornified Envelope Precursors Suggest a Role in
Adaptive Barrier Function. J. Biol. Chem. 276, 19231–19237. doi: 10.1074/jbc.
M100336200

Chen, Y.-S., Huang, T.-H., Liu, C.-L., Chen, H.-S., Lee, M.-H., Chen, H.-W., et al.
(2019). Locally Targeting the IL-17/IL-17RA Axis Reduced Tumor Growth
in a Murine B16F10 Melanoma Model. Hum. Gene Ther. 30, 273–285. doi:
10.1089/hum.2018.104

Dai, J., Wang, J., Yang, L., Xiao, Y., and Ruan, Q. (2015). miR-125a regulates
angiogenesis of gastric cancer by targeting vascular endothelial growth factor
A. Int. J. Oncol. 47, 1801–1810. doi: 10.3892/ijo.2015.3171

Deribe, Y. L., Wild, P., Chandrashaker, A., Curak, J., Schmidt, M. H. H., Kalaidzidis,
Y., et al. (2009). Regulation of epidermal growth factor receptor trafficking
by lysine deacetylase HDAC6. Sci. Signal 2:ra84. doi: 10.1126/scisignal.20
00576

Domingues, B., Lopes, J. M., Soares, P., and Populo, H. (2018). Melanoma
treatment in review. Immunotargets Ther. 7, 35–49. doi: 10.2147/ITT.S134842

Elsnerova, K., Mohelnikova-Duchonova, B., Cerovska, E., Ehrlichova, M., Gut, I.,
Rob, L., et al. (2016). Gene expression of membrane transporters: importance

for prognosis and progression of ovarian carcinoma. Oncol Rep. 35, 2159–2170.
doi: 10.3892/or.2016.4599

Eustace, A., Mani, N., Span, P. N., Irlam, J. J., Taylor, J., Betts, G. N. J., et al. (2013). A
26-Gene Hypoxia Signature Predicts Benefit from Hypoxia-Modifying Therapy
in Laryngeal Cancer but Not Bladder Cancer. Clin. Cancer Res. 19, 4879–4888.
doi: 10.1158/1078-0432.Ccr-13-0542

Fischer, H., Langbein, L., Reichelt, J., Buchberger, M., Tschachler, E., and Eckhart, L.
(2016). Keratins K2 and K10 are essential for the epidermal integrity of plantar
skin. J. Dermatol. Sci. 81, 10–16. doi: 10.1016/j.jdermsci.2015.10.008

Ganzetti, G., Rubini, C., Campanati, A., Zizzi, A., Molinelli, E., Rosa, L., et al.
(2015). IL-17, IL-23, and p73 expression in cutaneous melanoma: a pilot study.
Melanoma Res. 25, 232–238. doi: 10.1097/CMR.0000000000000151

Gotoh, N., Ono, H., Basson, M. D., and Ito, H. (2014). PTK6 promotes cancer
migration and invasion in pancreatic cancer cells dependent on ERK signaling.
PLoS One 9:e96060. doi: 10.1371/journal.pone.0096060

Gupta, A., Nitoiu, D., Brennan-Crispi, D., Addya, S., Riobo, N. A., Kelsell, D. P.,
et al. (2015). Cell cycle- and cancer-associated gene networks activated by Dsg2:
evidence of cystatin A deregulation and a potential role in cell-cell adhesion.
PLoS One 10:e0120091. doi: 10.1371/journal.pone.0120091

Hallberg, Ö, and Johansson, O. (2013). Increasing Melanoma—Too Many Skin
Cell Damages or Too Few Repairs? Cancers 5, 184–204. doi: 10.3390/
cancers5010184

Hänzelmann, S., Castelo, R., and Guinney, J. (2013). GSVA: gene set variation
analysis for microarray and RNA-seq data. BMC Bioinformatics 14:7. doi: 10.
1186/1471-2105-14-17

Helwak, A., Kudla, G., Dudnakova, T., and Tollervey, D. (2013). Mapping the
Human miRNA Interactome by CLASH reveals frequent noncanonical binding.
Cell 153, 654–665. doi: 10.1016/j.cell.2013.03.043

Hlavata, I., Mohelnikova-Duchonova, B., Vaclavikova, R., Liska, V., Pitule, P.,
Novak, P., et al. (2012). The role of ABC transporters in progression and clinical
outcome of colorectal cancer. Mutagenesis 27, 187–196. doi: 10.1093/mutage/
ger075

Ito, K., Park, S. H., Katsyv, I., Zhang, W., De Angelis, C., Schiff, R., et al. (2017).
PTK6 regulates growth and survival of endocrine therapy-resistant ER+ breast
cancer cells. npj Breast Cancer 3, 1–7. doi: 10.1038/s41523-017-0047-41

Frontiers in Genetics | www.frontiersin.org 10 September 2020 | Volume 11 | Article 570530

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/articles/10.3389/fgene.2020.570530/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2020.570530/full#supplementary-material
https://doi.org/10.1155/2019/8547846
https://doi.org/10.3389/fcell.2019.00004
https://doi.org/10.3389/fcell.2019.00004
https://doi.org/10.1097/PAT.0b013e328363b3bd
https://doi.org/10.1097/PAT.0b013e328363b3bd
https://doi.org/10.1158/1078-0432.Ccr-18-3314
https://doi.org/10.1074/jbc.M100336200
https://doi.org/10.1074/jbc.M100336200
https://doi.org/10.1089/hum.2018.104
https://doi.org/10.1089/hum.2018.104
https://doi.org/10.3892/ijo.2015.3171
https://doi.org/10.1126/scisignal.2000576
https://doi.org/10.1126/scisignal.2000576
https://doi.org/10.2147/ITT.S134842
https://doi.org/10.3892/or.2016.4599
https://doi.org/10.1158/1078-0432.Ccr-13-0542
https://doi.org/10.1016/j.jdermsci.2015.10.008
https://doi.org/10.1097/CMR.0000000000000151
https://doi.org/10.1371/journal.pone.0096060
https://doi.org/10.1371/journal.pone.0120091
https://doi.org/10.3390/cancers5010184
https://doi.org/10.3390/cancers5010184
https://doi.org/10.1186/1471-2105-14-17
https://doi.org/10.1186/1471-2105-14-17
https://doi.org/10.1016/j.cell.2013.03.043
https://doi.org/10.1093/mutage/ger075
https://doi.org/10.1093/mutage/ger075
https://doi.org/10.1038/s41523-017-0047-41
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-570530 September 26, 2020 Time: 19:2 # 11

Shou et al. Identification of Hypoxia-Related Signatures

Jarman, E. J., Ward, C., Turnbull, A. K., Martinez-Perez, C., Meehan, J.,
Xintaropoulou, C., et al. (2019). HER2 regulates HIF-2α and drives an increased
hypoxic response in breast cancer. Breast Cancer Res. 21:10. doi: 10.1186/
s13058-019-1097-1090

Jing, X., Yang, F., Shao, C., Wei, K., Xie, M., Shen, H., et al. (2019). Role of hypoxia
in cancer therapy by regulating the tumor microenvironment. Mol. Cancer
18:157. doi: 10.1186/s12943-019-1089-1089

Khan, R. H., Ahmad, Y., Sharma, N. K., Garg, I., Ahmad, M. F., Sharma, M., et al.
(2013). An Insight into the Changes in Human Plasma Proteome on Adaptation
to Hypobaric Hypoxia. PLoS One 8:e67548. doi: 10.1371/journal.pone.00
67548

Knights, A. J., Funnell, A. P., Crossley, M., and Pearson, R. C. (2012). Holding tight:
cell junctions and cancer spread. Trends Cancer Res 8, 61–69.
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