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Hypoxia is a critical feature of solid tumors and is considered to be a key factor in
promoting tumorigenesis and progression. Beyond inducing metabolic reprogramming of
tumor cells to adapt to the hypoxia tumor microenvironment (TME), hypoxia can also
promote tumor growth by affecting the secretion of exosomes. Exosomes are nano-sized
(30-150 nm in diameter) extracellular vesicles that can carry numerous substances
including lipids, proteins, nucleic acids, and metabolites. Notably, hypoxia-induced
exosomes alterations not only exist in tumor cells, but also in various TME cells
including stromal cells and immune cells. Besides promoting tumor invasion,
angiogenesis, and drug resistance, the secretion of these altered exosomes has
recently been found to negatively regulate anti-tumor immune responses. In this review,
we focus on the hypoxia-induced changes in exosome secretion and found it can
contributes to immune evasion and cancer progression by recruiting protumor immune
cells into TME, as well as inhibiting antitumor immune cells. Next, we also describe the
recent advances of exosomes in immunotherapy and future direction. In conclusion,
ongoing discoveries in this field have brought new insights into hypoxia exosome-led
immunosuppression, enabling the development of exosome-based therapeutics and
elucidating their potential in immunotherapy.
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INTRODUCTION

The tumor microenvironment (TME) is a complex and highly heterogeneous environment, which is
composed of blood vessels, immune cells, fibroblasts, extracellular matrix, signaling molecules (i.e.,
chemokines, cytokines, growth factors, etc.), and metabolic wastes (e.g., lactic acid) (1). Hypoxia
(low oxygen concentration) is a major feature of the TME in most solid tumors and has been
reported to be associated with tumor progression, therapy resistance, and poor clinical prognosis
(2). Hypoxia is caused by the increased oxygen demand of rapid tumor tissue proliferation and
insufficient oxygen supply due to tumor vascular defects. In general, tumors can improve oxygen
supply by activating hypoxia-inducible factor (HIF) to promote tumor neo-angiogenesis (3).
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Notably, hypoxia not only regulates tumor angiogenesis and
metabolic reprogramming but also mediates tumor immune
escape, invasion, and metastasis, as well as therapeutic drug
resistance (4). Therefore, in the past decades, hypoxia TMEs have
received extensive research attention and are regarded as an
important target for tumor therapy. Drugs that improve tumor
hypoxia, such as bevacizumab and topotecan, have been widely
used in the clinical treatment of various tumors and significantly
improve the prognosis of patients (5). Noteworthy, a growing
number of new findings indicate that hypoxia can also affect
tumor growth, invasion, and metastasis, as well as anti-tumor
immunity by regulating the secretion of exosomes in the TME (6).
Therefore, targeting hypoxia-induced exosomes may be the next
key breakthrough in ameliorating the adverse effects of tumor
hypoxia, as well as promoting the effect of tumor immunotherapy.

Exosomes are nanoscale bilayer vesicles released by various
cell types (tumor cells, stromal cells, immune cells, etc.) upon
fusion of multivesicular bodies with the plasma membrane (7).
They carry various genetic information from parental cells and
are deeply involved in the exchange of information between cells
(8, 9). Therefore, the size and cargo of an exosome are directly
determined by its cell of origin (10, 11). In addition, the size and
cargo variables are also greatly affected by TME, such as hypoxia
and acidic microenvironment (12). However, the exact
mechanism of the association between exosomes and hypoxia
during tumor progression needs further elucidation. Studies have
shown that typical exosomes have a diameter of 30-150 nm and
are usually cup-shaped (13). They all contain multiple types of
proteins (such as Rab GTPases, annexin, heat shock proteins
HSP60 and HSP905-7) and lipids (e.g., ceramides, cholesterol,
and glycerophospholipids), nucleic acids (i.e., mRNAs,
microRNAs, circRNAs, and long non-coding RNAs), and
metabolites (14, 15). They are present in almost all body fluids,
including blood, sweat, tears, urine, ascites, to cerebrospinal
fluid. Exosomes were originally thought to be the “dumpster”
of cells (16). This view remained unchanged until 1996 when
Raposo et al. found that exosomes can affect the function of
immune cells (17). However, subsequent studies on exosome
functions have revealed their critical roles in intercellular
communication, antigen presentation, cell differentiation, anti-
tumor immune response, tumor cell migration, and invasion
(15). Therefore, the exact mechanism of the association between
exosomes and hypoxia during tumor progression needs
further elucidation.
REGULATION OF HYPOXIA
ON EXOSOMES

As mentioned above, the hypoxia TME can regulate processes
such as exosome formation, loading, and release of cargo, which
in turn affects intercellular communication at local and distant
sites. Multiple studies have shown that tumor cells regulate the
secretion of exosomes, as well as the size and distribution of
exosomes through HIF-1 under hypoxia conditions (18). For
instance, Li et al. found a marked increase in the number of
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miRNAs in exosomes secreted by oral squamous cell carcinoma
(OSCC) cells under hypoxia conditions. Further mechanistic
studies found that the up-regulation of miRNAs in exosomes,
especially miRNA-21, was mediated by HIF-1a and HIF-2a,
while closely related to tumor stage and lymph node metastasis
in patients with OSCC (19). Similarly, Wang et al. exposed three
human breast cancer cell lines to a hypoxia environment (1% O2,
24 h) and examined the changes in exosome secretion. Results
showed that the number of exosomes was significantly increased
under the regulation of the HIF-1a-dependent small GTPase
Rab22A (20). In addition, Huang et al. found that HIF-1a can
regulate the expression of miRNA-210 in a variety of tumors
through hypoxia response elements (21). Noteworthy, other
studies have also reported that miRNA-210 is also up-
regulated in multiple tumors and is therefore considered to be
the most extensive miRNA in hypoxia-induced exosomes (22,
23). In ovarian cancer, HIF induces the release of exosomes with
elevated levels of multiple miRNAs, such as miR-21-3p, miR-
125b-5p, and miR-181d-5p. Further in vivo studies found that
these hypoxia-induced exosomes can promote tumor
proliferation and migration by inducing M2 polarization of
macrophages (24). Notably, hypoxia-induced increased
exosome secretion is not a phenomenon unique to tumor cells,
as Zhang et al. observed HIF-1-mediated increased exosome
production and secretion in renal proximal tubule cells under
hypoxia (25). Recent studies have also shown that mesenchymal
stem cells (MSCs) can also promote the secretion of miRNA-126
in exosomes through HIF-1a in hypoxia (26).

Increasing evidences have shown that increased/altered
exosomal protein content also responsible for tumorigenesis,
invasion, and drug resistance. Notably, several studies further
reported that exosomes released from hypoxia TME are more
likely to cause tumor invasion and angiogenesis. Kore et al.
qualitatively and quantitatively analyzed the protein content of
exosomes secreted by hypoxia-treated glioblastoma cells. The
results showed significantly elevated proteins levels such as
thrombospondin-1 (TSP1), vascular endothelial growth factor
(VEGF), and protein-lysine 6-oxidase (LOX), which have been
well documented to be associated with tumor progression,
angiogenesis, and treatment resistance (27). Moreover, Huang
et al. found that exosomes secreted by colorectal cancer (CRC)
cell under hypoxia conditions can promote the migration and
invasion of normoxic CRC cell. Further quantitative analysis
found that HIF1a-dependent Wnt4 was significantly elevated in
these hypoxia-induced exosomes. Elevated Wnt4 in exosomes is
thought to enhance the metastatic ability of normal CRC cell,
which may provide a new target for CRC therapy (28). Besides
proteins and nucleic acids, lipids and metabolites are also
important components of exosomes, although much less
information is available on their composition and effects. For
instance, Schlaepfer et al. observed markedly elevated palmitic,
stearic, and linoleic acids in exosomes secreted by hypoxia-treated
prostate cancer cell (29). All these studies suggest that hypoxia
can affect the secretion and release of various exosome contents.

HIF has been identified to induce exosome secretion by
increasing the expression and activation of cell surface receptors
June 2022 | Volume 13 | Article 915985
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such as glucose transporter and transferrin receptor. Specifically,
Luo et al. revealed that HIF-1 promotes aerobic glycolysis of tumor
cells by up-regulating the expression of M2-type pyruvate kinase
(PKM2) mRNA in the hypoxia TME (30). Furthermore, Wei et al.
found that PKM2 regulates exosome release mainly by
phosphorylating Ser95 of synaptosomeassociated protein 23
(SNAP-23), which is a major component of the synaptosome/
SNARE complex. These finding suggests that PKM2 is not just a
key enzyme in the process of aerobic glycolysis but promotes the
release of exosomes under hypoxia conditions. Thus, it is not
surprising that shikonin was found to reduce exosomes release by
inhibiting glycolysis, whereas activation of glycolysis by tumor
necrosis factor-alpha (TNF-a) increased the secretion of
exosomes (31).

In addition to HIF, other signaling molecules and pathways,
such as Rab-GTPase, NF-kB, oxidative stress, and PI3K/Akt/
mTOR, are also involved in biogenesis and releasing of exosomes
under hypoxia (32). For instance, signal transducer and activator
of transcription 3 (STAT3) promotes exosome release by down-
regulating Rab7 and up-regulating Rab27a in ovarian cancer cells
under hypoxia conditions (33). In addition, RAb5 has also been
reported to regulate exosome release by regulating the transport
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of vesicles from the cell membrane to early endosomes and
fusion with homotypic early endosomes (34). Moreover, the
increase of reactive oxygen species under hypoxia can induce
oxidative stress, which in turn promotes the release of exosomes.
For example, Jurkat T cells secrete about 15 times more
exosomes under oxidative stress conditions, while Raji cells
secreted about 32 times more exosomes (35). Collectively,
these findings confirm that the hypoxia TME can stimulate
tumor cells to secrete more exosomes and thereby affect
exosome cargo loading. However, the specific molecular
mechanism by which hypoxia regulates exosome release is
worth further exploration (Figure 1).
REGULATION OF THE IMMUNE SYSTEM
BY HYPOXIA-INDUCED EXOSOMES

It is well known that exosomes are responsible for intercellular
communication that can influence the development, maturation,
and anti-tumor activity of immune cells by regulating their
molecular signaling (36, 37). On the one hand, under
normoxia, exosome secretions can directly activate immune
FIGURE 1 | The effect of hypoxia induced exosomes on immune system. Hypoxia in the tumor microenvironment can induce tumor cells to secrete a large
number of exosomes, including miRNAs, mRNAs, signaling proteins, nucleotides, and immunomodulatory factors. These hypoxia-induced exosomes can
mediate the immune evasion of tumor cells by affecting the activity of immune killer cells and promoting the proliferation and activation of immunosuppressive
cells. For example, miR-21 and miR-29a in hypoxia-induced exosomes can inhibit the cytotoxicity of NK cell by downregulating the activating receptor NKG2D.
In addition, the proliferation and activation of cytotoxic T cells were also inhibited by exosomes. In contrast, for MDSCs, Treg cells, and TAM, hypoxia-induced
exosomes can promote the expansion and transformation of these cells. For example, various miRNAs have been reported to promote the M2 polarization of
TAMs and thus promote the formation of an immunosuppressive microenvironment. NK cell, natural killer cell; MDSCs, myeloid-derived suppressor cells; Treg,
regulatory T cell; TAM, Tumor-associated macrophages.
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effector cells in vivo and induce stronger immune responses. For
example, HSP70 on the surface of exosomes can stimulate the
activation of natural killer (NK) cells and macrophages, as well as
induce stronger T cell responses (38). The exosomes released by
mature dendritic cells (DCs) contain elevated levels of MHC I,
MHC II, and co-stimulatory molecules, which showed a stronger
effect on antigen presentation and immune stimulation (39). In
addition, DC-derived exosomes can also express IL-15Ra and
natural killer group 2D (NKG2D) ligands, which can promote
the proliferation and activation of CD8+ T and NK cells
respectively (40, 41). In view of the DC-derived exosomal
immunogenicity and immune activation, numerous exosome-
based anti-tumor vaccines have entered phase I and phase II
clinical trials. On the other hand, tumor-derived exosomes,
especially hypoxia-induced exosomes, are rich in a variety of
immunomodulatory proteins and chemokines, including CSF-1,
CCL2, FTH, FTL, IL-10, and TGF. These hypoxia-induced
exosomes promoted the generation and infiltration of
immunosuppressive T regulatory (Treg) cells, promoted the
polarization of M2-macrophages, and inhibited the
proliferation of T cells, collectively promote the immune
evasion of tumors (42). In addition, studies have shown that
programmed death protein ligand 1 (PD-L1) contained in tumor
cell-derived exosomes can bind to programmed death protein 1
(PD-1) receptors on T cells to inhibit T cell activation, thereby
promoting immune escape of tumors (43).

In general, recent studies on hypoxia-induced exosomes have
found that inhibition of immune cells in the TME may be the
main reason for the failure of anti-tumor immunity. Therefore,
clarifying the regulatory role of exosomes on various immune
cells in the hypoxia TME is particularly important for the
development of more effective and precise immunotherapy
methods (Table 1).

Macrophage
Tumor-associated macrophages (TAMs) can differentiate into
either M1-type macrophages with pro-inflammatory effects or
M2-type macrophages with anti-inflammatory effects, both of
Frontiers in Immunology | www.frontiersin.org 4
which are regulated by the TME (50). Furthermore, studies have
shown that this polarization of macrophages can be affected by
exosomes within the hypoxia TME. Specifically, exosomes
derived from different parental cells will promote the
polarization of macrophages into different subtypes. For
example, the exosomes secreted by renal tubular epithelial cells
under hypoxia can promote the polarization of M1 macrophages
and induce high levels of inflammatory responses (51). On the
other hand, hypoxia can alter miRNAs levels in tumor cell-
derived exosomes and leading to M2 polarization of
macrophages (44). Similarly, Chen et al. found that hypoxia
can stimulate M2 phenotype polarization by upregulating miR-
940 expression in epithelial ovarian cancer (EOC)-derived
exosomes, while the M2 subtype macrophages can in turn
promote the proliferation and migration of EOC cells. In
addition, hypoxia can also upregulate the expression of miR-
21-3p, miR-125b-5p, and miR-181d-5p in exosomes via HIF to
induce the M2-polarization of macrophages (24). In another
study, Qian et al. found that compared with normoxic glioma cell
exosomes, hypoxia glioma cell exosomes had a stronger ability to
induce macrophage polarization to the M2 type. Meanwhile, the
study also indicated that the miR-1246 level was significantly
enriched in the exosomes of hypoxia glioma cells, which could
activated the STAT3 pathway and inhibit the NF-kB signaling
pathway, thereby promoting the polarization of M2 phenotype
(52). Nevertheless, although exosomes secreted by tumor cells
under hypoxia stress mostly induce M2 polarization of
macrophages, strategies to convert TAMs to a predominantly
M1 phenotype have been proposed for novel immunotherapy.

MDSC
Myeloid-derived suppressor cells (MDSCs) are highly
heterogeneous immature cells derived from bone marrow that
can inhibit the activation of T cells, promote M2 polarization of
macrophages, and inhibit NK cytotoxicity (53). Numerous
studies have demonstrated that the activation, expansion, and
immunosuppression of MDSCs can be promoted by exosomes.
However, whether exosomes under hypoxia conditions would
TABLE 1 | Hypoxia-induced exosomes involved in anti-tumor immunity.

Regulatory factors Cancer types Biological effect Mechanism Ref

Exosomal miR-940 Epithelial ovarian cancer Suppress anti-tumor immune
responses

Promotes M2 polarization of tumor-associated macrophages
(44)

Exosomal miR24-3p Nasopharyngeal
carcinoma

Suppress anti-tumor immune
responses

Inhibit T-cell proliferation and differentiation, and the induction of
Tregs (45)

Exosomal TGF-b1 Hypoxic cancer Suppress anti-tumor immune
responses

TGF-b1 downregulates NKG2D and
(46)and miR23a miR23a directly targets CD107a

Exosomal miRLet-7a Melanoma Suppress anti-tumor immune
responses

Enhanced the oxidative phosphorylation in bone marrow-derived
macrophages (42)

Exosomal miR-10a and
miR-21

Glioma Suppress anti-tumor immune
responses

Enhanced expansion and activation of myeloid-derived suppressor
cells (47)

Exosomal TGF-b Breast cancer Suppress anti-tumor immune
responses

Inhibit T cell proliferation via TGF-b, IL-10 and PGE2
(48)

Exosomal HSP70 Oral squamous cell
carcinoma

Suppress anti-tumor immune
responses

Inhibit T cells through a miR-21/PTEN/PD-L1 regulation axis
(49)
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have similar effects on the proliferation and immunosuppression
of MDSCs remained to be elucidated. In this regard, researchers
found that hypoxia can directly stimulate the expressions of
HSP72 and toll-like receptor 2 (TLR2) in exosomes, which can
directly participate in the regulation of MDSCs (54, 55).
Specifically, Chalmin et al. found that HSP72 in exosomes can
mediate the interaction between tumor cells and MDSCs by
triggering STAT3 activation (56). Similarly, Xiang et al. found
that exosomes released from cultured B16 tumor cells could
induce the activation and expansion of MDSC in a TLR2-
dependent manner (57). All these results suggest that hypoxia-
induced exosomes play a significant role in suppressing tumor
immune surveillance by promoting the suppressive function
of MDSC.

Although an immunosuppressive milieu mediated by MDSCs
has been demonstrated in patients with glioma, the mechanisms
of MDSC development and activation have not been elucidated.
Guo et al. found that the expression of miR-10a and miR-21 was
increased in glioma cells-derived exosomes under hypoxia
conditions compared with normoxia (47). Furthermore, they
also found that hypoxia-induced glioma cells can stimulate the
differentiation of functional MDSCs by transferring exosomal
miR-29a and miR-92a to MDSCs (58). Accumulating evidence
supports that hypoxia can induce changes in miRNA expression
in tumor-derived exosomes, thereby activating MDSCs and
enhancing their function to promote tumor growth. This
suggests that blocking the immunosuppressive effect of MDSCs
may be an effective way to improve the efficacy of
immunotherapy. Therefore, clarifying the exact effect of
hypoxia on the immunosuppressive function of MDSCs may
provide new insights for targeting exosomal secretion and its
contents (especially miRNAs and proteins) for anti-
tumor immunotherapy.

T Cell
T cells are considered to be the major cell subset in anti-tumor
immunity. Treg cells are a specialized population of T cells
thought to suppress anti-tumor immune responses (59).
Studies have reported that miR-214 expression was
significantly increased in tumor cell-derived exosomes under
hypoxia TME (60). Yin et al. observed that exosomes from lung
cancer cell lines can effectively transport miR-214 to CD4+ T
cells, thereby promoting the expansion of Treg cell subsets and
the secretion of IL-10 (61). A study by Mrizak et al. found that
exosomes released from nasopharyngeal carcinoma cells under
hypoxia conditions express the chemokine CCL20, leading to
preferential recruitment of Treg cells to tumor sites. In addition,
these hypoxia-induced exosomes were also able to induce Treg
cell expansion and enhance their immunosuppressive effects
(62). Collectively, these results suggest that hypoxia
participates in Treg cell-mediated immunosuppression by
modulating the cargo of exosomes.

On the other hand, hypoxia-induced exosomes can also
promote tumor immune escape by directly inhibiting the
activity of T cells. Rong et al. found that TGF-b can be delivered
to T cells through breast cancer cell-derived exosomes, thereby
Frontiers in Immunology | www.frontiersin.org 5
inhibiting T cell proliferation, while anti-TGF-b treatment
reversed the immunosuppressive effects of the exosomes (48). In
addition, HIF can also exert an immunosuppressive effect by
upregulating the PD-L1 expression in exosomes. The study by
Poggio et al. showed that tumor cells can release PD-L1-carrying
exosomes under hypoxia conditions, which can function as an
immune checkpoint by binding to PD-1 on the surface of activated
T cells (63). In patients with gastric cancer, exosome-carried PD-
L1 resulted in decreased CD4+ and CD8+ T cell infiltration and
activity (64). Similarly, higher levels of PD-L1 were found in
exosomes from patients with active disease and poor survival (65).
Together, these studies suggest the inhibitory effect of hypoxia-
induced exosomes on T cell-mediated anti-tumor immunity.

NK Cell
There is ample evidence that hypoxia-induced exosomes can
evade immune surveillance by binding to NK cells. According to
literature reports, the activation of NK cells in anti-tumor
immunity is mediated by surface-active receptors, such as
NKG2D and NKp44 (66). However, hypoxia-induced
exosomes reportedly suppress host NK cell cytotoxicity by
reducing NKG2D expression, thereby disrupting the host
immune system and promoting the formation of a tumor-
promoting microenvironment (67). For example, hypoxia TME
can increase the levels of TGF-b1, miRNA-210, and miRNA-23a
in exosomes secreted by tumor cells. Specifically, the uptake of
hypoxia exosomes by NK cells can transfer TGF-b1 in exosomes
to NK cells and inhibit the expression of its surface-activated
receptor NKG2D, thereby inhibiting NK cell function.
Subsequent miRNA analysis showed highly expressed miR-23a
in hypoxia-induced exosomes, which can target the expression of
CD107a in NK cells, thereby inhibiting the activation of NK cells
(46). Similarly, Xia et al. also described that clear cell renal cancer
triggers NK cell dysfunction in an exosome-dependent manner,
and this inhibitory function also activates the TGF-b/SMAD
signaling pathway through TGF-b1 (68). In addition, the
researchers found that exosomes isolated from the plasma of
patients with melanoma contained a large amount of PD-L1,
FasL, and TGF-b. These hypoxia-associated exosomes not only
inhibited the activity of CD8+ T cells, but also down-regulated
NKG2D expression in NK cells. In contrast, targeting these
exosomes with monoclonal antibodies or pharmacological
inhibitors can restore immune cell function (69).
EXOSOME-BASED ANTI-TUMOR
IMMUNOTHERAPY

Tumor immunotherapy is a new anti-cancer strategy that kills
tumor cells by activating immune cells or restoring exhausted
immune cells. As an important regulator of the TME, exosomes-
based therapies are considered a promising approach to
promoting tumor immunotherapy. For example, exosomes
secreted by tumor cells contain a vast number of tumor-
associated antigens, such as MHC I and MHC II, that can be
June 2022 | Volume 13 | Article 915985
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used as a tumor vaccine to promote anti-tumor immune
responses (70). Hsu et al. found that dendritic cell (DC)-
derived exosomes can be loaded with a variety of polypeptide
antigens (such as MHC I, MHC II) and co-stimulatory molecules
that contribute to the initiation and activation of T cells, such as
CD80, CD83, CD86, etc. (71). In a mouse model of pancreatic
cancer, subcutaneous injection of exosome-loaded DC vaccine
extended survival in mice, while combination therapy with
chemotherapeutics such as of gemcitabine simultaneously
reduced tumor MDSCs content and increased the activation of
T cells (72). In addition, the use of DC cell-derived ovalbumin
exosomes to stimulate CD4+ T cells can inhibit the
differentiation and proliferation of Treg cells and promote the
formation of memory CD8+ T cells. This represents another
attractive exosome-based anti-tumor vaccine option (73). In
addition, DC-derived exosomes contain NKG2D ligands.
Therefore, Viaud et al. reported that DC vaccines can activate
NK cells and release TNF (40). However, due to the cargo
complexity of exosomes, exosome-based tumor vaccine
strategies may also inhibit anti-tumor immunotherapy by
inducing apoptosis of activated CD8+ T cells (74). For example,
exosomes can impair the activation of T cells by IL-2 and promote
the proliferation of Treg cells for immunosuppressive effects (75).
Nevertheless, it is still possible to consider optimizing the use of
exosome vaccines by modifying the exosomes and adjusting their
dosage. For example, Samuel et al. used IFN-g to stimulate the
secretion of exosomes frommature dendritic cells which increased
the expression of co-stimulatory molecules in exosomes to
enhance T cell activation (74).
CONCLUSION

In recent years, anti-tumor immunotherapy represented by
immune checkpoint inhibitors has changed the treatment option
for various tumor types. As mentioned earlier, the infiltration and
activation of immune cells in the TME are closely related to
successful immunotherapy. Therefore, understanding the impact
of exosomes on the anti-tumor immune system can further
enhance the effect of immunotherapy. In fact, hypoxia-induced
exosomal features have been extensively studied and consensus
has been reached. First, hypoxia-induced exosomes are not vesicles
loaded with cellular waste, but key mediators of intercellular
communication. Second, in the adverse TME such as hypoxia,
high glucose and drug therapy, the cargo carried and delivered in
exosomes is significantly altered, which in turn modulates
immune cell function (76, 77). Third, exosomes secreted by
immune cells such as DCs and chimeric antigen receptor T cells
Frontiers in Immunology | www.frontiersin.org 6
(CAR T cells) can inhibit the growth, proliferation, and metastasis
of tumor cells (78). Therefore, the preparation of exosome-based
tumor vaccines to enhance tumor antigen presentation and
modulate immune responses in the TME is a potential avenue
for therapeutic development.
FURTHER PERSPECTIVE

While initial preclinical studies have shown promising results,
clinical trials have failed to achieve comparable results. This
suggests that there are still unresolved challenges with existing
exosome treatments (79). For example, existing exosome
therapeutics have low targeting efficiency and are easily
engulfed by the immune system. In addition, the current
exosome isolation methods are expensive, and large-scale
exosome isolation technology still needs to be developed (80).
Therefore, these problems would need to be solved before clinical
application. Moreover, exosome-based immunotherapy is
currently still in early clinical trials, and there are no specific
international guidelines for the production and application of
this novel therapeutic. Future studies should investigate the
effects of hypoxia on the formation, release, and cargo
components of exosomes, as well as the mechanism by which
the hypoxia TME mediates the regulation of immune cell
function by exosomes. These studies would not only provide
insight into the poor response of cancer immunotherapy
regimens in current clinical trials, but may also serve as a
reference for exosome application in anti-cancer drug delivery
to improve anti-tumor therapy precision.
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