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Abstract  Primary bile acids were reported to augment secretion of chemokine (C—X—C motif) ligand
16 (CXCL16) from liver sinusoidal endothelial cells (LSECs) and trigger natural killer T (NKT) cell-
based immunotherapy for liver cancer. However, abundant expression of receptors for primary bile acids
across the gastrointestinal tract overwhelms the possibility of using agonists against these receptors for
liver cancer control. Taking advantage of the intrinsic property of LSECs in capturing circulating nano-
particles in the circulation, we proposed a strategy using nanoemulsion-loaded obeticholic acid (OCA), a
clinically approved selective farnesoid X receptor (FXR) agonist, for precisely manipulating LSECs for
triggering NKT cell-mediated liver cancer immunotherapy. The OCA-nanoemulsion (OCA-NE) was pre-
pared via ultrasonic emulsification method, with a diameter of 184 nm and good stability. /n vivo bio-
distribution studies confirmed that the injected OCA-NE mainly accumulated in the liver and
especially in LSECs and Kupffer cells. As a result, OCA-NE treatment significantly suppressed hepatic
tumor growth in a murine orthotopic H22 tumor model, which performed much better than oral medica-
tion of free OCA. Immunologic analysis revealed that the OCA-NE resulted in augmented secretion of
CXCL16 and IFN-v, as well as increased NKT cell populations inside the tumor. Overall, our research
provides a new evidence for the antitumor effect of receptors for primary bile acids, and should inspire

using nanotechnology for precisely manipulating LSECs for liver cancer therapy

© 2020 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical
Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Primary liver cancer is the sixth most common cancer and ranked
the fourth major leading cause of cancer-related death worldwide
in 2018". With about 840,000 new cases and 780,000 deaths per
year, China accounts for over 50% of all the cases™. Hepato-
cellular carcinoma (HCC) comprises approximately 80%—90% of
primary liver cancer cases®. Surgery is the primary therapeutic
option for early-stage HCC, however, early-stage HCC only ac-
counts for 5%—10% of all HCC cases™°. For intermediate and
advanced stage HCC, due to the existence of local or portal vein
invasion at the time of diagnosis, the 5-year survival rate drops
dramatically to only 11% and 3%, respectively’. Transarterial
chemoembolization (TACE) and sorafenib are standard clinical
therapeutic options against intermediate and advanced stage
HCC™'°. While overcoming the defects of systemic chemo-
therapy, TACE could stimulate revascularisation and promote
metastasis by aggravating tumor hypoxia and upregulating the
expression of vascular endothelial growth factor (VEGF)''. Sor-
afenib was approved by the U.S. Food and Drug Administration
(FDA) for the treatment of unresectable HCC in 2007, however,
the overall outcomes of sorafenib are far from satisfactory. Sor-
afenib prolonged the median overall survival time and radiological
progression of HCC patients by only 3—5 months'*'?. Moreover,
the use of sorafenib has been hampered by serious adverse side
effects, primary and acquired resistance'.

Cancer immunotherapy, which could trigger the robust sys-
temic antitumor immunity, present significant advantages for
cancer therapy over the past several years'®'. Liver is a periph-
eral immune organ that is heavily populated by innate and adap-
tive immune cells'®. Therefore, there are great interests in
mobilizing the immune cells for liver cancer control'’. Recently,
programmed death-1 antibodies nivolumab and camrelizumab
were approved to treat advanced HCC previously treated with
sorafenib'®'® announcing the success of immunotherapy in liver
cancer therapy. Besides T cells, liver differences from other organs

in that liver lymphocytes are enriched with natural killer (NK)
cells and natural killer T (NKT) cells. Specially, NKT cell is a
subset of lymphocytes at the interface between innate and adaptive
immunity. NKT cells make up 20%—35% and 10%—15% of liver
lymphocytes in mouse and human, respectively”’. NKT cell was
demonstrated to actively protect the liver and contributes to
antitumor activity and immunity via tumor-related cytokines in the
liver’'. Therefore, mobilizing the antitumor immunity of NKT
cells in the liver is an attractive research direction for liver cancer
management.

The gut-liver axis regulates the metabolism and immune ho-
meostasis in both the gut and the liver’. Plenty of studies prove
that various metabolites, hormones, and bacterial products trans-
ported through the portal vein from the gut to the liver have direct
influence on the progress of liver diseases as well as the liver
cancer’>**. Recently, Ma et al.> reported that the gut-recovered
bile acid had direct influence on the NKT cell recruitment into
the liver. Specifically, primary bile acids augment secretion of
chemokine (C—X—C motif) ligand 16 (CXCL16) from liver si-
nusoidal endothelial cells (LSECs) and trigger robust NKT cell-
based immunotherapy for liver cancer through the recruitment
of NKT cells to the liver; while secondary bile acids function on
the opposite way. This study reveals the gut microbiota uses bile
acids as messengers to mediate the antitumor immunity in the
liver, and provides possible implications for interfering the gut—
liver bile acid pathway for liver cancer immunotherapy.

Liver-derived primary bile acids are transformed into second-
ary bile acids in the gut by microbiota through deconjugation and
dehydroxylation reaction’®. While direct manipulating the gut
microbiota is complicated, using selective agonists against re-
ceptors for primary bile acids or antagonists against receptors for
secondary bile acids may bypass the microbiota and directly target
LSECs for recruiting NKT cells into the liver. Antagonists against
receptors for secondary bile acid are seldom and not available for
clinical application at present. Currently, there are many receptor
agonists for primary bile acid on the market. Among them,
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obeticholic acid (OCA) was reported to have high activity over
others in interacting with the farnesoid-X receptor (FXR), and has
been approved by FDA and European Agency for the Evaluation
of Medicinal Products (EMEA) as an orphan drug for the therapy
of primary biliary cholangitis (PBC)?’. However, due to the
abundant expression of FXRs in the gastrointestinal tract, direct
usage of OCA results in low availability to the liver, while high
dosing of OCA could result in high incidence of severe adverse
effects, which is dose-dependent®®. In September 2017, FDA is-
sued a warning for patients treated with OCA. Inappropriately
high dosing of OCA results in serious liver injury and death.
LSECs have been validated as the major source of CXCL16 in the
liver after stimulating with primary bile acids®. Interestingly,
LSECs together with Kupfter cells constitutes the major cells in
the liver for capturing and clearing nanoparticles from the blood
circulation®'. This intrinsic property makes delivery of OCA with
a nanoapproach an ideal way for precise manipulating LSECs for
recruiting NKT cells and inhibiting tumor growth in the liver’”.
Given this background, we tested a nanoemulsion (NE) formula-
tion of OCA for triggering NKT cell-based immunotherapy for
liver cancer in this study (Scheme 1).

2. Material and methods

2.1.  Chemicals and reagents

Obeticholic acid (OCA) was bought from Chemlin Chemical In-
dustry Co., Ltd. (Nanjing, China). Lecithin was purchased from
TCI (Tokyo, Japan). Poloxamer 188 solution (Pluronic® F-68
solution) was bought from Sigma—Aldrich (St. Louis, MO, USA).
IFN-y and CXCL16 ELISA kit were purchased from Anrc Bio.
Tech. (Tianjin, China). 1,1’-Dioctadecyl-3,3,3’,3'-tetramethy-
lindodicarbocyanine perchlorate (DiD) was obtained from Solar-
bio Science & Technology Co., Ltd. (Beijing, China). Antibodies
(Supporting Information Table S1) were bought from BD Bio-
sciences (Franklin Lakes, NJ, USA) and BioLegend (San Diego,
CA, USA).

2.2.  Preparation and characterization of NE

Blank NE or NE loaded with OCA or DiD were prepared by an
ultrasonic emulsification method. In brief, 20 mg OCA or 0.2 mg
DiD was dissolved in 200 pL dimethyl sulfoxide (DMSO), which
was then added with 250 pL olive oil and 100 mg lecithin from
soybean. The mixture was stirred for 3 min at room temperature.
Next, 1 mL pluronic® F-68 solution was slowly added into the
above mixture with a gentle stirring and continually stirred for
20 min. The mixture was then emulsified by probe sonication
(350 W) for 20 min on ice bath to produce NE. Next, the NE was
diluted with Milli-Q water (Milli-Q Advantage, MA, USA) to
liquid with a final concentration.

2.3.  Invitro drug release

The in vitro release profiles of OCA from OCA-NE were tested
using dialysis tube. 5 mL OCA-NE solution (1.1 mg/mL) were
added to dialysis tubes (MWCO 7000 Da). Then the dialysis tubes
were transferred into 40 mL phosphate buffered saline (PBS)
solution (pH 7.4 and 6.5) with 0.2% (w/v) Tween 80. The dialysis
tubes were placed into a 37 °C shaking box (100 rpm, HZQ-X100,
Harbin, China) in dark for 48 h. At predetermined time points

0.5, 2, 4, 6, 8, 12, 24 and 48 h), 4 mL release solution was
collected and replaced with 4 mL same fresh buffer. The OCA
concentrations were determined by high-performance liquid
chromatography (HPLC, PerkinElmer Flexar™, Waltham, MA,
USA). The HPLC equipped with an InertSustain C18 column
(250 mm x 4.6 mm x 5 um, 5020-07346), and the mobile phase
consisted of water and acetonitrile (20:80; flow rate: 1 mL/min;
wavelength: 195 nm).

2.4. Cell lines and animals

The mouse hepatic cancer cell line, H22 were obtained from the
BeNa Culture Collection (Beijing, China). Mouse 3T3 fibroblasts
were bought from the BeNa Culture Collection (Beijing, China).
Mouse 3T3 fibroblasts were cultured with Dulbecco’s modified
Eagle’s medium (DMEM), which contains 10% fetal bovine
serum (FBS), 50 U/mL penicillin and 50 U/mL streptomycin, and
incubated at 37 °C in an atmosphere of 5% CO,.

Healthy BALB/c mice (female, 8 weeks old, 18-20 g),
Kunming mice (KM mice, female, 8 weeks old, 20—25 g) and SD
rats (female, 7 weeks old, 200220 g) were bought from Beijing
Vital River Laboratory Animal Technology Co., Ltd. (Beijing,
China). All mice were separately raised and used according to the
guidelines on Laboratory Animals of Jilin University (Jilin,
China). Animal room were kept on constant temperature (20—
22 °C) and relative humidity (55%).

For H22 orthotopic liver cancer model establishment, healthy
female BALB/c mice were narcotized routinely with isoflurane
and fixed on an operation table. The abdominal skin was dis-
infected with complexing iodophors, and a 1 cm incision was
made in the middle of abdomen to expose liver. H22 cells obtained
from the ascites of KM mice were washed with PBS and diluted
into a concentration of 2 x 107 cells/mL, and 5 x 10° cells
(25 pL) were slowly injected into the left lobe of the liver, and
syringe pinhole was coagulated with electrotome immediately to
prevent tumor cells from leaking into the abdominal cavity. In the
end, the small incision was sewn up with 5-0 silk line and dis-
infected with 75% ethanol. The mice were kept warm and
monitored carefully until conscious.

2.5.  Cytotoxicity assay in vitro

The cytotoxicity of OCA and OCA-NE were determined by MTT
assay. The mouse H22 cells or 3T3 fibroblast were seeded in the
96-well plates (8000 cells per well) and cultured overnight with
180 uL. RPMI 1640 or DMEM, then 20 pL. PBS with scheduled
concentration of free OCA and OCA-NE (0.001-100 pg/mL)
were added and incubated for another 24 or 48 h. At determined
time points, 20 pL. MTT reagents were added into the plates
followed by 4 h incubation. The absorbance was determined using
a microplate reader at 490 nm. The cell viability (%) was dis-
played as the percentage of treated cells versus untreated control
cells.

2.6.  Pharmacokinetics study

For the pharmacokinetic study, healthy female SD rats (average
weight 200 g, 4 mice/group) received OCA-NE (20 mg/kg i.v.) or
free OCA (20 mg/kg p.o.). Approximately 300 pL of blood
samples were collected from orbit sinus at pre-established in-
tervals during 24 h (0.5, 1, 2, 4, 6, 8, 12, and 24 h). The blood
samples were centrifuged at 4 °C to obtain supernatant plasma,
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and equal volumes of 1 mol/L hydrochloric acid and 1.2 mol/L
disodium hydrogen phosphate were added to each sample. Then
the samples were centrifuged at 4 °C and the supernatant was
collected and filtered through 0.22 pm filters for HPLC analysis.
The pharmacokinetic data was analysed by Data and max Statis-
tics (DAS, Shanghai, China).

2.7.  Invivo and cellular biodistribution of OCA-NE

150 pL of DiD-encapsulated NE (67 pg/mL, representing OCA-
NE) were intravenously injected into healthy female BALB/c
mice via tail vein. After 4 or 24 h, mice were sacrificed and
immediately received cardiac perfusion with PBS and their major
organs were collected. The fluorescence imaging of major organs
was conducted to investigate in vivo biodistribution of OCA-NE.

To analyze the distribution of DiD-NE at cellular level, the
perfused liver processed into single cell suspensions 4 h after
injection of OCA-NE. Then extracted single cell suspensions were
stained with fluorophore-conjugated antibodies and then detected
by flow cytometry. The single liver cells were identified according
to the following markers: hepatocytes (large CD146™~ F4/80™
cells), LSECs (CD146™% F4/80~ cells), Kupffer cells (CD146™
F4/807 cells), and other liver cells (small CD146~ F4/80~ cells)
including HSCs, B cells, and others.

2.8.  Biodistribution study in tumor-bearing mice

The in vivo biodistribution of OCA-NE and OCA in the liver
tissue and the orthotopic tumor were assessed in H22 tumor-
bearing mice. Female H22 tumor-bearing BALB/c mice (female,
8 weeks old, 18-20 g, 7 days after tumor inoculation) received
OCA-NE (20 mg/kg, i.v.) or OCA (20 mg/kg, p.o.). The liver
tissues and tumors were excised at predetermined time points (4
and 24 h), accurately weighed and grind into pieces. The tissue
debris was treated with 1 mol/L hydrochloric acid and 1.2 mol/L
disodium hydrogen phosphate. Finally, the obtain supernatant was
detected by HPLC.

2.9.  Murine orthotopic H22 liver cancer therapy

At three days after tumor inoculation, the mice were divided
randomly into four groups, and treated with PBS (i.v.), OCA
(20 mg/kg, p.o.), blank NE (i.v.), OCA-NE (20 mg/kg, OCA
equivalent, i.v.). The treatment schedule was three times per week
for 2 weeks. The tumor and liver weight were dissected and
recorded at the end of the experiment. Tumor suppression rate
(TSR, %) was calculated as following Eq. (1):

TSR (%) = [(4.— 4,) /4] x 100 (1)

where A, and A, represented the average weight of tumors in the
control (PBS) and the treatment (OCA, NE or OCA-NE) groups.

2.10.  Serum biochemical parameters

Peripheral blood was collected from mice after 2-week of treat-
ment. The concentration of alanine transaminase (ATL) and
aspartate transaminase (AST) and the of blood urea nitrogen
(BUN) and creatinine (CRE) in the serum were determined with
kits according to the instructions and compared.

2.11. Histological analysis

Mice were euthanatized at the end of observation. The excised
liver tumors were fixed in 4% paraformaldehyde solution,
embedded in paraffin and sliced at 5 um thickness. Then, slices
were stained with hematoxylin and eosin (H&E) to examine pa-
thology. Histological photos were observed by light microscopy
(IX71, Olympus, Tokyo, Japan).

2.12.  Flow cytometry analysis

Tumors and spleens were harvested at the end of the experiment.
The tumors were cut into small pieces and homogenized with
RPMI 1640 containing collagenase IV. Then the supernatant from
the digested tumor tissues were collected, filtered, centrifuged and
resuspended. The spleen was mechanically grinded, filtered and
resuspended in RPMI 1640. Red blood cell lysis buffer was used
to lyse erythrocytes. Finally, cell suspensions were stained with
the fluorophore-conjugated antibodies, and flow cytometry anal-
ysis was performed on a BD FACS Celesta flow cytometer (BD
Biosciences).

2.13.  Cytokine analysis

Peripheral blood and tumor were collected from mice after 2-week
of treatment. Tumor tissue (~ 100 mg) was excised and homog-
enized in protein extraction buffer containing protease inhibitor
(1 pg/mL). Concentrations of IFN-y and CXCL16 in serum and
tumor tissues were then determined by ELISA kit according to the
manufacturer’s directions. Cytokine concentrations in serum and
tumor tissues were presented as pg/mL or pg/g of protein,
respectively.

2.14.  Statistical analysis

Two-tailed unpaired Student’s 7-test was conducted for compari-
son of 2 treated groups. All results were presented as the
mean + SEM (standard error of mean)/SD (standard deviation).
Significance difference is considered when P < 0.05 (*P < 0.05,
P < 0.01, **P < 0.001, ****P < 0.0001).

3. Results and discussion

3.1.  Preparation and characterization of OCA-NE

OCA-NE were prepared via an ultrasonic emulsification method
according to the methods reported in literatures with minor
modifications (Fig. 1A)*-*. As shown in Fig. 1B, DLS results
show that the prepared OCA-NE had uniform size distribution
with an average diameter of approximately 184 nm. Typical TEM
image indicate that spherical emulsion droplets are formed and the
average size was about 200 nm in the dehydrated condition
(Fig. 1C), which is in accordance with that obtained from the DLS
results. Then the storage stability of the OCA-NE was evaluated.
Fresh OCA-NE were tightly sealed and stored for 30 days at 4-
degree-Celsius refrigerator. No visible changes in mean diameter
and morphology were observed compared with the original fresh
formulations (Fig. 1D and E). In addition, no phase separation nor
drug precipitation was seen during the observation period. These
results validate that OCA-NE were successfully prepared with
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(D) and (E) Hydrodynamic diameters as measured by DLS and representative TEM image and photo of OCA-NE after storage for 1 month; scale

bar = 200 nm.

small droplet size (184 nm), uniform size distribution and good
stability.

3.2.  Invitro drug release

In vitro release profiles of OCA from OCA-NE were studied in
different PBS solution (pH 7.4 and 6.5). The different PBS solu-
tions were used to represent the normal blood environment (pH
7.4) and tumor extracellular fluid environment (pH 6.5). As shown
in Supporting Information Fig. S1, the OCA cumulative release
within 24 h at pH 6.5 and 7.4 were 87.2% and 64.8%, respectively.
After 48 h of incubation, the release of OCA-NE at pH 6.5 and 7.4
were 93.7% and 73.2%, respectively. The release rate at pH 6.5 is
faster than that at pH 7.4, which may be attributed to the less
stability of NE at acidic conditions.

3.3.  Invitro cytotoxicity

Firstly, the cytotoxicity of free OCA and OCA-NE to normal cells
was assessed in mouse 3T3 fibroblasts. As shown in Fig. 2A, after
incubation for 24 and 48 h, no obvious cytotoxicity was observed
even at OCA concentrations of 100 pg/mL. Then the cytotoxicity
of the free OCA and OCA-NE were evaluated in H22 tumor cells.
MTT assay shows that OCA and OCA-NE decreased the rate of

cell proliferation at a high dosage, as compared to the corre-
sponding control (Fig. 2B). The cytotoxicity of OCA or OCA-NE
to H22 cells was dose- and time-dependent. The ICsy of OCA and
OCA-NE to H22 cells at 24 and 48 h are 41.1, 68.3 and 8.9,
4.0 pg/mL, respectively. The mild toxicity of OCA and OCA-NE
to H22 cells is similar to previous reports®>°. The mechanism in
the cytotoxicity of OCA to tumor cells is mainly attributed to
interfere with IL-6/Janus kinase 2 (Jak-2)/signal transducer and
activator of transcription 3 (STAT3) signalling pathway>”.

3.4.  Pharmacokinetics study

The pharmacokinetics studies of free OCA (p.o.) and OCA-NE (i.v.)
were performed in SD rats. As expected, free OCA showed much
lower absorption and higher clearance from blood circulation in vivo
(Fig. 3). In contrast, the designed OCA-NE showed higher bioavail-
ability and extend the blood circulation time (¢;, = 17.5 + 2.3 h)
compared with free OCA (t1, = 7.6 £ 1.4 h). As shown in Supporting
Information Table S2, the AUC,, of the OCA-NE in 24 h is
7634 + 658 pg/mL-h, while the AUC,, of free OCA is
3879 £ 259 pg/mL-h. These results evidence that OCA-NE
possessed longer half-life and superior bioavailability compared
with free OCA.
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3.5.  Invivo and cellular biodistribution of OCA-NE

DiD labeling is widely-applied in nanoparticle biodistribution
studies owing to the slow release rate of DiD from the nano-
particle®”. Furthermore, DiD could avoid overlap with endogenous
liver-tissue autofluorescence. Thus, DiD was used to assess the
in vivo biodistribution of the applied NE. The DiD-NE was pre-
pared following a method exactly the same to the OCA-NE, and
the obtained NE showed a similar diameter with OCA-NE (Sup-
porting Information Fig. S2). At 4 and 24 h after injection, major
organs were excised and fluorescence imaging was conducted in
tumor free BALB/c mice (Fig. 4A). Quantitative analysis of the
DiD fluorescence intensity was conducted for determining the NE
distribution in different tissues. As shown in Fig. 4B and C, DiD-
NE displays dominant accumulation in liver over other organs.
This is in accordance with common views that liver is the major
organ with profound reticuloendothelial system for capturing and
clearing nanoparticles from the blood circulation®®. Furthermore,
we excised the liver and analyzed the distribution of DiD-NE at
cellular level. Hepatocytes, LSECs, Kupffer cells, and HSCs ac-
count for 57%, 23.2%, 15%, 1.8% of the total cells in liver,
respectively’”*. LSECs line the sinusoidal capillary channels of
the liver and are the most abundant non-parenchymal hepatic cell
population. Specially, together with Kupffer cells, LSECs consti-
tute the most powerful scavenger system for clearing virus parti-
cles or nanoparticles from the circulation*'***. Then, we examined
the NE distribution by major liver cells with flow cytometry
(Gating strategy shown in Supporting Information Fig. S3). As
shown in Fig. 4D, approximately 82% of LSECs and 88% of

Kupffer cells are DiD-positive, whereas only a small percentage of
hepatocytes and other cells in liver are DiD positive. The bio-
distribution and the cellular distribution results clearly show that
LSECs is a major target for the i.v.-injected NE, and thus provide
the rationale using nanoapproach for precisely manipulating
LSECs for liver disease therapy.

3.6.  Biodistribution study in tumor-bearing mice

The in vivo biodistribution of OCA-NE and OCA in liver tissue
and the orthotopic tumor were also assessed. Female BALB/c
mice received OCA-NE (20 mg/kg i.v.) or OCA (20 mg/kg p.o.).

—— OCA-NE i.v.
-+ OCA p.o.

100

OCA concentration (ug/mL)

Time (h)

Figure 3  Plasma concentration—time profiles in SD rats treated
with free OCA (p.o.) and OCA-NE (i.v.) at a dose of 20 mg/kg. Data
are mean = SD (n = 4).
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The vital organs were perfused and collected at 4 and 24 h for IVIS after i.v. injections of DiD-NE. The livers collected at 4h were also analyzed

with flow cytometry to investigate the relative NE uptake by major liver cells. (B) Representative fluorescence images of vital organs captured at 4
and 24 h after i.v. injections of DiD-NE. (C) Fluorescence intensity of vital organs at 4 and 24 h. Data were presented as the mean + SEM
(n = 3). (D) Percentage of cells that internalized NE (DiDY) within hepatocytes, endothelial cells, Kupffer cells, and other cells at 4 h after
injection. Data were presented as the mean &= SEM (n = 8); ****P < 0.0001.

The normal liver tissues and tumors were excised at pre-
determined time points (4 and 24 h). Then quantitative analysis of
the OCA concentration was performed with HPLC for deter-
mining the OCA concentration in the liver and tumor. As shown in
Supporting Information Fig. S4, the concentration of OCA in the
OCA-NE group is higher than that in the free OCA group in both
liver and tumor tissues. In addition, the overall concentration in
liver tissues is higher than that in the tumor tissues in the OCA-NE
group, suggesting the injected OCA-NE was mainly captured in
the liver tissue cells.

3.7. Invivo anti-tumor efficacy of OCA-NE

The anti-tumor efficacy of OCA-NE was determined on orthotopic
HCC mice model which was more clinically relevant">**. The
orthotopic liver cancer model was established by directly injecting
5 x 10° H22 cells into the liver of BALB/c mice. Three days post
tumor inoculation, mice were divided randomly into four groups: (a)
PBS (i.v.), (b) OCA 20 mg/kg (p.o.), (c) NE (i.v.), (d) OCA-NE
20 mg/kg (i.v., Fig. 5A). At the end of the experiment, mice liver
was excised, tumor and liver weight were recorded, and the tumor/
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Figure 5  Tumor inhibition study of OCA-NE in orthotopic H22 mice model. (A) Treatment scheme. Mice were sacrificed on day 17 after
indicated treatments. d represent for day. (B) Representative photos of livers after receiving PBS (i.v.), NE (i.v.), OCA (p.o.) and OCA-NE (i.v.)
treatment. The livers were harvested at the end of experiment. The tumors were outlined with black dotted line. H represent hepatocytes, T
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images of tumor sections of different group. The scale bar represents 50 pm. The tumors were outlined with white dotted line. (E)Tumor weight
variations of each treatment group over time. Data represent mean = SEM (n = 6). (F)Serum levels of aspartate aminotransferase (AST), alanine
aminotransferase (ALT), blood urea nitrogen (BUN) and creatinine (CRE) in mice after treatment and normal mice. Data are shown as
mean &= SEM (n = 3 for normal group, n = 4 for NE, OCA and OA-NE group). "P>0.05, *P < 0.05, **P < 0.01, ***P < 0.001.
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*p <001, **P < 0.001.

liver weight ratio was also calculated. As shown in Fig. 5B and C,
OCA-NE group had the lighter tumor and liver weight than free OCA
group. In addition, the livers of OCA-NE group had the smallest
tumor percentage compared with other groups. Furthermore, the
tumor suppression rate (TSR%) was 68% in mice on the OCA-NE
treatment, which was notably higher than that in free OCA group
(30%, P < 0.05). These results reveal that OCA-NE presents
remarkable antitumor efficacy as compared to the free OCA group.

The antitumor effect was further confirmed by histological
analysis at the end of the experiment. The liver tumors were collected
and stained with H&E for pathology analysis. As shown in Fig. 5D,
untreated and free OCA-treated liver tumor exhibite large nuclei and
more chromatin. However, normal and clear hepatic cell morphology
were observed in pathological section of OCA-NE treated group, and
the chromatin of tumors was concentrated and pyknotic or absent
outside the cellular, indicating that OCA-NE treatment group showed
better antitumor efficacy compared with free OCA drug. Mice body
weight changes were recorded as a surrogate for the adverse effects of
the drugs. In the first 7 days after drug administration, no serve body
weight loss (>10%) was observed in mice (Fig. 5E). To further
visualize the in vivo safety of OCA-NE, blood biochemical param-
eters were examined after 2-weeks of treatment. Owing to the acute
hepatic injury and kidney injury caused by tumor lesions, serum AST,
BUN, and CRE levels were significantly increased in the H22-
bearing mice in the PBS group compared with normal mice
(Fig. 5F). Mice receiving OCA-NE treatment showed significantly

decreased activities of serum AST, BUN, and CRE levels compared
with other treated groups, which might be attributed to reducing
tumor burden efficiently after OCA-NE treatment. Theses safety
investigations evidenced that the designed OCA-NE was safe and
could improve liver and renal function in H22 tumor-bearing mice. In
summary, our experimental results confirmed the antitumor effect of
OCA against HCC in vivo and that precise and ‘targeted’ delivery of
OCA through nanoapproach is necessary in treating orthotopic HCC-
bearing mice at a safe and effective therapeutic dosage.

3.8.  In vivo immunity analysis after OCA-NE treatment

The immune response of after OCA and OCA-NE treatment was
investigated. Firstly, the serum and tumoral cytokines including
CXCL16 and IFN-y were determined. The secretion of CXCL16
from LSECs contributes to recruitment of NKT cells to the liver
(by interacting with the CXCR6 on NKT cells), while NKT cells
regulate the innate and adaptive immunity via production of a
variety of cytokines including IEN-y*>*. As shown in Fig. 6A
and B, both serum and tumoral CXCL16 and IFN-vy levels were
much increased after OCA-NE treatment, while free OCA did not
induce significant changes. The cytokine secretion results revealed
that OCA-NE triggered enhanced immune response compared
with free OCA administration, which may be attributed to the
precise delivery of OCA to LSECs via the nanoapproach. Liver
H22 tumors were collected and processed into single cell
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further inhibit liver tumor growth through secretion of IFN-y.

suspensions at the end of treatment for flow cytometry analysis.
As shown in Fig. 6C—E, OCA-NE treatment resulted in significant
increase in NKT and NK cells in the H22 tumor, while no much
changes in CD4™ T cells, CD8" T cells, B cells and macrophages
(gating strategy shown in Supporting Information Fig. S5). This is
in consistent with previous reports that primary bile acids mainly
stimulate NKT cell-mediated immunity in the liver for cancer
control®. In addition, owing to the precise and ‘targeted’ delivery
of OCA to LSECs in NE, significantly higher hepatic NKT cell
levels were determined in OCA-NE group (3.18% of lymphocyte)
compared with free OCA group (1.35% of lymphocyte) at the
same dosage (Fig. 6B), indicating stronger cellular anti-tumor
immune responses induced by OCA-NE than free OCA. Taken
together, these data clearly demonstrated that OCA-NE treatment
caused augmented secretion of CXCL16 by LSECs, which
resulted in enhanced accumulation of NKT cells in liver tumor and
effective suppression of liver tumor growth.

4. Conclusions

In this study, a new evidence was provided for the anticancer
effect of OCA against liver cancer in vivo. OCA was demonstrated
to be capable of regulating CXCR6/CXCL16-dependent accu-
mulation of hepatic NKT cells and antitumor immunity in the
liver. Secondly, to enhance the antitumor efficacy and overcome
the defects of large dosage of OCA, we developed OCA-NE for

precisely modulating LSECs for liver immune microenvironment
management. In vivo biodistribution study showed that OCA-NE
mainly accumulate in the liver and a significant amount was
delivered to the LSECs, thus resulting in significantly enhanced
secretion of CXCL16 and subsequent recruitment of NKT cells to
the liver tumor. Our designed OCA-NE represents a novel and
promising therapeutic option for liver cancer, and the precise
delivery concept should inspire other strategies for using nano-
particles to manipulate LSECs for cancer therapy.
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